Citation: | Xiao-lan Li, Jian-qing Zhang, Yun Li, Xuan-jing Shen, Huan-ya Yang, Lin Yang, Meng Xu, Qi-rui Bi, Chang-liang Yao, De-an Guo. Medcheck: A novel software for automated de-formulation of traditional Chinese medicine (TCM) prescriptions by liquid chromatography-mass spectrometry[J]. Journal of Pharmaceutical Analysis, 2024, 14(6): 100958. doi: 10.1016/j.jpha.2024.02.012 |
[1] |
X. Lu, Y. Jin, Y. Wang, et al., Multimodal integrated strategy for the discovery and identification of quality markers in traditional Chinese medicine, J. Pharm. Anal. 12(2022)701-710.
|
[2] |
S. Beyramysoltan, M.I. Chambers, A.M. Osborne, et al., Introducing "DoPP":A graphical user-friendly application for the rapid species identification of psychoactive plant materials and quantification of psychoactive small molecules using DART-MS data, Anal. Chem. 94(2022)16570-16578.
|
[3] |
D. Eilertz, M. Mitterer, J.M. Buescher, automRm:An R package for fully automatic LC-QQQ-MS data preprocessing powered by machine learning, Anal. Chem. 94(2022)6163-6171.
|
[4] |
F. Zheng, X. Zhao, Z. Zeng, et al., Development of a plasma pseudotargeted metabolomics method based on ultra-high-performance liquid chromatography-mass spectrometry, Nat. Protoc. 15(2020)2519-2537.
|
[5] |
Q. Song, J. Li, Y. Cao, et al., Binary code, a flexible tool for diagnostic metabolite sequencing of medicinal plants, Anal. Chim. Acta 1088(2019)89-98.
|