Volume 14 Issue 8
Aug.  2024
Turn off MathJax
Article Contents
Arnik Shah, Dipanwita Batabyal, Dayong Qiu, Weidong Cui, John Harrahy, Alexander R. Ivanov. Mapping conformational changes on bispecific antigen-binding biotherapeutic by covalent labeling and mass spectrometry[J]. Journal of Pharmaceutical Analysis, 2024, 14(8): 100966. doi: 10.1016/j.jpha.2024.100966
Citation: Arnik Shah, Dipanwita Batabyal, Dayong Qiu, Weidong Cui, John Harrahy, Alexander R. Ivanov. Mapping conformational changes on bispecific antigen-binding biotherapeutic by covalent labeling and mass spectrometry[J]. Journal of Pharmaceutical Analysis, 2024, 14(8): 100966. doi: 10.1016/j.jpha.2024.100966

Mapping conformational changes on bispecific antigen-binding biotherapeutic by covalent labeling and mass spectrometry

doi: 10.1016/j.jpha.2024.100966
Funds:

This research is supported by Amgen Inc., USA and the National Institutes of Health, USA (Grant Nos.: R01CA218500 (ARI) and R35GM136421 (ARI)). We would like to thank Dr. Scott Siera for providing a critical review of this manuscript and Drs. Chetan Goudar, Tiffany Thiel, and Susan Burke for their support of this project. We would also like to thank Drs. Mats Wikstroem and Palanisamy Kanakraj for providing valuable inputs and support with biophysical and binding assay, and Drs. Hao Zhang and Mengru Zhang for helpful discussions on FPOP and protein footprinting.

  • Received Date: Sep. 22, 2023
  • Accepted Date: Mar. 13, 2024
  • Rev Recd Date: Mar. 07, 2024
  • Publish Date: Mar. 16, 2024
  • Biotherapeutic's higher order structure (HOS) is a critical determinant of its functional properties and conformational relevance. Here, we evaluated two covalent labeling methods: diethylpyrocarbonate (DEPC)-labeling and fast photooxidation of proteins (FPOP), in conjunction with mass spectrometry (MS), to investigate structural modifications for the new class of immuno-oncological therapy known as bispecific antigen-binding biotherapeutics (BABB). The evaluated techniques unveiled subtle structural changes occurring at the amino acid residue level within the antigen-binding domain under both native and thermal stress conditions, which cannot be detected by conventional biophysical techniques, e.g., near-ultraviolet circular dichroism (NUV-CD). The determined variations in labeling uptake under native and stress conditions, corroborated by binding assays, shed light on the binding effect, and highlighted the potential of covalent-labeling methods to effectively monitor conformational changes that ultimately influence the product quality. Our study provides a foundation for implementing the developed techniques in elucidating the inherent structural characteristics of novel therapeutics and their conformational stability.

  • loading
  • [1]
    D.M. Ecker, S.D. Jones, H.L. Levine, The therapeutic monoclonal antibody market, mAbs 7(2015) 9-14.
    [2]
    C. Milstein, Monoclonal antibodies, Sci. Am. 243(1980) 66-74.
    [3]
    P.N. Nelson, G.M. Reynolds, E.E. Waldron, et al., Monoclonal antibodies, Mol. Pathol. 53(2000) 111-117.
    [4]
    S. Singh, N.K. Kumar, P. Dwiwedi, et al., Monoclonal antibodies: A review, Curr. Clin. Pharmacol. 13(2018) 85-99.
    [5]
    J. Reichert, A. Pavolu, Monoclonal antibodies market, Nat. Rev. Drug Discov. 3(2004) 383-384.
    [6]
    E. Moorkens, A.G. Vulto, I. Huys, An overview of patents on therapeutic monoclonal antibodies in Europe: Are they a hurdle to biosimilar market entry? mAbs 12(2020), 1743517.
    [7]
    M. Bhattacharyya, S. Ghosh, S. Vishveshwara, Protein structure and function: Looking through the network of side-chain interactions, Curr. Protein Pept. Sci. 17(2016) 4-25.
    [8]
    D.M. Byers, H. Gong, Acyl carrier protein: Structure-function relationships in a conserved multifunctional protein family, Biochem. Cell Biol. 85(2007) 649-662.
    [9]
    C.A. Orengo, A.E. Todd, J.M. Thornton, From protein structure to function, Curr. Opin. Struct. Biol. 9(1999) 374-382.
    [10]
    D.A. Liberles, S.A. Teichmann, I. Bahar, et al., The interface of protein structure, protein biophysics, and molecular evolution, Protein Sci. 21(2012) 769-785.
    [11]
    Y. Zhang, A.T. Wecksler, P. Molina, et al., Mapping the binding interface of VEGF and a monoclonal antibody fab-1 fragment with fast photochemical oxidation of proteins (FPOP) and mass spectrometry, J. Am. Soc. Mass Spectrom. 28(2017) 850-858.
    [12]
    S. Jin, Y. Sun, X. Liang, et al., Emerging new therapeutic antibody derivatives for cancer treatment, Signal Transduct. Target. Ther. 7(2022), 39.
    [13]
    M. Friedrich, T. Raum, R. Lutterbuese, et al., Regression of human prostate cancer xenografts in mice by AMG 212/BAY2010112, a novel PSMA/CD3-Bispecific BiTE antibody cross-reactive with non-human primate antigens, Mol. Cancer Ther. 11(2012) 2664-2673.
    [14]
    B. Yu, M. Ni, W. Li, et al., Human scFv antibody fragments specific for hepatocellular carcinoma selected from a phage display library, World J. Gastroenterol. 11(2005) 3985-3989.
    [15]
    A.L. Nelson, Antibody fragments, mAbs 2(2010) 77-83.
    [16]
    R. Ahamadi-Fesharaki, A. Fateh, F. Vaziri, et al., Single-chain variable fragment-based bispecific antibodies: Hitting two targets with one sophisticated arrow, Mol. Ther. Oncolytics 14(2019) 38-56.
    [17]
    W. Chen, Y. Yuan, X. Jiang, Antibody and antibody fragments for cancer immunotherapy, J. Control. Release 328(2020) 395-406.
    [18]
    P. Munoz-Lopez, R.M. Ribas-Aparicio, E.I. Becerra-Baez, et al., Single-chain fragment variable: Recent progress in cancer diagnosis and therapy, Cancers 14(2022), 4206.
    [19]
    S. Frokjaer, D.E. Otzen, Protein drug stability: A formulation challenge, Nat. Rev. Drug Discov. 4(2005) 298-306.
    [20]
    S.A. Berkowitz, J.R. Engen, J.R. Mazzeo, et al., Analytical tools for characterizing biopharmaceuticals and the implications for biosimilars, Nat. Rev. Drug Discov. 11(2012) 527-540.
    [21]
    J.P. Gabrielson, W.F. Weiss 4th, Technical decision-making with higher order structure data: Starting a new dialogue, J. Pharm. Sci. 104(2015) 1240-1245.
    [22]
    I.A. Kaltashov, C.E. Bobst, R.R. Abzalimov, et al., Advances and challenges in analytical characterization of biotechnology products: Mass spectrometry-based approaches to study properties and behavior of protein therapeutics, Biotechnol. Adv. 30(2012) 210-222.
    [23]
    Y. Tokunaga, K. Takeuchi, Role of NMR in high ordered structure characterization of monoclonal antibodies, Int. J. Mol. Sci. 22(2020), 46.
    [24]
    L.W. Arbogast, R.G. Brinson, J.P. Marino, Mapping monoclonal antibody structure by 2D 13C NMR at natural abundance, Anal. Chem. 87(2015) 3556-3561.
    [25]
    M.L. Brader, E.N. Baker, M.F. Dunn, et al., Using X-ray crystallography to simplify and accelerate biologics drug development, J. Pharm. Sci. 106(2017) 477-494.
    [26]
    L.J. Harris, E. Skaletsky, A. McPherson, Crystallization of intact monoclonal antibodies, Proteins 23(1995) 285-289.
    [27]
    W.M. Abbott, M.M. Damschroder, D.C. Lowe, Current approaches to fine mapping of antigen-antibody interactions, Immunology 142(2014) 526-535.
    [28]
    S.K. Jung, K.H. Lee, J.W. Jeon, et al., Physicochemical characterization of Remsima®, mAbs 6(2014) 1163-1177.
    [29]
    L.M. Holbrook, L.S. Kwong, C.L. Metcalfe, et al., OX133, a monoclonal antibody recognizing protein-bound N-ethylmaleimide for the identification of reduced disulfide bonds in proteins, mAbs 8(2016) 672-677.
    [30]
    G. Thiagarajan, A. Semple, J.K. James, et al., A comparison of biophysical characterization techniques in predicting monoclonal antibody stability, mAbs 8(2016) 1088-1097.
    [31]
    J. Qian, T. Liu, L. Yang, et al., Structural characterization of N-linked oligosaccharides on monoclonal antibody cetuximab by the combination of orthogonal matrix-assisted laser desorption/ionization hybrid quadrupole-quadrupole time-of-flight tandem mass spectrometry and sequential enzymatic digestion, Anal. Biochem. 364(2007) 8-18.
    [32]
    L. Huang, J. Lu, V.J. Wroblewski, et al., In vivo deamidation characterization of monoclonal antibody by LC/MS/MS, Anal. Chem. 77(2005) 1432-1439.
    [33]
    A. Beck, S. Sanglier-Cianferani, A. Van Dorsselaer, Biosimilar, biobetter, and next generation antibody characterization by mass spectrometry, Anal. Chem. 84(2012) 4637-4646.
    [34]
    J.E. Alexander, D.F. Hunt, M.K. Lee, et al., Characterization of posttranslational modifications in neuron-specific class III beta-tubulin by mass spectrometry, Proc. Natl. Acad. Sci. U S A 88(1991) 4685-4689.
    [35]
    G. Terral, A. Beck, S. Cianferani, Insights from native mass spectrometry and ion mobility-mass spectrometry for antibody and antibody-based product characterization, J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 1032(2016) 79-90.
    [36]
    X.R. Liu, M.M. Zhang, M.L. Gross, Mass spectrometry-based protein footprinting for higher-order structure analysis: Fundamentals and applications, Chem. Rev. 120(2020) 4355-4454.
    [37]
    R.Y.C. Huang, G. Chen, Higher order structure characterization of protein therapeutics by hydrogen/deuterium exchange mass spectrometry, Anal. Bioanal. Chem. 406(2014) 6541-6558.
    [38]
    C.E. Bobst, R.R. Abzalimov, Houde, et al., Detection and characterization of altered conformations of protein pharmaceuticals using complementary mass spectrometry-based approaches, Anal. Chem. 80(2008) 7473-7481.
    [39]
    P. Limpikirati, T. Liu, R.W. Vachet, Covalent labeling-mass spectrometry with non-specific reagents for studying protein structure and interactions, Methods 144(2018) 79-93.
    [40]
    C.Y. Tremblay, Z.J. Kirsch, R.W. Vachet, Complementary structural information for antibody-antigen complexes from hydrogen-deuterium exchange and covalent labeling mass spectrometry, J. Am. Soc. Mass Spectrom. 33(2022) 1303-1314.
    [41]
    C.Y. Tremblay, Z.J. Kirsch, R.W. Vachet, Epitope mapping with diethylpyrocarbonate covalent labeling-mass spectrometry, Anal. Chem. 94(2022) 1052-1059.
    [42]
    L.M. Jones, J.B. Sperry, J.A. Carroll, et al., Fast photochemical oxidation of proteins for epitope mapping, Anal. Chem. 83(2011) 7657-7661.
    [43]
    C. Watson, J.S. Sharp, Conformational analysis of therapeutic proteins by hydroxyl radical protein footprinting, AAPS J. 14(2012) 206-217.
    [44]
    J. Li, H. Wei, S.R. Krystek Jr, et al., Mapping the energetic epitope of an antibody/interleukin-23 interaction with hydrogen/deuterium exchange, fast photochemical oxidation of proteins mass spectrometry, and alanine shave mutagenesis, Anal. Chem. 89(2017) 2250-2258.
    [45]
    L. Konermann, J. Pan, Y. Liu, Hydrogen exchange mass spectrometry for studying protein structure and dynamics, Chem. Soc. Rev. 40(2011) 1224-1234.
    [46]
    E. Trabjerg, Z.E. Nazari, K.D. Rand, Conformational analysis of complex protein states by hydrogen/deuterium exchange mass spectrometry (HDX-MS): Challenges and emerging solutions, Trends Analyt. Chem. 106(2018) 125-138.
    [47]
    G.R. Masson, J.E. Burke, N.G. Ahn, et al., Recommendations for performing, interpreting and reporting hydrogen deuterium exchange mass spectrometry (HDX-MS) experiments, Nat. Meth. 16(2019) 595-602.
    [48]
    G.R. Masson, M.L. Jenkins, J.E. Burke, An overview of hydrogen deuterium exchange mass spectrometry (HDX-MS) in drug discovery, Expert Opin. Drug Discov. 12(2017) 981-994.
    [49]
    L. Piersimoni, P.L. Kastritis, C. Arlt, et al., Cross-linking mass spectrometry for investigating protein conformations and protein-protein Interactions - A method for all seasons, Chem. Rev. 122(2022) 7500-7531.
    [50]
    A. Sinz, C. Arlt, D. Chorev, et al., Chemical cross-linking and native mass spectrometry: A fruitful combination for structural biology Protein Sci. 24(2015) 1193-1209.
    [51]
    A. Leitner, M. Faini, F. Stengel, et al., Crosslinking and mass spectrometry: An integrated technology to understand the structure and function of molecular machines, Trends Biochem. Sci. 41(2016) 20-32.
    [52]
    J.D. Chavez, J.E. Bruce, Chemical cross-linking with mass spectrometry: A tool for systems structural biology, Curr. Opin. Chem. Biol. 48(2019) 8-18.
    [53]
    D.D. Vallejo, C.K. Jeon, K.F. Parson, et al., Ion mobility-mass spectrometry reveals the structures and stabilities of biotherapeutic antibody aggregates, Anal. Chem. 94(2022) 6745-6753.
    [54]
    D.D. Vallejo, J. Kang, J. Coghlan, et al., Collision-induced unfolding reveals stability differences in infliximab therapeutics under native and heat stress conditions, Anal. Chem. 93(2021) 16166-16174.
    [55]
    R.C. Villafuerte-Vega, H.W. Li, T.R. Slaney, et al., Ion mobility-mass spectrometry and collision-induced unfolding of designed bispecific antibody therapeutics, Anal. Chem. 95(2023) 6962-6970.
    [56]
    W. Zhang, Y. Xiang, W. Xu, Probing protein higher-order structures by native capillary electrophoresis-mass spectrometry, Trends Analyt. Chem. 157(2022), 116739.
    [57]
    S.S. Zhao, D.D. Chen, Applications of capillary electrophoresis in characterizing recombinant protein therapeutics, Electrophoresis 35(2014) 96-108.
    [58]
    K. Faserl, B. Sarg, H.H. Lindner, Application of CE-MS for the analysis of histones and histone modifications, Methods 184(2020) 125-134.
    [59]
    Y. Shen, X. Zhao, G. Wang, et al., Differential hydrogen/deuterium exchange during proteoform separation enables characterization of conformational differences between coexisting protein states, Anal. Chem. 91(2019) 3805-3809.
    [60]
    Z. Zhang, S.Y. Chow, R. de Guzman, et al., A mass spectrometric characterization of light-induced modifications in therapeutic proteins, J. Pharm. Sci. 111(2022) 1556-1564.
    [61]
    N.B. Borotto, Y. Zhou, S.R. Hollingsworth, et al., Investigating therapeutic protein structure with diethylpyrocarbonate labeling and mass spectrometry, Anal. Chem. 87(2015) 10627-10634.
    [62]
    P. Limpikirati, J.E. Hale, M. Hazelbaker, et al., Covalent labeling and mass spectrometry reveal subtle higher order structural changes for antibody therapeutics, mAbs 11(2019) 463-476.
    [63]
    Y. Yan, G. Chen, H. Wei, et al., Fast photochemical oxidation of proteins (FPOP) maps the epitope of EGFR binding to adnectin, J. Am. Soc. Mass Spectrom. 25(2014) 2084-2092.
    [64]
    G. Deperalta, M. Alvarez, C. Bechtel, et al., Structural analysis of a therapeutic monoclonal antibody dimer by hydroxyl radical footprinting, mAbs 5(2013) 86-101.
    [65]
    A.J. Schick 3rd, V. Lundin, J. Low, et al., Epitope mapping of anti-drug antibodies to a clinical candidate bispecific antibody, mAbs 14(2022), 2028337.
    [66]
    V.L. Mendoza, R.W. Vachet, Probing protein structure by amino acid-specific covalent labeling and mass spectrometry, Mass Spectrom. Rev. 28(2009) 785-815.
    [67]
    X.R. Liu, D.L. Rempel, M.L. Gross, Protein higher-order-structure determination by fast photochemical oxidation of proteins and mass spectrometry analysis, Nat. Protoc. 15(2020) 3942-3970.
    [68]
    K.S. Li, L. Shi, M.L. Gross, Mass spectrometry-based fast photochemical oxidation of proteins (FPOP) for higher order structure characterization, Acc. Chem. Res. 51(2018) 736-744.
    [69]
    C.H. Li, X. Nguyen, L. Narhi, et al., Applications of circular dichroism (CD) for structural analysis of proteins: Qualification of near- and far-UV CD for protein higher order structural analysis, J. Pharm. Sci. 100(2011) 4642-4654.
    [70]
    Z. Zhang, B. Shah, X. Guan, Reliable LC-MS multiattribute method for biotherapeutics by Run-time response calibration, Anal. Chem. 91(2019) 5252-5260.
    [71]
    D. Goswami, J. Zhang, P.V. Bondarenko, et al., MS-based conformation analysis of recombinant proteins in design, optimization and development of biopharmaceuticals, Methods 144(2018) 134-151.
    [72]
    B. Shah, X.G. Jiang, L. Chen, et al., LC-MS/MS peptide mapping with automated data processing for routine profiling of N-glycans in immunoglobulins, J. Am. Soc. Mass Spectrom. 25(2014) 999-1011.
    [73]
    D.T. Johnson, L.H. Di Stefano, L.M. Jones, Fast photochemical oxidation of proteins (FPOP): A powerful mass spectrometry-based structural proteomics tool, J. Biol. Chem. 294(2019) 11969-11979.
    [74]
    G. Xu, M.R. Chance, Hydroxyl radical-mediated modification of proteins as probes for structural proteomics, Chem. Rev. 107(2007) 3514-3543.
    [75]
    A. Bachi, I. Dalle-Donne, A. Scaloni, Redox proteomics: Chemical principles, methodological approaches and biological/biomedical promises, Chem. Rev. 113(2013) 596-698.
    [76]
    M.J. Davies, R.J. Truscott, Photo-oxidation of proteins and its role in cataractogenesis, J. Photochem. Photobiol. B 63(2001) 114-125.
    [77]
    A.J. Grosvenor, J.D. Morton, J.M. Dyer, Profiling of residue-level photo-oxidative damage in peptides, Amino Acids 39(2010) 285-296.
    [78]
    M. Tomita, M. Irie, T. Ukita, Sensitized photooxidation of histidine and its derivatives. Products and mechanism of the reaction, Biochemistry 8(1969) 5149-5160.
    [79]
    H.H. Wasserman, K. Stiller, M.B. Floyd, The reactions of heterocyclic systems with singlet oxygen. Photosensitized oxygenation of imidazoles, Tetrahedron Lett. 9(1968) 3277-3280.
    [80]
    D.M. Hambly, M.L. Gross, Chapter 7 microsecond time-scale hydroxyl radical profiling of solvent-accessible protein residues. Comprehensive Analytical Chemistry. Amsterdam, Elsevier, 2008, 151-177.
    [81]
    S. Vahidi, L. Konermann, Probing the time scale of FPOP (fast photochemical oxidation of proteins): Radical reactions extend over tens of milliseconds, J. Am. Soc. Mass Spectrom. 27(2016) 1156-1164.
    [82]
    P. Koenig, C.V. Lee, B.T. Walters, et al., Mutational landscape of antibody variable domains reveals a switch modulating the interdomain conformational dynamics and antigen binding, Proc. Natl. Acad. Sci. U S A 114(2017) E486-E495.
    [83]
    K. Van Holsbeeck, J.C. Martins, S. Ballet, Downsizing antibodies: Towards complementarity-determining region (CDR)-based peptide mimetics, Bioorg. Chem. 119(2022), 105563.
    [84]
    Y. Barrios, P. Jirholt, M. Ohlin, Length of the antibody heavy chain complementarity determining region 3 as a specificity-determining factor, J. Mol. Recognit. 17(2004) 332-338.
    [85]
    H. Liu, K. May, Disulfide bond structures of IgG molecules: Structural variations, chemical modifications and possible impacts to stability and biological function, mAbs 4(2012) 17-23.
    [86]
    Y. Hagihara, D. Saerens, Engineering disulfide bonds within an antibody, Biochim. Biophys. Acta BBA Proteins Proteom. 1844(2014) 2016-2023.
    [87]
    G. Wozniak-Knopp, J. Stadlmann, F. Ruker, Stabilisation of the Fc fragment of human IgG1 by engineered intradomain disulfide bonds, PLoS One 7(2012), e30083.
    [88]
    N.J. Agrawal, A. Dykstra, J. Yang, et al., Prediction of the hydrogen peroxide-induced methionine oxidation propensity in monoclonal antibodies, J. Pharm. Sci. 107(2018) 1282-1289.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (77) PDF downloads(10) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return