Citation: | Na Liu, Xin Cui, Wenhui Yan, Tingli Guo, Zhuanzhuan Wang, Xiaotong Wei, Yuzhuo Sun, Jieyun Liu, Cheng Xian, Weina Ma, Lina Chen. Baicalein: A potential GLP-1R agonist improves cognitive disorder of diabetes through mitophagy enhancement[J]. Journal of Pharmaceutical Analysis, 2024, 14(8): 100968. doi: 10.1016/j.jpha.2024.100968 |
There is increasing evidence that the activation of glucagon-like peptide-1 receptor (GLP-1R) can be used as a therapeutic intervention for cognitive disorders. Here, we have screened GLP-1R targeted compounds from Scutellaria baicalensis, which revealed baicalein is a potential GLP-1R small-molecule agonist. Mitophagy, a selective autophagy pathway for mitochondrial quality control, plays a neuroprotective role in multiple cognitive impairment diseases. We noticed that Glp1r knock-out (KO) mice present cognitive impairment symptoms and appear worse in spatial learning memory and learning capacity in Morris water maze (MWM) test than their wide-type (WT) counterparts. Our mechanistic studies revealed that mitophagy is impaired in hippocampus tissue of diabetic mice and Glp1r KO mice. Finally, we verified that the cognitive improvement effects of baicalein on diabetic cognitive dysfunction occur through the enhancement of mitophagy in a GLP-1R-dependent manner. Our findings shed light on the importance of GLP-1R for cognitive function maintenance, and revealed the vital significance of GLP-1R for maintaining mitochondrial homeostasis. Furthermore, we identified the therapeutic potential of baicalein in the treatment of cognitive disorder associated with diabetes.
[1] |
A. Artasensi, A. Pedretti, G. Vistoli, et al., Type 2 diabetes mellitus: A review of multi-target drugs, Molecules 25(2020), 1978.
|
[2] |
G.J. Biessels, F. Despa, Cognitive decline and dementia in diabetes mellitus: Mechanisms and clinical implications, Nat. Rev. Endocrinol. 14(2018) 591-604.
|
[3] |
R.J. McCrimmon, C.M. Ryan, B.M. Frier, Diabetes and cognitive dysfunction, Lancet 379(2012) 2291-2299.
|
[4] |
G. Ashrafi, T.L. Schwarz, The pathways of mitophagy for quality control and clearance of mitochondria, Cell Death Differ. 20(2013) 31-42.
|
[5] |
S. Pickles, P. Vigie, R.J. Youle, Mitophagy and quality control mechanisms in mitochondrial maintenance, Curr. Biol. 28(2018) R170-R185.
|
[6] |
X. Ge, L. Wang, Q. Cui, et al., Electroacupuncture improves cognitive impairment in diabetic cognitive dysfunction rats by regulating the mitochondrial autophagy pathway, J. Physiol. Sci. 72(2022), 29.
|
[7] |
Y. Song, Y. Du, W. Zou, et al., Involvement of impaired autophagy and mitophagy in Neuro-2a cell damage under hypoxic and/or high-glucose conditions, Sci. Rep. 8(2018), 3301.
|
[8] |
Z. Wang, P. Xia, J. Hu, et al., LncRNA MEG3 alleviates diabetic cognitive impairments by reducing mitochondrial-derived apoptosis through promotion of FUNDC1-related mitophagy via Rac1-ROS axis, ACS Chem. Neurosci. 12(2021) 2280-2307.
|
[9] |
Y. Zhou, L. Huang, W. Zheng, et al., Recurrent nonsevere hypoglycemia exacerbates imbalance of mitochondrial homeostasis leading to synapse injury and cognitive deficit in diabetes, Am. J. Physiol. Endocrinol. Metab. 315(2018) E973-E986.
|
[10] |
J. Lv, S. Jiang, Z. Yang, et al., PGC-1α Sparks the fire of neuroprotection against neurodegenerative disorders, Ageing Res. Rev. 44(2018) 8-21.
|
[11] |
N.M.B. Yapa, V. Lisnyak, B. Reljic, et al., Mitochondrial dynamics in health and disease, FEBS Lett. 595(2021) 1184-1204.
|
[12] |
K. Palikaras, E. Lionaki, N. Tavernarakis, Coordination of mitophagy and mitochondrial biogenesis during ageing in C. elegans, Nature 521(2015) 525-528.
|
[13] |
H. Cai, D. Yang, J. Qiao, et al., A GLP-1/GIP dual receptor agonist DA4-JC effectively attenuates cognitive impairment and pathology in the APP/PS1/tau model of Alzheimer’s disease, J. Alzheimers. Dis. 83(2021) 799-818.
|
[14] |
A.J.M. Chaves Filho, N.L. Cunha, A.G. de Souza, et al., The GLP-1 receptor agonist liraglutide reverses Mania-like alterations and memory deficits induced by D-amphetamine and augments lithium effects in mice: Relevance for bipolar disorder, Prog. Neuropsychopharmacol Biol. Psychiatry 99(2020), 109872.
|
[15] |
H. Zhang, Y. Chu, H. Zheng, et al., Liraglutide improved the cognitive function of diabetic mice via the receptor of advanced glycation end products down-regulation, Aging 13(2020) 525-536.
|
[16] |
H. Yi, Y. Duan, R. Song, et al., Activation of glucagon-like peptide-1 receptor in microglia exerts protective effects against sepsis-induced encephalopathy via attenuating endoplasmic reticulum stress-associated inflammation and apoptosis in a mouse model of sepsis, Exp. Neurol. 363(2023), 114348.
|
[17] |
T. Kawai, B. Sun, H. Yoshino, et al., Structural basis for GLP-1 receptor activation by LY3502970, an orally active nonpeptide agonist, Proc. Natl. Acad. Sci. U. S. A. 117(2020) 29959-29967.
|
[18] |
M. Davies, T.R. Pieber, M.L. Hartoft-Nielsen, et al., Effect of oral semaglutide compared with placebo and subcutaneous semaglutide on glycemic control in patients with type 2 diabetes: A randomized clinical trial, JAMA 318(2017) 1460-1470.
|
[19] |
F.S. Willard, J.D. Ho, K.W. Sloop, Discovery and pharmacology of the covalent GLP-1 receptor (GLP-1R) allosteric modulator BETP: A novel tool to probe GLP-1R pharmacology, Adv. Pharmacol. 88(2020) 173-191.
|
[20] |
A. Thompson, J.W. Stephens, S.C. Bain, et al., Molecular characterisation of small molecule agonists effect on the human glucagon like peptide-1 receptor internalisation, PLoS One 11(2016), e0154229.
|
[21] |
W. Ma, C. Wang, R. Liu, et al., Advances in cell membrane chromatography, J. Chromatogr. A 1639(2021), 461916.
|
[22] |
T. Zhao, H. Tang, L. Xie, et al., Scutellaria baicalensis Georgi. (Lamiaceae): A review of its traditional uses, botany, phytochemistry, pharmacology and toxicology, J. Pharm. Pharmacol. 71(2019) 1353-1369.
|
[23] |
Y. Wang, Z. Liu, G. Liu, et al., Research progress of active ingredients of Scutellaria baicalensis in the treatment of type 2 diabetes and its complications, Biomed. Pharmacother. 148(2022), 112690.
|
[24] |
A. Ahmadi, Z. Mortazavi, S. Mehri, et al., Scutellaria baicalensis and its constituents baicalin and baicalein as antidotes or protective agents against chemical toxicities: A comprehensive review, Naunyn Schmiedebergs Arch. Pharmacol. 395(2022) 1297-1329.
|
[25] |
L. Duan, Y. Zhang, Y. Yang, et al., Baicalin inhibits ferroptosis in intracerebral hemorrhage, Front. Pharmacol. 12(2021), 629379.
|
[26] |
Y. Lv, S. Wang, P. Liang, et al., Screening and evaluation of anti-SARS-CoV-2 components from Ephedra sinica by ACE2/CMC-HPLC-IT-TOF-MS approach, Anal. Bioanal. Chem. 413(2021) 2995-3004.
|
[27] |
W. Ma, L. Yang, Y. Lv, et al., Determine equilibrium dissociation constant of drug-membrane receptor affinity using the cell membrane chromatography relative standard method, J. Chromatogr. A 1503(2017) 12-20.
|
[28] |
X. He, Y. Sui, S. Wang, Application of a stepwise frontal analysis method in cell membrane chromatography, J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 1161(2020), 122436.
|
[29] |
R. Moaddel, I.W. Wainer, Development of immobilized membrane-based affinity columns for use in the online characterization of membrane bound proteins and for targeted affinity isolations, Anal. Chim. Acta 564(2006) 97-105.
|
[30] |
Q. Jia, J. Fu, C. Gao, et al., MrgX2-SNAP-tag/cell membrane chromatography model coupled with liquid chromatography-mass spectrometry for anti-pseudo-allergic compound screening in Arnebiae Radix, Anal. Bioanal. Chem. 414(2022) 5741-5753.
|
[31] |
X. Yi, W. Yan, T. Guo, et al., Erythropoietin mitigates diabetic nephropathy by restoring PINK1/parkin-mediated mitophagy, Front. Pharmacol. 13(2022), 883057.
|
[32] |
W. Tang, Y. Li, S. He, et al., Caveolin-1 alleviates diabetes-associated cognitive dysfunction through modulating neuronal ferroptosis-mediated mitochondrial homeostasis, Antioxid. Redox Signal. 37(2022) 867-886.
|
[33] |
W.M. Nolte, J.P. Fortin, B.D. Stevens, et al., A potentiator of orthosteric ligand activity at GLP-1R acts via covalent modification, Nat. Chem. Biol. 10(2014) 629-631.
|
[34] |
L.B. Bergantin, Diabetes and inflammatory diseases: An overview from the perspective of Ca2+/3’-5’-cyclic adenosine monophosphate signaling, World J. Diabetes 12(2021) 767-779.
|
[35] |
X.-F. Zhao, G protein-coupled receptors function as cell membrane receptors for the steroid hormone 20-hydroxyecdysone, Cell Commun. Signal. 18(2020), 146.
|
[36] |
J. Damanik, E. Yunir, Type 2 diabetes mellitus and cognitive impairment, Acta Med. Indones. 53(2021) 213-220.
|
[37] |
B. Dinda, S. Dinda, S. DasSharma, et al., Therapeutic potentials of baicalin and its aglycone, baicalein against inflammatory disorders, Eur. J. Med. Chem. 131(2017) 68-80.
|
[38] |
J. Zhu, C. Chen, B. Zhang, et al., The inhibitory effects of flavonoids on α-amylase and α-glucosidase, Crit. Rev. Food Sci. Nutr. 60(2020) 695-708.
|
[39] |
S. Sajadimajd, N. Deravi, K. Forouhar, et al., Endoplasmic reticulum as a therapeutic target in type 2 diabetes: Role of phytochemicals, Int. Immunopharmacol. 114(2023), 109508.
|
[40] |
B.-W. Zhang, X. Li, W.-L. Sun, et al., Dietary flavonoids and acarbose synergistically inhibit α-glucosidase and lower postprandial blood glucose, J. Agric. Food Chem. 65(2017) 8319-8330.
|
[41] |
S. Gupta, H.S. Buttar, G. Kaur, et al., Baicalein: Promising therapeutic applications with special reference to published patents, Pharm. Pat. Anal. 11(2022) 23-32.
|
[42] |
H. Xue, Y. Huo, Y. Hu, et al., The role of ALOX15B in heat stress-induced apoptosis of porcine sertoli cells, Theriogenology 185(2022) 6-15.
|
[43] |
Y. Li, X. Zheng, X. Yi, et al., Myricetin: A potent approach for the treatment of type 2 diabetes as a natural class B GPCR agonist, FASEB J. 31(2017) 2603-2611.
|
[44] |
G. Gupta, M.A. Siddiqui, M.M. Khan, et al., Current pharmacological trends on myricetin, Drug Res. (Stuttg) 70(2020) 448-454.
|
[45] |
R. Dhanya, Quercetin for managing type 2 diabetes and its complications, an insight into multitarget therapy, Biomed. Pharmacother. 146(2022), 112560.
|
[46] |
Z. Wang, M. Zeng, Z. Wang, et al., Dietary luteolin: A narrative review focusing on its pharmacokinetic properties and effects on glycolipid metabolism, J. Agric. Food Chem. 69(2021) 1441-1454.
|
[47] |
A. Caselli, P. Cirri, A. Santi, et al., Morin: A promising natural drug, Curr. Med. Chem. 23(2016) 774-791.
|
[48] |
L. Yao, W. Liu, M. Bashir, et al., Eriocitrin: A review of pharmacological effects, Biomed. Pharmacother. 154(2022), 113563.
|
[49] |
Z. Cong, L.-N. Chen, H. Ma, et al., Molecular insights into ago-allosteric modulation of the human glucagon-like peptide-1 receptor, Nat. Commun. 12(2021), 3763.
|
[50] |
G. Song, D. Yang, Y. Wang, et al., Human GLP-1 receptor transmembrane domain structure in complex with allosteric modulators, Nature 546(2017) 312-315.
|
[51] |
L.-H. Zhao, Y. Yin, D. Yang, et al., Differential requirement of the extracellular domain in activation of class B G protein-coupled receptors, J. Biol. Chem. 291(2016) 15119-15130.
|
[52] |
G.D. Stanciu, V. Bild, D.C. Ababei, et al., Link between diabetes and Alzheimer’s disease due to the shared amyloid aggregation and deposition involving both neurodegenerative changes and neurovascular damages, J. Clin. Med. 9(2020), 1713.
|
[53] |
S.T. Ferreira, Brain insulin, insulin-like growth factor 1 and glucagon-like peptide 1 signalling in Alzheimer’s disease, J. Neuroendocrinol. 33(2021), e12959.
|
[54] |
R. Ravona-Springer, E. Moshier, J. Schmeidler, et al., Changes in glycemic control are associated with changes in cognition in non-diabetic elderly, J. Alzheimers. Dis. 30(2012) 299-309.
|
[55] |
I. Feinkohl, J.F. Price, M.W. Strachan, et al., The impact of diabetes on cognitive decline: Potential vascular, metabolic, and psychosocial risk factors, Alzheimers. Res. Ther. 7(2015), 46.
|
[56] |
Y. Zhang, W. Song, Islet amyloid polypeptide: Another key molecule in Alzheimer’s pathogenesis? Prog. Neurobiol. 153(2017) 100-120.
|
[57] |
D.J. Drucker, Mechanisms of action and therapeutic application of glucagon-like peptide-1, Cell Metab. 27(2018) 740-756.
|
[58] |
C.S. Bae, J. Song, The role of glucagon-like peptide 1(GLP1) in type 3 diabetes: GLP-1 controls insulin resistance, neuroinflammation and neurogenesis in the brain, Int. J. Mol. Sci. 18(2017), 2493.
|
[59] |
S.M. Day, W. Yang, X. Wang, et al., Glucagon-like peptide-1 cleavage product improves cognitive function in a mouse model of down syndrome, eNeuro 6(2019) ENEURO.0031-ENEURO.0019.2019.
|
[60] |
A.F. Batista, L. Forny-Germano, J.R. Clarke, et al., The diabetes drug liraglutide reverses cognitive impairment in mice and attenuates insulin receptor and synaptic pathology in a non-human primate model of Alzheimer’s disease, J. Pathol. 245(2018) 85-100.
|
[61] |
M.S. Mohiuddin, T. Himeno, R. Inoue, et al., Glucagon-like peptide-1 receptor agonist protects dorsal root ganglion neurons against oxidative insult, J. Diabetes Res. 2019(2019), 9426014.
|
[62] |
A. Khalilnezhad, D. Taskiran, The investigation of protective effects of glucagon-like peptide-1(GLP-1) analogue exenatide against glucose and fructose-induced neurotoxicity, Int. J. Neurosci. 129(2019) 481-491.
|
[63] |
A.I. Duarte, E. Candeias, I.N. Alves, et al., Liraglutide protects against brain amyloid-β1-42 accumulation in female mice with early Alzheimer’s disease-like pathology by partially rescuing oxidative/nitrosative stress and inflammation, Int. J. Mol. Sci. 21(2020), 1746.
|
[64] |
S. Lefort, M.H. Tschop, C. Garcia-Caceres, A synaptic basis for GLP-1 action in the brain, Neuron 96(2017) 713-715.
|
[65] |
J.G. Barrera, K.R. Jones, J.P. Herman, et al., Hyperphagia and increased fat accumulation in two models of chronic CNS glucagon-like peptide-1 loss of function, J. Neurosci. 31(2011) 3904-3913.
|
[66] |
M. Haddadi, S.R. Jahromi, B.K. Chandrasekhar Sagar, et al., Brain aging, memory impairment and oxidative stress: A study in Drosophila melanogaster, Behav. Brain Res. 259(2014) 60-69.
|
[67] |
L.-Q. Zhang, W. Zhang, T. Li, et al., GLP-1R activation ameliorated novel-object recognition memory dysfunction via regulating hippocampal AMPK/NF-κB pathway in neuropathic pain mice, Neurobiol. Learn. Mem. 182(2021), 107463.
|
[68] |
W. Bakker, M. Imbernon, C.G. Salinas, et al., Acute changes in systemic glycemia gate access and action of GLP-1R agonist on brain structures controlling energy homeostasis, Cell Rep. 41(2022), 111698.
|
[69] |
H. Zhang, B. Song, W. Zhu, et al., Glucagon-like peptide-1 attenuated carboxymethyl lysine induced neuronal apoptosis via peroxisome proliferation activated receptor-γ, Aging (Albany NY) 13(2021) 19013-19027.
|
[70] |
T. Wai, T. Langer, Mitochondrial dynamics and metabolic regulation, Trends Endocrinol. Metab. 27(2016) 105-117.
|
[71] |
M.C. Hsu, B.C. Guo, C.H. Chen, et al., Apigenin ameliorates hepatic lipid accumulation by activating the autophagy-mitochondria pathway, J. Food Drug Anal. 29(2021) 240-254.
|
[72] |
T. Eisenberg, M. Abdellatif, S. Schroeder, et al., Cardioprotection and lifespan extension by the natural polyamine spermidine, Nat. Med. 22(2016) 1428-1438.
|
[73] |
A.K. Torres, C. Jara, H.S. Park-Kang, et al., Synaptic mitochondria: An early target of amyloid-β and tau in Alzheimer’s disease, J. Alzheimers. Dis. 84(2021) 1391-1414.
|
[74] |
J.S. Kerr, B.A. Adriaanse, N.H. Greig, et al., Mitophagy and Alzheimer’s disease: Cellular and molecular mechanisms, Trends Neurosci. 40(2017) 151-166.
|
[75] |
D. Trigo, C. Avelar, M. Fernandes, et al., Mitochondria, energy, and metabolism in neuronal health and disease, FEBS Lett. 596(2022) 1095-1110.
|
[76] |
F. Yang, X. Wang, J. Qi, et al., Glucagon-like peptide 1 receptor activation inhibits microglial pyroptosis via promoting mitophagy to alleviate depression-like behaviors in diabetic mice, Nutrients 15(2022), 38.
|