Citation: | Xinyue Yang, Yingyu Sima, Xuhuai Luo, Yaping Li, Min He. Analysis of GC×GC fingerprints from medicinal materials using a novel contour detection algorithm: A case of Curcuma wenyujin[J]. Journal of Pharmaceutical Analysis, 2024, 14(4): 100936. doi: 10.1016/j.jpha.2024.01.004 |
[1] |
R. Kant, A. Kumar, Review on essential oil extraction from aromatic and medicinal plants: Techniques, performance and economic analysis, Sustain. Chem. Pharm. 30 (2022), 100829.
|
[2] |
A. Bouyahya, J. Abrini, N. Dakka, et al., Essential oils of Origanum compactum increase membrane permeability, disturb cell membrane integrity, and suppress quorum-sensing phenotype in bacteria, J. Pharm. Anal. 9 (2019) 301-311.
|
[3] |
X. Gu, D. Hao, P. Xiao, Research progress of Chinese herbal medicine compounds and their bioactivities: Fruitful 2020, Chin. Herb. Med. 14 (2022) 171-186.
|
[4] |
L. Zhao, H. Zhang, N. Li, et al., Network pharmacology, a promising approach to reveal the pharmacology mechanism of Chinese medicine formula, J. Ethnopharmacol. 309 (2023), 116306.
|
[5] |
P. Cao, G. Wang, X. Wei, et al., How to improve CHMs quality: Enlighten from CHMs ecological cultivation, Chin. Herb. Med. 13 (2021) 301-312.
|
[6] |
Y. Li, Y. Wu, Y. Li, et al., Review of the traditional uses, phytochemistry, and pharmacology of Curcuma wenyujin Y. H. Chen et C. Ling, J. Ethnopharmacol. 269 (2021), 113689.
|
[7] |
J. Zhang, C. Wang, W. Wu, et al., Authentication of herbal medicines from multiple botanical origins with cross-validation mebabolomics, absolute quantification and support vector machine model, a case study of Rhizoma Alismatis, Arab. J. Chem. 15 (2022), 104118.
|
[8] |
Back to beginning: Searching for Rosetta Stone of enhancing herbal medicine quality, Chin. Herb. Med. 13 (2021) 299-300.
|
[9] |
D. Wang, J. Ding, X. Feng, et al., Identification of Q-Markers from Hedan Tablet by employing “spider-web” mode and taking compounds’ hepatotoxicity into account, Chin. Herb. Med. 14 (2022) 612-621.
|
[10] |
S. Guo, S. Hu, L. Jiang, et al., Quantitative determination of multi-class bioactive constituents for quality control of Yiqi Jiangzhi Granules, Chin. Herb. Med. 14 (2022) 324-331.
|
[11] |
M. Sha, X. Li, Y. Liu, et al., Comparative chemical characters of Pseudostellaria heterophylla from geographical origins of China, Chin. Herb. Med. 15 (2023) 439-446.
|
[12] |
M. He, Y. Zhou, How to identify “Material basis-Quality markers” more accurately in Chinese herbal medicines from modern chromatography-mass spectrometry data-sets: Opportunities and challenges of chemometric tools, Chin. Herb. Med. 13 (2021) 2-16.
|
[13] |
M. Yan, Z. Zhang, Y. Liu, Difference analysis of different parts of chicory based on HPLC fingerprint and multi-component content determination, Chin. Herb. Med. 14 (2022) 317-323.
|
[14] |
H. Kan, D. Zhang, W. Chen, et al., Identification of anti-inflammatory components in Panax ginseng of Sijunzi Decoction based on spectrum-effect relationship, Chin. Herb. Med. 15 (2023) 123-131.
|
[15] |
J. Han, K. Xu, Q. Yan, et al., Qualitative and quantitative evaluation of Flos Puerariae by using chemical fingerprint in combination with chemometrics method, J. Pharm. Anal. 12 (2022) 489-499.
|
[16] |
S. Khan, A.K. Rai, A. Singh, et al., Rapid metabolic fingerprinting with the aid of chemometric models to identify authenticity of natural medicines: Turmeric, Ocimum, and Withania somnifera study, J. Pharm. Anal. 13 (2023) 1041-1057.
|
[17] |
M. He, Z. Yang, T. Yang, et al., Chemometrics-enhanced one-dimensional/comprehensive two-dimensional gas chromatographic analysis for bioactive terpenoids and phthalides in Chaihu Shugan San essential oils, J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 1052 (2017) 158-168.
|
[18] |
M. He, J. Zeng, G. Peng, et al., Herbal Component Correlation and Matrix-based Resolution in Comprehensive two-dimensional Gas Chromatography - Mass Spectrometry data via Intelligent Clustering of Modulation Peaks, J. Pharm. Biomed. Anal. 194 (2021), 113800.
|
[19] |
F. Stilo, C. Bicchi, A. Robbat Jr., et al., Untargeted approaches in food-omics: The potential of comprehensive two-dimensional gas chromatography/mass spectrometry, Trac Trends Anal. Chem. 135 (2021), 116162.
|
[20] |
M. Zou, H. Tang, X. Chen, et al., Insights into volatile flavor compound variations and characteristic fingerprints in Longpai soy sauce moromi fermentation via HS-GC-IMS and HS-SPME-GC×GC-ToF-MS, LWT 176 (2023), 114490.
|
[21] |
C. Ma, H. Wang, X. Lu, et al., Analysis of Artemisia annua L. volatile oil by comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry, J. Chromatogr. A 1150 (2007) 50-53.
|
[22] |
J.J. Filippi, E. Belhassen, N. Baldovini, et al., Qualitative and quantitative analysis of vetiver essential oils by comprehensive two-dimensional gas chromatography and comprehensive two-dimensional gas chromatography/mass spectrometry, J. Chromatogr. A 1288 (2013) 127-148.
|
[23] |
M. He, P. Yan, Z. Yang, et al., Multi-analytical strategy for unassigned peaks using physical/mathematical separation, fragmental rules and retention index prediction: An example of sesquiterpene metabolites characterization in Cyperus rotundus, J. Pharm. Biomed. Anal. 154 (2018) 476-485.
|
[24] |
X. Yang, P. Zeng, J. Wen, et al., Gain deeper insights into traditional Chinese medicines using multidimensional chromatography combined with chemometric approaches, Chin. Herb. Med. 16 (2024) 27-41.
|
[25] |
T.J. Trinklein, C.N. Cain, G.S. Ochoa, et al., Recent advances in GC×GC and chemometrics to address emerging challenges in nontargeted analysis, Anal. Chem. 95 (2023) 264-286.
|
[26] |
L. Mikaliunaite, R.E. Synovec, Computational method for untargeted determination of cycling yeast metabolites using comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry, Talanta 244 (2022), 123396.
|
[27] |
F. Stilo, C. Bicchi, A.M. Jimenez-Carvelo, et al., Chromatographic fingerprinting by comprehensive two-dimensional chromatography: Fundamentals and tools, Trac Trends Anal. Chem. 134 (2021), 116133.
|
[28] |
Y. Nolvachai, M.S.S. Amaral, P.J. Marriott, Foods and contaminants analysis using multidimensional gas chromatography: An update of recent studies, technology, and applications, Anal. Chem. 95 (2023) 238-263.
|
[29] |
S.E. Reichenbach, M. Ni, V. Kottapalli, et al., Information technologies for comprehensive two-dimensional gas chromatography, Chemom. Intell. Lab. Syst. 71 (2004) 107-120.
|
[30] |
S. Peters, G. Vivo-Truyols, P.J. Marriott, et al., Development of an algorithm for peak detection in comprehensive two-dimensional chromatography, J. Chromatogr. A 1156 (2007) 14-24.
|
[31] |
G. Vivo-Truyols, Bayesian approach for peak detection in two-dimensional chromatography, Anal. Chem. 84 (2012) 2622-2630.
|
[32] |
S. Kim, M. Ouyang, J. Jeong, et al., A new method of peak detection for analysis of comprehensive two-dimensional gas chromatography mass spectrometry data, Ann. Appl. Stat. 8 (2014) 1209-1231.
|
[33] |
A. Victoria Matias, J.G. Atkinson Amorim, L.A. Buschetto Macarini, et al., What is the state of the art of computer vision-assisted cytology? A Systematic Literature Review, Comput. Med. Imaging Graph. 91 (2021), 101934.
|
[34] |
V. Kakani, V.H. Nguyen, B.P. Kumar, et al., A critical review on computer vision and artificial intelligence in food industry, J. Agric. Food Res. 2 (2020), 100033.
|
[35] |
Y. Wu, W. Ma, J. Zhang, et al., Point-matching algorithm based on local neighborhood information for remote sensing image registration, JARS 12 (2018), 016002.
|
[36] |
D. Yeap, M.M. McCartney, M.Y. Rajapakse, et al., Peak detection and random forests classification software for gas chromatography/differential mobility spectrometry (GC/DMS) data, Chemometr. Intell. Lab. Syst. 203 (2020), 104085.
|
[37] |
M. He, X. Yang, Y. Li, et al., Development of image similarity strategy based on targeted filtration for non-targeted HS-SPME/GC×GC fingerprints of volatile oils from Chinese patent medicines: A case of Chaihu Shugan Wan, Microchem. J. 191 (2023), 108705.
|
[38] |
A. Caratti, S. Squara, C. Bicchi, et al., Augmented visualization by computer vision and chromatographic fingerprinting on comprehensive two-dimensional gas chromatographic patterns: Unraveling diagnostic signatures in food volatilome, J. Chromatogr. A 1699 (2023), 464010.
|
[39] |
T. Yang, P. Yan, M. He, et al., Application of Subwindow Factor Analysis and Mass Spectral information for accurate alignment of non-targeted metabolic profiling, J. Chromatogr. A 1563 (2018) 162-170.
|
[40] |
J. Zeng, M. He, H. Wu, et al., Peak alignment for herbal fingerprints from liquid chromatography-high resolution mass spectrometry via diffusion model and bi-directional eigenvalues, Microchem. J. 167 (2021), 106296.
|
[41] |
C. Rawlinson, D. Jones, S. Rakshit, et al., Hierarchical clustering of MS/MS spectra from the firefly metabolome identifies new lucibufagin compounds, Sci. Rep. 10 (2020), 6043.
|
[42] |
S. Chanana, C.S. Thomas, F. Zhang, et al., hcapca: Automated hierarchical clustering and principal component analysis of large metabolomic datasets in R, Metabolites 10 (2020), 297.
|
[43] |
S.Y. Imanishi, T. Nakayama, H. Asukabe, et al., Application of MALDI biotyper to cyanobacterial profiling, Rapid Commun. Mass Spectrom. 31 (2017) 325-332.
|
[44] |
K. Teramoto, H. Sato, L. Sun, et al., Phylogenetic classification of Pseudomonas putida strains by MALDI-MS using ribosomal subunit proteins as biomarkers, Anal. Chem. 79 (2007) 8712-8719.
|
[45] |
V.H.C. Ferreira, L.W. Hantao, R.J. Poppi, Use of color based chromatographic images obtained from comprehensive two-dimensional gas chromatography in authentication analyses, Talanta 234 (2021), 122616.
|
[46] |
S. Suzuki, K. Abe, Topological structural analysis of digitized binary images by border following, Comput. Vis. Graph. Image Process. 29 (1985) 396.
|
[47] |
B.J. Frey, D. Dueck, Clustering by passing messages between data points, Science 315 (2007) 972-976.
|
[48] |
Z. Li, E. Hao, R. Cao, et al., Analysis on internal mechanism of zedoary turmeric in treatment of liver cancer based on pharmacodynamic substances and pharmacodynamic groups, Chin. Herb. Med. 14 (2022) 479-493.
|
[49] |
X. Lu, Y. Jin, Y. Wang, et al., Multimodal integrated strategy for the discovery and identification of quality markers in traditional Chinese medicine, J. Pharm. Anal. 12 (2022) 701-710.
|
[50] |
Z. Wang, S. Li, Network pharmacology in quality control of traditional Chinese medicines, Chin. Herb. Med. 14 (2022) 477-478.
|
[51] |
H. Li, Q. Xu, Y. Liang, libPLS: An integrated library for partial least squares regression and linear discriminant analysis, Chemom. Intell. Lab. Syst. 176 (2018) 34-43.
|
[52] |
L. Zhang, Z. Yang, J. Wei, et al., Contrastive analysis of chemical composition of essential oil from twelve Curcuma species distributed in China, Ind. Crops Prod. 108 (2017) 17-25.
|