Citation: | Rong Jiao, Xia Lin, Jingchao Wang, Chunyan Zhu, Jiang Hu, Huali Gao, Kun Zhang. 3D-Printed Constructs Deliver Bioactive Cargos to Expedite Cartilage Regeneration[J]. Journal of Pharmaceutical Analysis. doi: 10.1016/j.jpha.2023.12.015 |
T.R. Coughlin, O.D. Kennedy, The role of subchondral bone damage in post-traumatic osteoarthritis, Ann. N. Y. Acad. Sci. 1383 (2016) 58-66.
|
J. Trivedi, D. Betensky, S. Desai, et al., Post-traumatic osteoarthritis assessment in emerging and advanced pre-clinical meniscus repair strategies: A review, Front. Bioeng. Biotechnol. 9 (2021) 787330.
|
W. Jiang, H. Liu, R. Wan, et al., Mechanisms linking mitochondrial mechanotransduction and chondrocyte biology in the pathogenesis of osteoarthritis, Ageing. Res. Rev. 67 (2021) 101315.
|
D. Primorac, V. Molnar, E. Rod, et al., Knee osteoarthritis: A review of pathogenesis and state-of-the-art non-operative therapeutic considerations, Genes 11 (2020) 854.
|
J. Lieberthal, N. Sambamurthy, C.R. Scanzello, Inflammation in joint injury and post-traumatic osteoarthritis, Osteoarthritis Cartilage 23 (2015) 1825-1834.
|
Y. Krishnan, A.J. Grodzinsky, Cartilage diseases, Matrix Biol. 71-72 (2018) 51-69.
|
M.M. Chau, M.A. Klimstra, K.L. Wise, et al., Osteochondritis dissecans: Current understanding of epidemiology, etiology, management, and outcomes, J. Bone Jt. Surg. Am. Vol. 103 (2021) 1132-1151.
|
J. Harlaar, E.M. Macri, M. Wesseling, Osteoarthritis year in review 2021: Mechanics, Osteoarthr. Cartil. 30 (2022) 663-670.
|
E.A. Makris, A.H. Gomoll, K.N. Malizos, et al., Repair and tissue engineering techniques for articular cartilage, Nat. Rev. Rheumatol. 11 (2015) 21-34.
|
F. Frehner, J.P. Benthien, Microfracture: State of the art in cartilage surgery? Cartilage 9 (2018) 339-345.
|
L. Gao, P. Orth, M. Cucchiarini, et al., Autologous matrix-induced chondrogenesis: A systematic review of the clinical evidence, Am. J. Sports Med. 47 (2019) 222-231.
|
K. Karpinski, M. Haner, S. Bierke, et al., Matrix-induced chondrogenesis is a valid and safe cartilage repair option for small- to medium-sized cartilage defects of the knee: A systematic review, Knee Surg Sports Traumatol Arthrosc 29 (2021) 4213-4222.
|
M. Hevesi, J.M. Denbeigh, C.A. Paggi, et al., Fresh osteochondral allograft transplantation in the knee: A viability and histologic analysis for optimizing graft viability and expanding existing standard processed graft resources using a living donor cartilage program, Cartilage 13 (2021) 948S-956S.
|
J. Chahal, A.E. Gross, C. Gross, et al., Outcomes of osteochondral allograft transplantation in the knee, Arthroscopy 29 (2013) 575-588.
|
A.J. Price, A. Alvand, A. Troelsen, et al., Knee replacement, Lancet 392 (2018) 1672-1682.
|
Q. Liang, Y. Ma, X. Yao, et al., Advanced 3D-printing bioinks for articular cartilage repair, Int. J. Bioprint. 8 (2022) 511.
|
P.R. Basso, E. Carava', M. Protasoni, et al., The synovial surface of the articular cartilage, Eur. J. Histochem. 64 (2020) 194-201.
|
B. Zylinska, A. Sobczynska-Rak, U. Lisiecka, et al., Structure and pathologies of articular cartilage, In Vivo 35 (2021) 1355-1363.
|
D. Yari, M.H. Ebrahimzadeh, J. Movaffagh, et al., Biochemical aspects of scaffolds for cartilage tissue engineering; from basic science to regenerative medicine, Arch. Bone Jt Surg. 10 (2022) 229-244.
|
Z. Ouyang, L. Dong, F. Yao, et al., Cartilage-related collagens in osteoarthritis and rheumatoid arthritis: From pathogenesis to therapeutics, Int. J. Mol. Sci. 24 (2023) 9841.
|
L. Alcaide-Ruggiero, V. Molina-Hernandez, M.M. Granados, et al., Main and minor types of collagens in the articular cartilage: The role of collagens in repair tissue evaluation in chondral defects, Int. J. Mol. Sci. 22 (2021) 13329.
|
J.B. Oudart, J.C. Monboisse, F.X. Maquart, et al., Type XIX collagen: A new partner in the interactions between tumor cells and their microenvironment, Matrix Biol. 57-58 (2017) 169-177.
|
Y. Gu, Y. Zou, Y. Huang, et al., 3D-printed biomimetic scaffolds with precisely controlled and tunable structures guide cell migration and promote regeneration of osteochondral defect, Biofabrication 2024. https://doi.org/10.1088/1758-5090/ad0071.
|
M. Askari, M.A. Naniz, M. Kouhi, et al., Recent progress in extrusion 3D bioprinting of hydrogel biomaterials for tissue regeneration: A comprehensive review with focus on advanced fabrication techniques, Biomater. Sci. 9 (2021) 535-573.
|
A.K. Miri, I. Mirzaee, S. Hassan, et al., Effective bioprinting resolution in tissue model fabrication, Lab a Chip 19 (2019) 2019-2037.
|
H.G. Hosseinabadi, D. Nieto, A. Yousefinejad, et al., Ink material selection and optical design considerations in DLP 3D printing, Appl. Mater. Today 30 (2023) 101721.
|
B.E. Kelly, I. Bhattacharya, H. Heidari, et al., Volumetric additive manufacturing via tomographic reconstruction, Science 363 (2019) 1075-1079.
|
P.N. Bernal, P. Delrot, D. Loterie, et al., Volumetric bioprinting of complex living-tissue constructs within seconds, Adv. Mater. 31 (2019) 1904209.
|
J. Huh, Y.W. Moon, J. Park, et al., Combinations of photoinitiator and UV absorber for cell-based digital light processing (DLP) bioprinting, Biofabrication 13 (2021) 034103.
|
X. Cui, B.G. Soliman, C.R. Alcala-Orozco, et al., Rapid photocrosslinking of silk hydrogels with high cell density and enhanced shape fidelity, Adv. Healthc. Mater. 9 (2020) 1901667.
|
H. Hong, Y.B. Seo, D.Y. Kim, et al., Digital light processing 3D printed silk fibroin hydrogel for cartilage tissue engineering, Biomaterials 232 (2020) 119679.
|
T. Li, Z. Ma, Y. Zhang, et al., Regeneration of humeral head using a 3D bioprinted anisotropic scaffold with dual modulation of endochondral ossification, Adv. Sci. 10 (2023) 2205059.
|
N. Fani, M. Peshkova, P. Bikmulina, et al., Fabricating the cartilage: Recent achievements, Cytotechnology 75 (2023) 269-292.
|
Q. Li, H. Yu, F. Zhao, et al., 3D printing of microenvironment-specific bioinspired and exosome-reinforced hydrogel scaffolds for efficient cartilage and subchondral bone regeneration, Adv. Sci. 10 (2023) 2303650.
|
P. Apelgren, M. Amoroso, A. Lindahl, et al., Chondrocytes and stem cells in 3D-bioprinted structures create human cartilage in vivo, PloS One 12 (2017) e0189428.
|
B. Gatenholm, C. Lindahl, M. Brittberg, et al., Collagen 2A type B induction after 3D bioprinting chondrocytes in situ into osteoarthritic chondral tibial lesion, Cartilage 13 (2021) 1755S-1769S.
|
Y. Yan, R. Fu, C. Liu, et al., Sequential Enzymatic Digestion of Different Cartilage Tissues: A Rapid and High-Efficiency Protocol for Chondrocyte Isolation, and Its Application in Cartilage Tissue Engineering, Cartilage 13 (2021) 1064S-1076S.
|
P. Shen, P. Wu, T. Maleitzke, et al., Optimization of chondrocyte isolation from human articular cartilage to preserve the chondrocyte transcriptome, Front. Bioeng. Biotechnol. 10 (2022) 1046127.
|
S.A. Muhammad, N. Nordin, P. Hussin, et al., Optimization of protocol for isolation of chondrocytes from human articular cartilage, Cartilage 13 (2021) 872S-884S.
|
T. Lam, T. Dehne, J.P. Kruger, et al., Photopolymerizable gelatin and hyaluronic acid for stereolithographic 3D bioprinting of tissue-engineered cartilage, J. Biomed. Mater. Res. B 107 (2019) 2649-2657.
|
S. Tavakoli, H.R. Ghaderi Jafarbeigloo, A. Shariati, et al., Mesenchymal stromal cells; a new horizon in regenerative medicine, J. Cell. Physiol. 235 (2020) 9185-9210.
|
Y. Han, X. Li, Y. Zhang, et al., Mesenchymal stem cells for regenerative medicine, Cells 8 (2019) 886.
|
N. Attia, M. Mashal, Mesenchymal stem cells: The past present and future, Adv. Exp. Med. Biol. 1312 (2021) 107-129.
|
P. Neybecker, C. Henrionnet, E. Pape, et al., Respective stemness and chondrogenic potential of mesenchymal stem cells isolated from human bone marrow, synovial membrane, and synovial fluid, Stem Cell Res. Ther. 11 (2020) 316.
|
M. Soleimani, S. Nadri, A protocol for isolation and culture of mesenchymal stem cells from mouse bone marrow, Nat. Protoc. 4 (2009) 102-106.
|
K.S. Lee, J. Lee, H.K. Kim, et al., Extracellular vesicles from adipose tissue-derived stem cells alleviate osteoporosis through osteoprotegerin and miR-21-5p, J. Extracell. Vesicles 10 (2021) e12152.
|
E. Hohmann, Editorial commentary: Stem cells. they are in the fat tissue, bone marrow, and even in the synovial fluid of the knee joint, Arthroscopy 37 (2021) 901-902.
|
K. Ye, R. Felimban, K. Traianedes, et al., Chondrogenesis of infrapatellar fat pad derived adipose stem cells in 3D printed chitosan scaffold, PLoS One 9 (2014) e99410.
|
J. Wu, L. Kuang, C. Chen, et al., miR-100-5p-abundant exosomes derived from infrapatellar fat pad MSCs protect articular cartilage and ameliorate gait abnormalities via inhibition of mTOR in osteoarthritis, Biomaterials 206 (2019) 87-100.
|
P. Li, L. Fu, Z. Liao, et al., Chitosan hydrogel/3D-printed poly(ε-caprolactone) hybrid scaffold containing synovial mesenchymal stem cells for cartilage regeneration based on tetrahedral framework nucleic acid recruitment, Biomaterials 278 (2021) 121131.
|
S. Jiang, G. Tian, Z. Yang, et al., Enhancement of acellular cartilage matrix scaffold by Wharton’s jelly mesenchymal stem cell-derived exosomes to promote osteochondral regeneration, Bioact. Mater. 6 (2021) 2711-2728.
|
S. Qin, J. Zhu, G. Zhang, et al., Research progress of functional motifs based on growth factors in cartilage tissue engineering: A review, Front. Bioeng. Biotechnol. 11 (2023) 1127949.
|
K.H. Yoo, N. Thapa, Y.J. Chwae, et al., Transforming growth factor-β family and stem cell-derived exosome therapeutic treatment in osteoarthritis (Review), Int. J. Mol. Med. 49 (2022) 62.
|
J. Hauptstein, L. Forster, A. Nadernezhad, et al., Tethered TGF-β1 in a hyaluronic acid-based bioink for bioprinting cartilaginous tissues, Int. J. Mol. Sci. 23 (2022) 924.
|
M.J. Ainsworth, O. Lotz, A. Gilmour, et al., Covalent protein immobilization on 3D-printed microfiber meshes for guided cartilage regeneration, Adv. Funct. Mater. 33 (2023) 2206583.
|
M.C. Gomez-Puerto, P.V. Iyengar, A. Garcia de Vinuesa, et al., Bone morphogenetic protein receptor signal transduction in human disease, J. Pathol. 247 (2019) 9-20.
|
X. Peng, Y. Zhang, Y. Wang, et al., IGF-1 and BMP-7 synergistically stimulate articular cartilage repairing in the rabbit knees by improving chondrogenic differentiation of bone-marrow mesenchymal stem cells, J. Cell. Biochem. 120 (2019) 5570-5582.
|
X. Zhang, Y. Liu, Q. Zuo, et al., 3D bioprinting of biomimetic bilayered scaffold consisting of decellularized extracellular matrix and silk fibroin for osteochondral repair, Int. J. Bioprint. 7 (2021) 401.
|
D. Kilian, S. Cometta, A. Bernhardt, et al., Core-shell bioprinting as a strategy to apply differentiation factors in a spatially defined manner inside osteochondral tissue substitutes, 2022.
|
M. Sani, R. Hosseinie, M. Latifi, et al., Engineered artificial articular cartilage made of decellularized extracellular matrix by mechanical and IGF-1 stimulation, Biomater. Adv. 139 (2022) 213019.
|
M.A. Hossain, A. Adithan, M.J. Alam, et al., IGF-1 facilitates cartilage reconstruction by regulating PI3K/AKT, MAPK, and NF-kB signaling in rabbit osteoarthritis, J. Inflamm. Res. 14 (2021) 3555-3568.
|
M.B. Ellman, D. Yan, K. Ahmadinia, et al., Fibroblast growth factor control of cartilage homeostasis, J. Cell. Biochem. 114 (2013) 735-742.
|
D. Yan, D. Chen, S.M. Cool, et al., Fibroblast growth factor receptor 1 is principally responsible for fibroblast growth factor 2-induced catabolic activities in human articular chondrocytes, Arthritis Res. Ther. 13 (2011) R130.
|
E.E. Moore, A.M. Bendele, D.L. Thompson, et al., Fibroblast growth factor-18 stimulates chondrogenesis and cartilage repair in a rat model of injury-induced osteoarthritis, Osteoarthritis Cartilage 13 (2005) 623-631.
|
H. Chen, Y. Cui, D. Zhang, et al., The role of fibroblast growth factor 8 in cartilage development and disease, J. Cell. Mol. Med. 26 (2022) 990-999.
|
W. Zhai, H. Lu, S. Dong, et al., Identification of potential key genes and key pathways related to clear cell renal cell carcinoma through bioinformatics analysis, Acta Biochim. Biophys. Sin. 52 (2020) 853-863.
|
L. Chen, J. Liu, M. Guan, et al., Growth factor and its polymer scaffold-based delivery system for cartilage tissue engineering, Int. J. Nanomed. 15 (2020) 6097-6111.
|
Q. Li, H. Yu, F. Zhao, et al., 3D printing of microenvironment-specific bioinspired and exosome-reinforced hydrogel scaffolds for efficient cartilage and subchondral bone regeneration, Adv. Sci. 10 (2023) 2303650.
|
Y.P. Singh, J.C. Moses, A. Bandyopadhyay, et al., 3D bioprinted silk-based in vitro osteochondral model for osteoarthritis therapeutics, Adv. Healthc. Mater. 11 (2022) 2200209.
|
R.V. Badhe, A. Chatterjee, D. Bijukumar, et al., Current advancements in bio-ink technology for cartilage and bone tissue engineering, Bone 171 (2023) 116746.
|
M. Meyer, Processing of collagen based biomaterials and the resulting materials properties, Biomed. Eng. Online 18 (2019) 24.
|
J. Xu, S. Zheng, X. Hu, et al., Advances in the research of bioinks based on natural collagen, polysaccharide and their derivatives for skin 3D bioprinting, Polymers 12 (2020) 1237.
|
A. Dravid, A. McCaughey-Chapman, B. Raos, et al., Development of agarose-gelatin bioinks for extrusion-based bioprinting and cell encapsulation, Biomed. Mater. 17 (2022) 055001.
|
W. Wei, W. Liu, H. Kang, et al., A one-stone-two-birds strategy for osteochondral regeneration based on a 3D printable biomimetic scaffold with kartogenin biochemical stimuli gradient, Adv. Healthc. Mater. 12 (2023) 2300108.
|
M. Kolodziejska, K. Jankowska, M. Klak, et al., Chitosan as an underrated polymer in modern tissue engineering, Nanomaterials 11 (2021) 3019.
|
C.C. Wong, K. Ou, Y.H. Lin, et al., Platelet-rich fibrin facilitates one-stage cartilage repair by promoting chondrocytes viability, migration, and matrix synthesis, Int. J. Mol. Sci. 21 (2020) 577.
|
D. Trucco, L. Vannozzi, E. Teblum, et al., Graphene oxide-doped gellan gum-PEGDA bilayered hydrogel mimicking the mechanical and lubrication properties of articular cartilage, Adv. Healthc. Mater. 10 (2021) 2100873.
|
T. Jiang, S. Heng, X. Huang, et al., Biomimetic poly(poly(ε-caprolactone)-polytetrahydrofuran urethane) based nanofibers enhanced chondrogenic differentiation and cartilage regeneration, J. Biomed. Nanotechnol. 15 (2019) 1005-1017.
|
W. Kosorn, M. Sakulsumbat, T. Lertwimol, et al., Chondrogenic phenotype in responses to poly(ɛ-caprolactone) scaffolds catalyzed by bioenzymes: Effects of surface topography and chemistry, J. Mater. Sci. Mater. Med. 30 (2019) 128.
|
M. Nofar, D. Sacligil, P.J. Carreau, et al., Poly (lactic acid) blends: Processing, properties and applications, Int. J. Biol. Macromol. 125 (2019) 307-360.
|
C.V. Rocha, V. Goncalves, M.C. da Silva, et al., PLGA-based composites for various biomedical applications, Int. J. Mol. Sci. 23 (2022) 2034.
|
M. Qu, X. Liao, N. Jiang, et al., Injectable open-porous PLGA microspheres as cell carriers for cartilage regeneration, J. Biomed. Mater. Res. A 109 (2021) 2091-2100.
|
J. Huang, Z. Huang, Y. Liang, et al., 3D printed gelatin/hydroxyapatite scaffolds for stem cell chondrogenic differentiation and articular cartilage repair, Biomater. Sci. 9 (2021) 2620-2630.
|
R. Schwartz, M. Malpica, G.L. Thompson, et al., Cell encapsulation in gelatin bioink impairs 3D bioprinting resolution, J. Mech. Behav. Biomed. Mater. 103 (2020) 103524.
|
S.H. Kim, Y.B. Seo, Y.K. Yeon, et al., 4D-bioprinted silk hydrogels for tissue engineering, Biomaterials 260 (2020) 120281.
|
Z. Feng, D. Wang, Y. Zheng, et al., A novel waterborne polyurethane with biodegradability and high flexibility for 3D printing, Biofabrication 12 (2020) 035015.
|
X. Cao, L. Sun, Z. Luo, et al., Aquaculture derived hybrid skin patches for wound healing, Engineered Regeneration 4 (2023) 28-35.
|
B.A.G. de Melo, Y.A. Jodat, S. Mehrotra, et al., 3D printed cartilage-like tissue constructs with spatially controlled mechanical properties, Adv. Funct. Mater. 29 (2019) 1906330.
|
L. Zhang, G. Yang, B.N. Johnson, et al., Three-dimensional (3D) printed scaffold and material selection for bone repair, Acta Biomater. 84 (2019) 16-33.
|
F.J. O’Brien, An injectable and 3D printable pro-chondrogenic hyaluronic acid and collagen type II composite hydrogel for the repair of articular cartilage defects, Biofabrication 16 (2024) 015007.
|
K. Yue, G. Trujillo-de Santiago, M.M. Alvarez, et al., Synthesis, properties, and biomedical applications of gelatin methacryloyl (GelMA) hydrogels, Biomaterials 73 (2015) 254-271.
|
S. Xiao, T. Zhao, J. Wang, et al., Gelatin methacrylate (GelMA)-based hydrogels for cell transplantation: An effective strategy for tissue engineering, Stem Cell Rev. Rep. 15 (2019) 664-679.
|
T. Collins, D. Alexander, B. Barkatali, Platelet-rich plasma: A narrative review, EFORT Open Rev. 6 (2021) 225-235.
|
Z. Li, X. Zhang, T. Yuan, et al., Addition of platelet-rich plasma to silk fibroin hydrogel bioprinting for cartilage regeneration, Tissue Eng. Part A 26 (2020) 886-895.
|
L. Wei, S. Wu, M. Kuss, et al., 3D printing of silk fibroin-based hybrid scaffold treated with platelet rich plasma for bone tissue engineering, Bioact. Mater. 4 (2019) 256-260.
|
G. Jiang, S. Li, K. Yu, et al., A 3D-printed PRP-GelMA hydrogel promotes osteochondral regeneration through M2 macrophage polarization in a rabbit model, Acta Biomater. 128 (2021) 150-162.
|
Y. Wang, C.K. Adokoh, R. Narain, Recent development and biomedical applications of self-healing hydrogels, Expert Opin. Drug Deliv. 15 (2018) 77-91.
|
J. Omar, D. Ponsford, C.A. Dreiss, et al., Supramolecular hydrogels: Design strategies and contemporary biomedical applications, Chem. Asian. J. 17 (2022) 2200081.
|
Y. Wu, Q. Zhang, X. Yang, et al., 3D-printed tough zwitterionic polycarbonate polyurethane meniscus substitute ameliorates cartilage abrasion, Sci. China Mater. 66 (2023) 3744-3756.
|
Q. Chen, X. Tian, J. Fan, et al., An interpenetrating alginate/gelatin network for three-dimensional (3D) cell cultures and organ bioprinting, Molecules 25 (2020) 756.
|
X. Lin, L. Cai, X. Cao, et al., Stimuli-responsive silk fibroin for on-demand drug delivery, Smart Med. 2 (2023) e20220019.
|
Q. Li, S. Xu, Q. Feng, et al., 3D printed silk-gelatin hydrogel scaffold with different porous structure and cell seeding strategy for cartilage regeneration, Bioact. Mater. 6 (2021) 3396-3410.
|
K. Shu, Z. Huang, X. Pei, et al., 3D printing of high-strength photo-crosslinking flaxseed gum bioink for cartilage regeneration, Compos. B. Eng. 263 (2023) 110864.
|
N. Di Marzio, D. Eglin, T. Serra, et al., Bio-fabrication: Convergence of 3D bioprinting and nano-biomaterials in tissue engineering and regenerative medicine, Front. Bioeng. Biotechnol. 8 (2020) 326.
|
R. Hosseinnezhad, I. Vozniak, F. Zairi, in situ generation of green hybrid nanofibrillar polymer-polymer composites-a novel approach to the triple shape memory polymer formation, Polymers 13 (2021) 1900.
|
S. Zhu, Y. Li, Z. He, et al., Advanced injectable hydrogels for cartilage tissue engineering, Front. Bioeng. Biotechnol. 10 (2022) 954501.
|
P. Cui, P. Pan, L. Qin, et al., Nanoengineered hydrogels as 3D biomimetic extracellular matrix with injectable and sustained delivery capability for cartilage regeneration, Bioact. Mater. 19 (2022) 487-498.
|
S. Camarero-Espinosa, L. Moroni, Janus 3D printed dynamic scaffolds for nanovibration-driven bone regeneration, Nat. Commun. 12 (2021) 1031.
|
H. Budharaju, A. Zennifer, S. Sethuraman, et al., Designer DNA biomolecules as a defined biomaterial for 3D bioprinting applications, Mater. Horiz. 9 (2022) 1141-1166.
|
G.M. Cunniffe, T. Gonzalez-Fernandez, A. Daly, et al., * three-dimensional bioprinting of polycaprolactone reinforced gene activated bioinks for bone tissue engineering, Tissue Eng. Part A 23 (2017) 891-900.
|
J. Muller, A.C. Jakel, D. Schwarz, et al., Programming diffusion and localization of DNA signals in 3D-printed DNA-functionalized hydrogels, Small 16 (2020) 2001815.
|
J. Liang, P. Liu, X. Yang, et al., Biomaterial-based scaffolds in promotion of cartilage regeneration: Recent advances and emerging applications, J. Orthop. Translat. 41 (2023) 54-62.
|
S.M. Bittner, B.T. Smith, L. Diaz-Gomez, et al., Fabrication and mechanical characterization of 3D printed vertical uniform and gradient scaffolds for bone and osteochondral tissue engineering, Acta Biomater. 90 (2019) 37-48.
|
Y. Rotbaum, C. Puiu, D. Rittel, et al., Quasi-static and dynamic in vitro mechanical response of 3D printed scaffolds with tailored pore size and architectures, Mater. Sci. Eng. C Mater. Biol. Appl. 96 (2019) 176-182.
|
Z. Qiao, M. Lian, Y. Han, et al., Bioinspired stratified electrowritten fiber-reinforced hydrogel constructs with layer-specific induction capacity for functional osteochondral regeneration, Biomaterials 266 (2021) 120385.
|
C. Antich, J. de Vicente, G. Jimenez, et al., Bio-inspired hydrogel composed of hyaluronic acid and alginate as a potential bioink for 3D bioprinting of articular cartilage engineering constructs, Acta Biomater. 106 (2020) 114-123.
|
A.A. Golebiowska, S.P. Nukavarapu, Bio-inspired zonal-structured matrices for bone-cartilage interface engineering, Biofabrication 14 (2022) 025016.
|
Y. Liu, L. Peng, L. Li, et al., 3D-bioprinted BMSC-laden biomimetic multiphasic scaffolds for efficient repair of osteochondral defects in an osteoarthritic rat model, Biomaterials 279 (2021) 121216.
|
X. Zhou, S. Tenaglio, T. Esworthy, et al., Three-dimensional printing biologically inspired DNA-based gradient scaffolds for cartilage tissue regeneration, ACS Appl. Mater. Interfaces 12 (2020) 33219-33228.
|
C. Deng, J. Yang, H. He, et al., 3D bio-printed biphasic scaffolds with dual modification of silk fibroin for the integrated repair of osteochondral defects, Biomater. Sci. 9 (2021) 4891-4903.
|
D. Zhang, W. Li, Y. Shang, et al., Programmable microfluidic manipulations for biomedical applications, Eng. Regen. 3 (2022) 258-261.
|
Y. Gao, Q. Ma, Bacterial infection microenvironment-responsive porous microspheres by microfluidics for promoting anti-infective therapy, Smart Med. 1 (2022) e20220012.
|
J. Idaszek, M. Costantini, T.A. Karlsen, et al., 3D bioprinting of hydrogel constructs with cell and material gradients for the regeneration of full-thickness chondral defect using a microfluidic printing head, Biofabrication 11 (2019) 044101.
|
Y. Sun, Y. You, W. Jiang, et al., 3D bioprinting dual-factor releasing and gradient-structured constructs ready to implant for anisotropic cartilage regeneration, Sci. Adv. 6 (2020) eaay1422.
|
Y.S. Lui, W.T. Sow, L.P. Tan, et al., 4D printing and stimuli-responsive materials in biomedical aspects, Acta Biomater. 92 (2019) 19-36.
|
A. Ding, O. Jeon, D. Cleveland, et al., Jammed micro-flake hydrogel for four-dimensional living cell bioprinting, Adv. Mater. 34 (2022) 2109394.
|
X. Chen, S. Han, W. Wu, et al., Harnessing 4D printing bioscaffolds for advanced orthopedics, Small 18 (2022) 2106824.
|
P. Tournier, G. Saint-Pe, N. Lagneau, et al., Clickable dynamic bioinks enable post-printing modifications of construct composition and mechanical properties controlled over time and space, Adv. Sci. 10 (2023) e2300055.
|
X. Guo, L. Xi, M. Yu, et al., Regeneration of articular cartilage defects: Therapeutic strategies and perspectives, J. Tissue Eng. 14 (2023) 20417314231164765.
|
Y.M. Michelacci, R.Y.A. Baccarin, N.N.P. Rodrigues, Chondrocyte homeostasis and differentiation: Transcriptional control and signaling in healthy and osteoarthritic conditions, Life. 13 (2023) 1460.
|
A.M. Chen, M. Lashmet, A. Isidan, et al., Oxygenation profiles of human blood, cell culture medium, and water for perfusion of 3D-bioprinted tissues using the FABRICA bioreactor platform, Sci. Rep. 10 (2020) 7237.
|
R.M. Schulz, N. Wustneck, C.C. van Donkelaar, et al., Development and validation of a novel bioreactor system for load- and perfusion-controlled tissue engineering of chondrocyte-constructs, Biotechnol. Bioeng. 101 (2008) 714-728.
|
L.J. Smith, P. Li, M.R. Holland, et al., FABRICA: A bioreactor platform for printing, perfusing, observing, & stimulating 3D tissues, Sci. Rep. 8 (2018) 7561.
|
S. Gabetti, B. Masante, A. Cochis, et al., An automated 3D-printed perfusion bioreactor combinable with pulsed electromagnetic field stimulators for bone tissue investigations, Sci. Rep. 12 (2022) 13859.
|
G. Go, S.G. Jeong, A. Yoo, et al., Human adipose-derived mesenchymal stem cell-based medical microrobot system for knee cartilage regeneration in vivo, Sci. Robot. 5 (2020) eaay6626.
|
M. Sahranavard, S. Sarkari, S. Safavi, et al., Three-dimensional bio-printing of decellularized extracellular matrix-based bio-inks for cartilage regeneration: A systematic review, Biomater. Transl. 3 (2022) 105-115.
|
E.J. Bos, P. Doerga, C.C. Breugem, et al., The burned ear; possibilities and challenges in framework reconstruction and coverage, Burns 42 (2016) 1387-1395.
|
N. Bhamare, K. Tardalkar, P. Parulekar, et al., 3D printing of human ear pinna using cartilage specific ink, Biomed. Mater. 16 (2021) 055008.
|
Y.A. Jodat, K. Kiaee, D. Vela Jarquin, et al., A 3D-printed hybrid nasal cartilage with functional electronic olfaction, Adv. Sci. 7 (2020) 1901878.
|
R. Di Gesu, A.P. Acharya, I. Jacobs, et al., 3D printing for tissue engineering in otolaryngology, Connect. Tissue Res. 61 (2020) 117-136.
|
P. Chen, L. Zheng, Y. Wang, et al., Desktop-stereolithography 3D printing of a radially oriented extracellular matrix/mesenchymal stem cell exosome bioink for osteochondral defect regeneration, Theranostics 9 (2019) 2439-2459.
|