Citation: | Jiani Zhong, Hang Chen, Qiming Liu, Shenghua Zhou, Zhenguo Liu, Yichao Xiao. GLP-1 receptor agonists and myocardial metabolism in atrial fibrillation[J]. Journal of Pharmaceutical Analysis, 2024, 14(5): 100917. doi: 10.1016/j.jpha.2023.12.007 |
[1] |
G. Hindricks, T. Potpara, N. Dagres, et al., 2020 ESC guidelines for the diagnosis and Management of atrial fibrillation developed in collaboration with the European association for cardio-thoracic surgery (EACTS): the task force for the diagnosis and management of atrial fibrillation of the European society of cardiology (ESC) developed with the special contribution of the European heart rhythm association (EHRA) of the ESC, Eur. Heart J. 42 (2021) 373-498.
|
[2] |
B.J.J.M. Brundel, X. Ai, M.T. Hills, et al., Atrial fibrillation, Nat. Rev. Dis. Primers 8 (2022), 21.
|
[3] |
S. Nattel, J. Heijman, L. Zhou, et al., Molecular basis of atrial fibrillation pathophysiology and therapy: A translational perspective, Circ. Res. 127 (2020) 51-72.
|
[4] |
D. Sfairopoulos, S. Liatis, S. Tigas, et al., Clinical pharmacology of glucagon-like peptide-1 receptor agonists, Hormones (Athens) 17 (2018) 333-350.
|
[5] |
A.M. Jastreboff, R.F. Kushner, New frontiers in obesity treatment: GLP-1 and nascent nutrient-stimulated hormone-based therapeutics, Annu. Rev. Med. 74 (2023) 125-139.
|
[6] |
T. Karagiannis, A. Tsapas, E. Athanasiadou, et al., GLP-1 receptor agonists and SGLT2 inhibitors for older people with type 2 diabetes: A systematic review and meta-analysis, Diabetes Res. Clin. Pract. 174 (2021), 108737.
|
[7] |
M.J. Davies, D.E. Kloecker, D.R. Webb, et al., Number needed to treat in cardiovascular outcome trials of glucagon-like peptide-1 receptor agonists: A systematic review with temporal analysis, Diabetes Obes. Metab. 22 (2020) 1670-1677.
|
[8] |
X. Ma, Z. Liu, I. Ilyas, et al., GLP-1 receptor agonists (GLP-1RAs): Cardiovascular actions and therapeutic potential, Int. J. Biol. Sci. 17 (2021) 2050-2068.
|
[9] |
J.A. Wisneski, W.C. Stanley, R.A. Neese, et al., Effects of acute hyperglycemia on myocardial glycolytic activity in humans, J. Clin. Invest. 85 (1990) 1648-1656.
|
[10] |
J. Sorensen, H.J. Harms, J.M. Aalen, et al., Myocardial efficiency: A fundamental physiological concept on the verge of clinical impact, JACC Cardiovasc. Imaging 13 (2020) 1564-1576.
|
[11] |
M. Jiang, X. Xie, F. Cao, et al., Mitochondrial metabolism in myocardial remodeling and mechanical unloading: Implications for ischemic heart disease, Front. Cardiovasc. Med. 8 (2021), 789267.
|
[12] |
S. Hui, J.M. Ghergurovich, R.J. Morscher, et al., Glucose feeds the TCA cycle via circulating lactate, Nature 551 (2017) 115-118.
|
[13] |
Q.G. Karwi, D. Biswas, T. Pulinilkunnil, et al., Myocardial ketones metabolism in heart failure, J. Card. Fail. 26 (2020) 998-1005.
|
[14] |
G.D. Lopaschuk, J.R. Ussher, Evolving concepts of myocardial energy metabolism: More than just fats and carbohydrates, Circ. Res. 119 (2016) 1173-1176.
|
[15] |
J. Zhou, L. Sun, L. Chen, et al., Comprehensive metabolomic and proteomic analyses reveal candidate biomarkers and related metabolic networks in atrial fibrillation, Metabolomics 15 (2019), 96.
|
[16] |
M. Lenski, G. Schleider, M. Kohlhaas, et al., Arrhythmia causes lipid accumulation and reduced glucose uptake, Basic Res. Cardiol. 110 (2015), 40.
|
[17] |
Y. Shingu, S. Takada, T. Yokota, et al., Correlation between increased atrial expression of genes related to fatty acid metabolism and autophagy in patients with chronic atrial fibrillation, PLoS One 15 (2020), e0224713.
|
[18] |
Q. Jie, G. Li, J. Duan, et al., Remodeling of myocardial energy and metabolic homeostasis in a sheep model of persistent atrial fibrillation, Biochem. Biophys. Res. Commun. 517 (2019) 8-14.
|
[19] |
Y. Fang, Y. Wu, L. Liu, et al., The four key genes participated in and maintained atrial fibrillation process via reprogramming lipid metabolism in AF patients, Front. Genet. 13 (2022), 821754.
|
[20] |
G. Liu, T. Hou, Y. Yuan, et al., Fenofibrate inhibits atrial metabolic remodelling in atrial fibrillation through PPAR-α/sirtuin 1/PGC-1α pathway, Br. J. Pharmacol. 173 (2016) 1095-1109.
|
[21] |
K.L. Ho, Q.G. Karwi, C. Wagg, et al., Ketones can become the major fuel source for the heart but do not increase cardiac efficiency, Cardiovasc. Res. 117 (2021) 1178-1187.
|
[22] |
X. Li, X. Yang, Y. Li, et al., Mitochondria and the pathophysiological mechanism of atrial fibrillation, Curr. Pharm. Des. 24 (2018) 3055-3061.
|
[23] |
M. Wiersma, D.M.S. van Marion, R.C.I. Wust, et al., Mitochondrial dysfunction underlies cardiomyocyte remodeling in experimental and clinical atrial fibrillation, Cells 8 (2019), 1202.
|
[24] |
F.E. Mason, J.R.D. Pronto, K. Alhussini, et al., Cellular and mitochondrial mechanisms of atrial fibrillation, Basic Res. Cardiol. 115 (2020), 72.
|
[25] |
S.N. Reilly, R. Jayaram, K. Nahar, et al., Atrial sources of reactive oxygen species vary with the duration and substrate of atrial fibrillation: Implications for the antiarrhythmic effect of statins, Circulation 124 (2011) 1107-1117.
|
[26] |
C.F. Tsai, S. Yang, C.H. Lo, et al., Role of the ROS-JNK signaling pathway in hypoxia-induced atrial fibrotic responses in HL-1 cardiomyocytes, Int. J. Mol. Sci. 22 (2021), 3249.
|
[27] |
X. Yang, N. An, C. Zhong, et al., Enhanced cardiomyocyte reactive oxygen species signaling promotes ibrutinib-induced atrial fibrillation, Redox Biol. 30 (2020), 101432.
|
[28] |
Y. Liu, F. Bai, N. Liu, et al., Metformin improves lipid metabolism and reverses the Warburg effect in a canine model of chronic atrial fibrillation, BMC Cardiovasc. Disord. 20 (2020), 50.
|
[29] |
Y. Zhang, Y. Fu, T. Jiang, et al., Enhancing fatty acids oxidation via L-carnitine attenuates obesity-related atrial fibrillation and structural remodeling by activating AMPK signaling and alleviating cardiac lipotoxicity, Front. Pharmacol. 12 (2021), 771940.
|
[30] |
S.Y. Huang, Y.-Y. Lu, Y.K. Lin, et al., Ceramide modulates electrophysiological characteristics and oxidative stress of pulmonary vein cardiomyocytes, Eur. J. Clin. Invest. 52 (2022), e13690.
|
[31] |
J. Jendle, T. Hyotylainen, M. Oresic, et al., Pharmacometabolomic profiles in type 2 diabetic subjects treated with liraglutide or glimepiride, Cardiovasc. Diabetol. 20 (2021), 237.
|
[32] |
R. De Vecchis, A. Paccone, M. Di Maio, Upstream therapy for atrial fibrillation prevention: The role of sacubitril/valsartan, Cardiol. Res. 11 (2020) 213-218.
|
[33] |
Z. Zhao, Y. Yang, J. Wang, et al., Combined treatment with valsartan and fluvastatin to delay disease progression in nonpermanent atrial fibrillation with hypertension: A clinical trial, Clin. Cardiol. 43 (2020) 1592-1600.
|
[34] |
T. Tu, B. Li, X. Li, et al., Dietary ω-3 fatty acids reduced atrial fibrillation vulnerability via attenuating myocardial endoplasmic reticulum stress and inflammation in a canine model of atrial fibrillation, J. Cardiol. 79 (2022) 194-201.
|
[35] |
A.M. Carbone, J.I. Borges, M.S. Suster, et al., Regulator of G-protein signaling-4 attenuates cardiac adverse remodeling and neuronal norepinephrine release-promoting free fatty acid receptor FFAR3 signaling, Int. J. Mol. Sci. 23 (2022), 5803.
|
[36] |
I. Shibasaki, T. Nakajima, T. Fukuda, et al., Serum and adipose dipeptidyl peptidase 4 in cardiovascular surgery patients: Influence of dipeptidyl peptidase 4 inhibitors, J. Clin. Med. 11 (2022), 4333.
|
[37] |
J. Li, B. Li, F. Bai, et al., Metformin therapy confers cardioprotection against the remodeling of gap junction in tachycardia-induced atrial fibrillation dog model, Life Sci. 254 (2020), 117759.
|
[38] |
E. Kolesnik, D. Scherr, U. Rohrer, et al., SGLT2 inhibitors and their antiarrhythmic properties, Int. J. Mol. Sci. 23 (2022), 1678.
|
[39] |
R. Nishinarita, S. Niwano, H. Niwano, et al., Canagliflozin suppresses atrial remodeling in a canine atrial fibrillation model, J. Am. Heart Assoc. 10 (2021), e017483.
|
[40] |
U.M.R. Avula, H. Dridi, B.-X. Chen, et al., Attenuating persistent sodium current-induced atrial myopathy and fibrillation by preventing mitochondrial oxidative stress, JCI Insight 6 (2021), e147371.
|
[41] |
X. Peng, L. Li, M. Zhang, et al., Sodium-glucose cotransporter 2 inhibitors potentially prevent atrial fibrillation by ameliorating ion handling and mitochondrial dysfunction, Front. Physiol. 11 (2020), 912.
|
[42] |
A. Martelli, L. Testai, A. Colletti, et al., Coenzyme Q10: Clinical applications in cardiovascular diseases, Antioxidants 9 (2020), 341.
|
[43] |
M. Gong, M. Yuan, L. Meng, et al., Wenxin Keli regulates mitochondrial oxidative stress and homeostasis and improves atrial remodeling in diabetic rats, Oxid. Med. Cell. Longev. 2020 (2020), 2468031.
|
[44] |
L. Pool, L.F.J.M. Wijdeveld, N.M.S. de Groot, et al., The role of mitochondrial dysfunction in atrial fibrillation: Translation to druggable target and biomarker discovery, Int. J. Mol. Sci. 22 (2021), 8463.
|
[45] |
C.S. Hung, Y.-Y. Chang, C.H. Tsai, et al., Aldosterone suppresses cardiac mitochondria, Transl. Res. 239 (2022) 58-70.
|
[46] |
D. Opacic, K.A. van Bragt, H.M. Nasrallah, et al., Atrial metabolism and tissue perfusion as determinants of electrical and structural remodelling in atrial fibrillation, Cardiovasc. Res. 109 (2016) 527-541.
|
[47] |
S.R. Anthony, A.R. Guarnieri, A. Gozdiff, et al., Mechanisms linking adipose tissue inflammation to cardiac hypertrophy and fibrosis, Clin. Sci. (Lond.) 133 (2019) 2329-2344.
|
[48] |
G. Iacobellis, Epicardial adipose tissue in contemporary cardiology, Nat. Rev. Cardiol. 19 (2022) 593-606.
|
[49] |
I. Abe, Y. Teshima, H. Kondo, et al., Association of fibrotic remodeling and cytokines/chemokines content in epicardial adipose tissue with atrial myocardial fibrosis in patients with atrial fibrillation, Heart Rhythm 15 (2018) 1717-1727.
|
[50] |
U. Weiss, Inflammation, Nature 454 (2008), 427.
|
[51] |
C.J. Boos, Infection and atrial fibrillation: Inflammation begets AF, Eur. Heart J. 41 (2020) 1120-1122.
|
[52] |
J. Heijman, A.P. Muna, T. Veleva, et al., Atrial myocyte NLRP3/CaMKII nexus forms a substrate for postoperative atrial fibrillation, Circ. Res. 127 (2020) 1036-1055.
|
[53] |
M. Ren, X. Li, L. Hao, et al., Role of tumor necrosis factor alpha in the pathogenesis of atrial fibrillation: A novel potential therapeutic target? Ann. Med. 47 (2015) 316-324.
|
[54] |
R. Lin, S. Wu, D. Zhu, et al., Osteopontin induces atrial fibrosis by activating Akt/GSK-3β/β-catenin pathway and suppressing autophagy, Life Sci. 245 (2020), 117328.
|
[55] |
S. Cabaro, M. Conte, D. Moschetta, et al., Epicardial adipose tissue-derived IL-1β triggers postoperative atrial fibrillation, Front. Cell Dev. Biol. 10 (2022), 893729.
|
[56] |
T. Liu, G. Li, Periatrial epicardial fat, local pro- and anti-inflammatory balance, and atrial fibrillation, J. Am. Coll. Cardiol. 57 (2011), 1249; author reply 1249.
|
[57] |
R.P. O’Connell, H. Musa, M.S. Gomez, et al., Free fatty acid effects on the atrial myocardium: Membrane ionic currents are remodeled by the disruption of T-tubular architecture, PLoS One 10 (2015), e0133052.
|
[58] |
J. Zhao, Y. Zhang, Z. Yin, et al., Impact of proinflammatory epicardial adipose tissue and differentially enhanced autonomic remodeling on human atrial fibrillation, J. Thorac. Cardiovasc. Surg. 165 (2023) e158-e174.
|
[59] |
Y.M. Li, T. Mitsuhashi, D. Wojciechowicz, et al., Molecular identity and cellular distribution of advanced glycation endproduct receptors: Relationship of p60 to OST-48 and p90 to 80K-H membrane proteins, Proc. Natl. Acad. Sci. U S A 93 (1996) 11047-11052.
|
[60] |
X. Bi, Y. Song, Y. Song, et al., Collagen cross-linking is associated with cardiac remodeling in hypertrophic obstructive cardiomyopathy, J. Am. Heart Assoc. 10 (2021), e017752.
|
[61] |
G.J. Chang, Y.H. Yeh, W.J. Chen, et al., Inhibition of advanced glycation end products formation attenuates cardiac electrical and mechanical remodeling and vulnerability to tachyarrhythmias in diabetic rats, J. Pharmacol. Exp. Ther. 368 (2019) 66-78.
|
[62] |
S.R. Selejan, D. Linz, M. Mauz, et al., Renal denervation reduces atrial remodeling in hypertensive rats with metabolic syndrome, Basic Res. Cardiol. 117 (2022), 36.
|
[63] |
T. Kato, T. Yamashita, A. Sekiguchi, et al., AGEs-RAGE system mediates atrial structural remodeling in the diabetic rat, J. Cardiovasc. Electrophysiol. 19 (2008) 415-420.
|
[64] |
T. Kato, T. Yamashita, A. Sekiguchi, et al., Angiotensin II type 1 receptor blocker attenuates diabetes-induced atrial structural remodeling, J. Cardiol. 58 (2011) 131-136.
|
[65] |
K. Prasad, AGE-RAGE stress in the pathophysiology of atrial fibrillation and its treatment, Int. J. Angiol. 29 (2020) 72-80.
|
[66] |
S. Saito, Y. Teshima, A. Fukui, et al., Glucose fluctuations increase the incidence of atrial fibrillation in diabetic rats, Cardiovasc. Res. 104 (2014) 5-14.
|
[67] |
J. Xia, J. Xu, B. Li, et al., Association between glycemic variability and major adverse cardiovascular and cerebrovascular events (MACCE) in patients with acute coronary syndrome during 30-day follow-up, Clin. Chim. Acta 466 (2017) 162-166.
|
[68] |
D. Guckel, C. Sohns, P. Sommer, Rhythm and metabolic control, Herz 47 (2022) 410-418.
|
[69] |
Y. Cai, H. Zhang, Q. Li, et al., Correlation between blood glucose variability and early therapeutic effects after intravenous thrombolysis with alteplase and levels of serum inflammatory factors in patients with acute ischemic stroke, Front. Neurol. 13 (2022), 806013.
|
[70] |
D.T. Paik, S. Cho, L. Tian, et al., Single-cell RNA sequencing in cardiovascular development, disease and medicine, Nat. Rev. Cardiol. 17 (2020) 457-473.
|
[71] |
M. Iida, S. Harada, T. Takebayashi, Application of metabolomics to epidemiological studies of atherosclerosis and cardiovascular disease, J. Atheroscler. Thromb. 26 (2019) 747-757.
|
[72] |
E. Revuelta-Lopez, J. Barallat, A. Cserkoova, et al., Pre-analytical considerations in biomarker research: Focus on cardiovascular disease, Clin. Chem. Lab. Med. 59 (2021) 1747-1760.
|
[73] |
Y. Zhang, K.R. Parajuli, G.E. Fava, et al., GLP-1 receptor in pancreatic α-cells regulates glucagon secretion in a glucose-dependent bidirectional manner, Diabetes 68 (2019) 34-44.
|
[74] |
S. Puglisi, A. Rossini, R. Poli, et al., Effects of SGLT2 inhibitors and GLP-1 receptor agonists on renin-angiotensin-aldosterone system, Front. Endocrinol. 12 (2021), 738848.
|
[75] |
Y. Cheng, P. Liu, Q. Xiang, et al., Glucagon-like peptide-1 attenuates diabetes-associated osteoporosis in ZDF rat, possibly through the RAGE pathway, BMC Musculoskelet. Disord. 23 (2022), 465.
|
[76] |
J. Chen, S. Xu, W. Zhou, et al., Exendin-4 reduces ventricular arrhythmia activity and calcium sparks-mediated sarcoplasmic reticulum Ca leak in rats with heart failure, Int. Heart J. 61 (2020) 145-152.
|
[77] |
D.H. Lau, S. Nattel, J.M. Kalman, et al., Modifiable risk factors and atrial fibrillation, Circulation 136 (2017) 583-596.
|
[78] |
D.S.H. Bell, E. Goncalves, Atrial fibrillation and type 2 diabetes: Prevalence, etiology, pathophysiology and effect of anti-diabetic therapies, Diabetes Obes. Metab. 21 (2019) 210-217.
|
[79] |
A. Durak, E. Akkus, A.G. Canpolat, et al., Glucagon-like peptide-1 receptor agonist treatment of high carbohydrate intake-induced metabolic syndrome provides pleiotropic effects on cardiac dysfunction through alleviations in electrical and intracellular Ca2+ abnormalities and mitochondrial dysfunction, Clin. Exp. Pharmacol. Physiol. 49 (2022) 46-59.
|
[80] |
H. Kaneto, T. Kimura, M. Shimoda, et al., Favorable effects of GLP-1 receptor agonist against pancreatic β-cell glucose toxicity and the development of arteriosclerosis: “the earlier, the better” in therapy with incretin-based medicine, Int. J. Mol. Sci. 22 (2021), 7917.
|
[81] |
W. Li, M. Cui, Y. Wei, et al., Inhibition of the expression of TGF-β1 and CTGF in human mesangial cells by exendin-4, a glucagon-like peptide-1 receptor agonist, Cell. Physiol. Biochem. 30 (2012) 749-757.
|
[82] |
S. Chen, L. Yin, Z. Xu, et al., Inhibiting receptor for advanced glycation end product (AGE) and oxidative stress involved in the protective effect mediated by glucagon-like peptide-1 receptor on AGE induced neuronal apoptosis, Neurosci. Lett. 612 (2016) 193-198.
|
[83] |
X. Liu, K.P. Patel, H. Zheng, Role of renal sympathetic nerves in GLP-1 (glucagon-like peptide-1) receptor agonist exendin-4-mediated diuresis and natriuresis in diet-induced obese rats, J. Am. Heart Assoc. 10 (2021), e022542.
|
[84] |
A. Durak, B. Turan, Liraglutide provides cardioprotection through the recovery of mitochondrial dysfunction and oxidative stress in aging hearts, J. Physiol. Biochem. 79 (2023) 297-311.
|
[85] |
P. Qian, H. Tian, Y. Wang, et al., A novel oral glucagon-like peptide 1 receptor agonist protects against diabetic cardiomyopathy via alleviating cardiac lipotoxicity induced mitochondria dysfunction, Biochem. Pharmacol. 182 (2020), 114209.
|
[86] |
J. Gumprecht, M. Domek, G.Y.H. Lip, et al., Invited review: Hypertension and atrial fibrillation: Epidemiology, pathophysiology, and implications for management, J. Hum. Hypertens. 33 (2019) 824-836.
|
[87] |
T.E. Banks, M. Rajapaksha, L. Zhang, et al., Suppression of angiotensin II-activated NOX4/NADPH oxidase and mitochondrial dysfunction by preserving glucagon-like peptide-1 attenuates myocardial fibrosis and hypertension, Eur. J. Pharmacol. 927 (2022), 175048.
|
[88] |
J. Skov, Effects of GLP-1 in the kidney, Rev. Endocr. Metab. Disord. 15 (2014) 197-207.
|
[89] |
F.L. Martins, M.A. Bailey, A.C.C. Girardi, Endogenous activation of glucagon-like peptide-1 receptor contributes to blood pressure control: Role of proximal tubule Na+/H+ exchanger isoform 3, renal angiotensin II, and insulin sensitivity, Hypertension 76 (2020) 839-848.
|
[90] |
M. Kim, M.J. Platt, T. Shibasaki, et al., GLP-1 receptor activation and Epac2 link atrial natriuretic peptide secretion to control of blood pressure, Nat. Med. 19 (2013) 567-575.
|
[91] |
K. Katsurada, M. Nakata, T. Saito, et al., Central glucagon-like peptide-1 receptor signaling via brainstem catecholamine neurons counteracts hypertension in spontaneously hypertensive rats, Sci. Rep. 9 (2019), 12986.
|
[92] |
E.P. Jensen, S. Moeller, A.V. Hviid, et al., GLP-1-induced renal vasodilation in rodents depends exclusively on the known GLP-1 receptor and is lost in prehypertensive rats, Am. J. Physiol. Renal Physiol. 318 (2020) F1409-F1417.
|
[93] |
W.D. Strain, O. Frenkel, M.A. James, et al., Effects of semaglutide on stroke subtypes in type 2 diabetes: Post hoc analysis of the randomized SUSTAIN 6 and PIONEER 6, Stroke 53 (2022) 2749-2757.
|
[94] |
C.J. Nalliah, P. Sanders, H. Kottkamp, et al., The role of obesity in atrial fibrillation, Eur. Heart J. 37 (2016) 1565-1572.
|
[95] |
M.A. Nauck, D.R. Quast, J. Wefers, et al., GLP-1 receptor agonists in the treatment of type 2 diabetes - state-of-the-art, Mol. Metab. 46 (2021), 101102.
|
[96] |
J.P. Frias, J. Choi, J. Rosenstock, et al., Efficacy and safety of once-weekly efpeglenatide monotherapy versus placebo in type 2 diabetes: The AMPLITUDE-M randomized controlled trial, Diabetes Care 45 (2022) 1592-1600.
|
[97] |
D.R. Quast, M.A. Nauck, N. Schenker, et al., Macronutrient intake, appetite, food preferences and exocrine pancreas function after treatment with short- and long-acting glucagon-like peptide-1 receptor agonists in type 2 diabetes, Diabetes Obes. Metab. 23 (2021) 2344-2353.
|
[98] |
S.J. Lee, G. Sanchez-Watts, J.P. Krieger, et al., Loss of dorsomedial hypothalamic GLP-1 signaling reduces BAT thermogenesis and increases adiposity, Mol. Metab. 11 (2018) 33-46.
|
[99] |
F. Xu, H. Cao, Z. Chen, et al., Short-term GLP-1 receptor agonist exenatide ameliorates intramyocellular lipid deposition without weight loss in ob/ob mice, Int. J. Obes. (Lond.) 44 (2020) 937-947.
|
[100] |
L. Zhang, J. Tian, S. Diao, et al., GLP-1 receptor agonist liraglutide protects cardiomyocytes from IL-1β-induced metabolic disturbance and mitochondrial dysfunction, Chem. Biol. Interact. 332 (2020), 109252.
|
[101] |
N. Akawi, A. Checa, A.S. Antonopoulos, et al., Fat-secreted ceramides regulate vascular redox state and influence outcomes in patients with cardiovascular disease, J. Am. Coll. Cardiol. 77 (2021) 2494-2513.
|
[102] |
H. Sugumar, S. Nanayakkara, S. Prabhu, et al., Pathophysiology of atrial fibrillation and heart failure: Dangerous interactions, Cardiol. Clin. 37 (2019) 131-138.
|
[103] |
M. Huang, R. Wei, Y. Wang, et al., Protective effect of glucagon-like peptide-1 agents on reperfusion injury for acute myocardial infarction: A meta-analysis of randomized controlled trials, Ann. Med. 49 (2017) 552-561.
|
[104] |
J.F. Germano, C. Huang, J. Sin, et al., Intermittent use of a short-course glucagon-like peptide-1 receptor agonist therapy limits adverse cardiac remodeling via Parkin-dependent mitochondrial turnover, Sci. Rep. 10 (2020), 8284.
|
[105] |
E. Robinson, R.S. Cassidy, M. Tate, et al., Exendin-4 protects against post-myocardial infarction remodelling via specific actions on inflammation and the extracellular matrix, Basic Res. Cardiol. 110 (2015), 20.
|
[106] |
P.C. Li, L. Liu, M.J. Jou, et al., The GLP-1 receptor agonists exendin-4 and liraglutide alleviate oxidative stress and cognitive and micturition deficits induced by middle cerebral artery occlusion in diabetic mice, BMC Neurosci. 17 (2016), 37.
|
[107] |
J. Chen, D. Wang, F. Wang, et al., Exendin-4 inhibits structural remodeling and improves Ca2+ homeostasis in rats with heart failure via the GLP-1 receptor through the eNOS/cGMP/PKG pathway, Peptides 90 (2017) 69-77.
|
[108] |
Y. Zhou, X. He, Y. Chen, et al., Exendin-4 attenuates cardiac hypertrophy via AMPK/mTOR signaling pathway activation, Biochem. Biophys. Res. Commun. 468 (2015) 394-399.
|
[109] |
N. Nuamnaichati, S. Mangmool, N. Chattipakorn, et al., Stimulation of GLP-1 receptor inhibits methylglyoxal-induced mitochondrial dysfunctions in H9c2 cardiomyoblasts: Potential role of epac/PI3K/Akt pathway, Front. Pharmacol. 11 (2020), 805.
|
[110] |
A.M. Darwesh, M.F. El-Azab, N.M. Abo-Gresha, et al., Cardioprotective mechanisms of exenatide in isoprenaline-induced myocardial infarction: Novel effects on myocardial α-estrogen receptor expression and IGF-1/IGF-2 system, J. Cardiovasc. Pharmacol. 71 (2018) 160-173.
|
[111] |
L.L. Baggio, J.R. Ussher, B.A. McLean, et al., The autonomic nervous system and cardiac GLP-1 receptors control heart rate in mice, Mol. Metab. 6 (2017) 1339-1349.
|
[112] |
G. Rakipovski, B. Rolin, J. Noehr, et al., The GLP-1 analogs liraglutide and semaglutide reduce atherosclerosis in ApoE-/- and LDLr-/- mice by a mechanism that includes inflammatory pathways, JACC Basic Transl. Sci. 3 (2018) 844-857.
|
[113] |
Y. Wang, E.T. Parlevliet, J.J. Geerling, et al., Exendin-4 decreases liver inflammation and atherosclerosis development simultaneously by reducing macrophage infiltration, Br. J. Pharmacol. 171 (2014) 723-734.
|
[114] |
M. Arakawa, T. Mita, K. Azuma, et al., Inhibition of monocyte adhesion to endothelial cells and attenuation of atherosclerotic lesion by a glucagon-like peptide-1 receptor agonist, exendin-4, Diabetes 59 (2010) 1030-1037.
|
[115] |
D. Nikolic, R.V. Giglio, A.A. Rizvi, et al., Liraglutide reduces carotid intima-media thickness by reducing small dense low-density lipoproteins in a real-world setting of patients with type 2 diabetes: A novel anti-atherogenic effect, Diabetes Ther. 12 (2021) 261-274.
|
[116] |
E.H. Zobel, R.S. Ripa, B.J. von Scholten, et al., Effect of liraglutide on expression of inflammatory genes in type 2 diabetes, Sci. Rep. 11 (2021), 18522.
|
[117] |
W. Chang, F. Zhu, H. Zheng, et al., Glucagon-like peptide-1 receptor agonist dulaglutide prevents ox-LDL-induced adhesion of monocytes to human endothelial cells: An implication in the treatment of atherosclerosis, Mol. Immunol. 116 (2019) 73-79.
|
[118] |
S. Hu, Y. Zhang, P. Zhu, et al., Liraglutide directly protects cardiomyocytes against reperfusion injury possibly via modulation of intracellular calcium homeostasis, J. Geriatr. Cardiol. 14 (2017) 57-66.
|
[119] |
B. Huang, H. Liu, B.J. Scherlag, et al., Atrial fibrillation in obstructive sleep apnea: Neural mechanisms and emerging therapies, Trends Cardiovasc. Med. 31 (2021) 127-132.
|
[120] |
A.G. Pauza, P. Thakkar, T. Tasic, et al., GLP1R attenuates sympathetic response to high glucose via carotid body inhibition, Circ. Res. 130 (2022) 694-707.
|
[121] |
L. Tao, L. Wang, X. Yang, et al., Recombinant human glucagon-like peptide-1 protects against chronic intermittent hypoxia by improving myocardial energy metabolism and mitochondrial biogenesis, Mol. Cell. Endocrinol. 481 (2019) 95-103.
|
[122] |
L.A. Nikolaidis, D. Elahi, T. Hentosz, et al., Recombinant glucagon-like peptide-1 increases myocardial glucose uptake and improves left ventricular performance in conscious dogs with pacing-induced dilated cardiomyopathy, Circulation 110 (2004) 955-961.
|
[123] |
T. Zhao, P. Parikh, S. Bhashyam, et al., Direct effects of glucagon-like peptide-1 on myocardial contractility and glucose uptake in normal and postischemic isolated rat hearts, J. Pharmacol. Exp. Ther. 317 (2006) 1106-1113.
|
[124] |
B.A. McLean, C.K. Wong, M.G. Kabir, et al., Glucagon-like Peptide-1 receptor Tie2+ cells are essential for the cardioprotective actions of liraglutide in mice with experimental myocardial infarction, Mol. Metab. 66 (2022), 101641.
|
[125] |
H. Nakamura, S. Niwano, H. Niwano, et al., Liraglutide suppresses atrial electrophysiological changes, Heart Vessels 34 (2019) 1389-1393.
|
[126] |
R.A. Eid, S.A. Alharbi, A.F. El-Kott, et al., Exendin-4 ameliorates cardiac remodeling in experimentally induced myocardial infarction in rats by inhibiting PARP1/NF-κB axis in A SIRT1-dependent mechanism, Cardiovasc. Toxicol. 20 (2020) 401-418.
|
[127] |
R.A. Eid, M.A. Khalil, M.A. Alkhateeb, et al., Exendin-4 attenuates remodeling in the remote myocardium of rats after an acute myocardial infarction by activating β-arrestin-2, protein phosphatase 2A, and glycogen synthase kinase-3 and inhibiting β-catenin, Cardiovasc. Drugs Ther. 35 (2021) 1095-1110.
|
[128] |
P. Chen, F. Yang, W. Wang, et al., Liraglutide attenuates myocardial fibrosis via inhibition of AT1R-mediated ROS production in hypertensive mice, J. Cardiovasc. Pharmacol. Ther. 26 (2021) 179-188.
|
[129] |
A. Monji, T. Mitsui, Y.K. Bando, et al., Glucagon-like peptide-1 receptor activation reverses cardiac remodeling via normalizing cardiac steatosis and oxidative stress in type 2 diabetes, Am. J. Physiol. Heart Circ. Physiol. 305 (2013) H295-H304.
|
[130] |
R. Zheng, W. Zhang, Y. Ji, et al., Exogenous supplement of glucagon like peptide-1 protects the heart against aortic banding induced myocardial fibrosis and dysfunction through inhibiting mTOR/p70S6K signaling and promoting autophagy, Eur. J. Pharmacol. 883 (2020), 173318.
|
[131] |
M. DeNicola, J. Du, Z. Wang, et al., Stimulation of glucagon-like peptide-1 receptor through exendin-4 preserves myocardial performance and prevents cardiac remodeling in infarcted myocardium, Am. J. Physiol. Endocrinol. Metab. 307 (2014) E630-E643.
|
[132] |
C.W. Younce, J. Niu, J. Ayala, et al., Exendin-4 improves cardiac function in mice overexpressing monocyte chemoattractant protein-1 in cardiomyocytes, J. Mol. Cell. Cardiol. 76 (2014) 172-176.
|
[133] |
J. Du, L. Zhang, Z. Wang, et al., Exendin-4 induces myocardial protection through MKK3 and Akt-1 in infarcted hearts, Am. J. Physiol. Cell Physiol. 310 (2016) C270-C283.
|
[134] |
R.-H. Zheng, X.-J. Bai, W.-W. Zhang, et al., Liraglutide attenuates cardiac remodeling and improves heart function after abdominal aortic constriction through blocking angiotensin II type 1 receptor in rats, Drug Des. Devel. Ther. 13 (2019) 2745-2757.
|
[135] |
V. Sukumaran, H. Tsuchimochi, T. Sonobe, et al., Liraglutide treatment improves the coronary microcirculation in insulin resistant Zucker obese rats on a high salt diet, Cardiovasc. Diabetol. 19 (2020), 24.
|
[136] |
C. Withaar, L.M.G. Meems, G. Markousis-Mavrogenis, et al., The effects of liraglutide and dapagliflozin on cardiac function and structure in a multi-hit mouse model of heart failure with preserved ejection fraction, Cardiovasc. Res. 117 (2021) 2108-2124.
|
[137] |
J. Wang, R. Guo, X. Ma, et al., Liraglutide inhibits AngII-induced cardiac fibroblast proliferation and ECM deposition through regulating miR-21/PTEN/PI3K pathway, Cell Tissue Bank. 24 (2023) 125-137.
|
[138] |
S.P. Marso, S.C. Bain, A. Consoli, et al., Semaglutide and cardiovascular outcomes in patients with type 2 diabetes, N. Engl. J. Med. 375 (2016) 1834-1844.
|
[139] |
S.P. Marso, G.H. Daniels, K. Brown-Frandsen, et al., Liraglutide and cardiovascular outcomes in type 2 diabetes, N. Engl. J. Med. 375 (2016) 311-322.
|
[140] |
R.R. Holman, M.A. Bethel, R.J. Mentz, et al., Effects of once-weekly exenatide on cardiovascular outcomes in type 2 diabetes, N. Engl. J. Med. 377 (2017) 1228-1239.
|
[141] |
A.F. Hernandez, J.B. Green, S. Janmohamed, et al., Albiglutide and cardiovascular outcomes in patients with type 2 diabetes and cardiovascular disease (Harmony Outcomes): A double-blind, randomised placebo-controlled trial, Lancet 392 (2018) 1519-1529.
|
[142] |
B. Nreu, I. Dicembrini, F. Tinti, et al., Major cardiovascular events, heart failure, and atrial fibrillation in patients treated with glucagon-like peptide-1 receptor agonists: An updated meta-analysis of randomized controlled trials, Nutr. Metab. Cardiovasc. Dis. 30 (2020) 1106-1114.
|
[143] |
P.J. Raubenheimer, W.C. Cushman, A. Avezum, et al., Dulaglutide and incident atrial fibrillation or flutter in patients with type 2 diabetes: A post hoc analysis from the REWIND randomized trial, Diabetes Obes. Metab. 24 (2022) 704-712.
|
[144] |
J.S. Neves, F. Vasques-Novoa, M. Borges-Canha, et al., Risk of adverse events with liraglutide in heart failure with reduced ejection fraction: A post hoc analysis of the FIGHT trial, Diabetes Obes. Metab. 25 (2023) 189-197.
|
[145] |
H.C. Gerstein, H.M. Colhoun, G.R. Dagenais, et al., Dulaglutide and cardiovascular outcomes in type 2 diabetes (REWIND): A double-blind, randomised placebo-controlled trial, Lancet 394 (2019) 121-130.
|
[146] |
S. Li, P.O. Vandvik, L. Lytvyn, et al., SGLT-2 inhibitors or GLP-1 receptor agonists for adults with type 2 diabetes: A clinical practice guideline, BMJ 373 (2021), n1091.
|
[147] |
S.R. Thotamgari, U.S. Grewal, A.R. Sheth, et al., Can glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors help in mitigating the risk of atrial fibrillation in patients with diabetes? Cardiovasc. Endocrinol. Metab. 11 (2022), e0265.
|
[148] |
J. Zhu, X. Yu, Y. Zheng, et al., Association of glucose-lowering medications with cardiovascular outcomes: An umbrella review and evidence map, Lancet Diabetes Endocrinol. 8 (2020) 192-205.
|
[149] |
A. Jorsal, C. Kistorp, P. Holmager, et al., Effect of liraglutide, a glucagon-like peptide-1 analogue, on left ventricular function in stable chronic heart failure patients with and without diabetes (LIVE)-a multicentre, double-blind, randomised, placebo-controlled trial, Eur. J. Heart Fail. 19 (2017) 69-77.
|
[150] |
P. Kumarathurai, C. Anholm, B.S. Larsen, et al., Effects of liraglutide on heart rate and heart rate variability: A randomized, double-blind, placebo-controlled crossover study, Diabetes Care 40 (2017) 117-124.
|
[151] |
J. Lee, I.E. Umana, J. Nguyen, Exacerbation of atrial fibrillation related to dulaglutide use, Clin. Case Rep. 9 (2021), e04223.
|
[152] |
M. Husain, S.C. Bain, A.G. Holst, et al., Effects of semaglutide on risk of cardiovascular events across a continuum of cardiovascular risk: Combined post hoc analysis of the SUSTAIN and PIONEER trials, Cardiovasc. Diabetol. 19 (2020), 156.
|