Citation: | Patanachai K. Limpikirati, Sorrayut Mongkoltipparat, Thinnaphat Denchaipradit, Nathathai Siwasophonpong, Wudthipong Pornnopparat, Parawan Ramanandana, Phumrapee Pianpaktr, Songsak Tongchusak, Maoxin Tim Tian, Trairak Pisitkun. Basic regulatory science behind drug substance and drug product specifications of monoclonal antibodies and other protein therapeutics[J]. Journal of Pharmaceutical Analysis, 2024, 14(6): 100916. doi: 10.1016/j.jpha.2023.12.006 |
In this review, we focus on providing basics and examples for each component of the protein therapeutic specifications to interested pharmacists and biopharmaceutical scientists with a goal to strengthen understanding in regulatory science and compliance. Pharmaceutical specifications comprise a list of important quality attributes for testing, references to use for test procedures, and appropriate acceptance criteria for the tests, and they are set up to ensure that when a drug product is administered to a patient, its intended therapeutic benefits and safety can be rendered appropriately. Conformance of drug substance or drug product to the specifications is achieved by testing an article according to the listed tests and analytical methods and obtaining test results that meet the acceptance criteria. Quality attributes are chosen to be tested based on their quality risk, and consideration should be given to the merit of the analytical methods which are associated with the acceptance criteria of the specifications. Acceptance criteria are set forth primarily based on efficacy and safety profiles, with an increasing attention noted for patient-centric specifications. Discussed in this work are related guidelines that support the biopharmaceutical specification setting, how to set the acceptance criteria, and examples of the quality attributes and the analytical methods from 60 articles and 23 pharmacopeial monographs. Outlooks are also explored on process analytical technologies and other orthogonal tools which are on-trend in biopharmaceutical characterization and quality control.
[1] |
L. Urquhart, Top product forecasts for 2022, Nat. Rev. Drug Discov. 21(2022), 11.
|
[2] |
C.W. Lindsley, Predictions and statistics for the best-selling drugs globally and in the United States in 2018 and a look forward to 2024 projections, ACS Chem. Neurosci. 10(2019), 1115.
|
[3] |
H. Kaplon, A. Chenoweth, S. Crescioli, et al., Antibodies to watch in 2022, MAbs 14(2022), 2014296.
|
[4] |
H. Kaplon, S. Crescioli, A. Chenoweth, et al., Antibodies to watch in 2023, MAbs 15(2023), 2153410.
|
[5] |
A. Brown, Top product forecasts for 2023, Nat. Rev. Drug Discov. 22(2023), 8.
|
[6] |
A.F. Shaughnessy, Monoclonal antibodies:magic bullets with a hefty price tag, BMJ 345(2012), e8346.
|
[7] |
C.E.M. Hollak, S.V. Dahl, J.M.F.G. Aerts, et al., Force majeure:therapeutic measures in response to restricted supply of imiglucerase (Cerezyme) for patients with Gaucher disease, Blood Cells Mol. Dis. 44(2010)41-47.
|
[8] |
KFF Health News, Novavax's Effort to Vaccinate the World, from Zero to Not Quite Warp Speed. Washington, DC, July 19, 2021. https://kffhealthnews.org/news/article/covid-vaccine-novavax-vaccination-effort-from-zero-to-notquite-warp-speed/. (Accessed 4 October 2023).
|
[9] |
Generics and Biosimilars Initiative (GaBI), Roche encounters manufacturing issues with epoetin-beta, Jan. 27, 2012. Washington, DC, https://www.gabionline.net/biosimilars/news/Roche-encounters-manufacturing-issueswith-epoetin-beta. (Accessed 3 October 2023).
|
[10] |
P.W. Barone, M.E. Wiebe, J.C. Leung, et al., Viral contamination in biologic manufacture and implications for emerging therapies, Nat. Biotechnol. 38(2020)563-572.
|
[11] |
D.M. Ecker, S.D. Jones, H.L. Levine, The therapeutic monoclonal antibody market, MAbs 7(2015)9-14.
|
[12] |
S.K. Niazi, The coming of age of biosimilars:A personal perspective, Biologics 2(2022)107-127.
|
[13] |
U.S. Food&Drug Administration, Biosimilar product information, May 2022. https://www.fda.gov/drugs/biosimilars/biosimilar-product-information. (Accessed 18 June 2022).
|
[14] |
European Medicines Agency, List of centrally authorised biosimilar medicines. https://www.ema.europa.eu/en/medicines/field_ema_web_categories%253Aname_field/Human/ema_group_types/ema_medicine/field_ema_med_status/authorised-36/ema_medicine_types/field_ema_med_biosimilar/search_api_aggregation_ema_medicine_types/field_ema_med_biosimilar. (Accessed 18 June 2022).
|
[15] |
S.C. Chow, Challenging issues in assessing analytical similarity in biosimilar studies, Biosimilars (2015), 33.
|
[16] |
O. Kwon, J. Joung, Y. Park, et al., Considerations of critical quality attributes in the analytical comparability assessment of biosimilar products, Biologicals 48(2017)101-108.
|
[17] |
M. Cilia, S. Ruiz, P. Richardson, et al., Quality issues identified during the evaluation of biosimilars by the European medicines agency's committee for medicinal products for human use, AAPS PharmSciTech 19(2018)489-511.
|
[18] |
R. Thorpe, G. Grampp, H.N. Kang, et al., Quality assessment and its impact on clinical performance of a biosimilar erythropoietin:a simulated case study, Biologicals 62(2019)8-15.
|
[19] |
A.G. Vulto, O.A. Jaquez, The process defines the product:what really matters in biosimilar design and production?Rheumatology (Oxford)56(2017) iv14-iv29.
|
[20] |
B.L. Duivelshof, W. Jiskoot, A. Beck, et al., Glycosylation of biosimilars:Recent advances in analytical characterization and clinical implications, Anal. Chim. Acta 1089(2019)1-18.
|
[21] |
U.S. Food&Drug Administration, Advancing Regulatory Science, Sep., 2022. https://www.fda.gov/science-research/science-and-research-special-topics/advancing-regulatory-science,Sep.,2022. (Accessed 31 May 2023).
|
[22] |
ICH Harmonised Tripartite Guideline, Q6A Specifications:Test Procedures and Acceptance Criteria for New Drug Substances and New Drug Products:Chemical Substances, Oct., 1999. https://database.ich.org/sites/default/files/Q6A%20Guideline.pdf. (Accessed 16 June 2022).
|
[23] |
ICH Harmonised Tripartite Guideline, Q6B Specifications:Test Procedures and Acceptance Criteria for Biotechnological/Biological Products, Mar., 1999. https://database.ich.org/sites/default/files/Q6B%20Guideline.pdf. (Accessed 16 June 2022).
|
[24] |
M. Kesik-Brodacka, Progress in biopharmaceutical development, Biotechnol. Appl. Biochem. 65(2018)306-322.
|
[25] |
Pharmaceutical Inspection Co-operation Scheme (PIC/S), Guide to Good Manufacturing Practice for Medicinal Products Part I, Feb., 2022. https://picscheme.org/docview/4588. (Accessed 16 June 2022).
|
[26] |
ICH Harmonised Tripartite Guideline, Q5C Stability Testing of Biotechnological/Biological Products, Nov., 1995. https://database.ich.org/sites/default/files/Q5C%20Guideline.pdf. (Accessed 18 June 2022).
|
[27] |
ICH Harmonised Tripartite Guideline, M4Q (R1) Common Technical Document (CTD) for the Registration of Pharmaceuticals for Human Use:Quality, Nov., 2002. https://database.ich.org/sites/default/files/M4Q_R1_Guideline.pdf. (Accessed 18 June 2022).
|
[28] |
European Medicines Agency, Guideline on Similar Biological Medicinal Products Containing Biotechnology-Derived Proteins as Active Substance:Quality Issues, Dec., 2014. https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-similar-biological-medicinal-productscontaining-biotechnology-derived-proteins-active_en-0.pdf. (Accessed 18 June 2022).
|
[29] |
P. Elliott, S. Billingham, J. Bi, et al., Quality by design for biopharmaceuticals:A historical review and guide for implementation, Pharm. Bioprocess 1(2013)105-122.
|
[30] |
A.S. Rathore, Setting specifications for a biotech therapeutic product in the quality by design paradigm, Biopharm Int. 23(2010)46-53.
|
[31] |
M.N. Ruesch, L. Benetti, E. Berkay, et al., Strategies for setting patient-centric commercial specifications for biotherapeutic products, J. Pharm. Sci. 110(2021)771-784.
|
[32] |
ICH Harmonised Tripartite Guideline, Q3d (R1) Guideline for Elemental Impurities, Apr., 2022. https://database.ich.org/sites/default/files/Q3D-R2_Guideline_Step4_2022_0308.pdf. (Accessed 28 August 2022).
|
[33] |
ICH Harmonised Tripartite Guideline, M7(R1) Assessment and Control Of DNA Reactive (Mutagenic) Impurities in Pharmaceuticals to Limit Potential Carcinogenic Risk. Mar., 2017. https://database.ich.org/sites/default/files/M7_R1_Guideline.pdf. (Accessed 17 June 2022).
|
[34] |
B. Tuesuwan, V. Vongsutilers, Nitrosamine contamination in pharmaceuticals:threat, impact, and control, J. Pharm. Sci. 110(2021)3118-3128.
|
[35] |
B. Tuesuwan, V. Vongsutilers, Current threat of nitrosamines in pharmaceuticals and scientific strategies for risk mitigation, J. Pharm. Sci. 112(2023)1192-1209.
|
[36] |
ICH Harmonised Tripartite Guideline, Q9 Quality Risk Management, Nov., 2005. https://database.ich.org/sites/default/files/Q9%20Guideline.pdf. (Accessed 28 August 2022).
|
[37] |
International Council for Harmonization (ICH), ICH Press Release:Continued ICH Growth and Advancement, 10 Jun, 2021. https://admin.ich.org/sites/default/files/inline-files/ICH42_VirtualMeeting_PressRelease_2021_0610_final.pdf. (Accessed 20 June 2022).
|
[38] |
J.S. Eglovitch, ICH Reports "Significant Milestones" Reached on Guidelines Ranging from Impurity Testing to eCTD Standards, Regulatory Affairs Professionals Society (RAPS), 14 Jun., 2021. https://www.raps.org/news-andarticles/news-articles/2021/6/ich-reports-significant-milestones-reachedon-guid. (Accessed 19 June 2022).
|
[39] |
J.S. Eglovitch, EU Official Says ICH Q6B is Outdated and Needs Revision, Regulatory Affairs Professionals Society (RAPS), 01 Dec., 2021. https://www.raps.org/news-and-articles/news-articles/2021/12/eu-official-says-ich-q6bis-outdated-and-needs-rev. (Accessed 19 June 2022).
|
[40] |
T. Schofield, I. Apostol, G. Koeller, et al., A rational approach for setting and maintaining specifications for biological and biotechnologyederived productsdPart 3, Biopharm Int. 21(2008)40-45.
|
[41] |
T. Schofield, I. Apostol, G. Koeller, et al., A rational approach for setting and maintaining specifications for biological and biotechnologyederived productsdPart 2, Biopharm Int. 21(2008)40-45.
|
[42] |
T. Schofield, I. Apostol, G. Koeller, et al., A rational approach for setting and maintaining specifications for biological and biotechnologyederived productsdPart 1, Biopharm Int. 21(2008)40-45.
|
[43] |
S.O. Krause, PCMO L01-setting specifications for biological investigational medicinal products, PDA J. Pharm. Sci. Technol. 69(2015)569-589.
|
[44] |
J. Kretsinger, N. Frantz, S.A. Hart, et al., Expectations for phase-appropriate drug substance and drug product specifications for early-stage protein therapeutics, J. Pharm. Sci. 108(2019)1442-1452.
|
[45] |
Y. Kameyama, M. Matsuhama, C. Mizumaru, et al., Comparative study of pharmacopoeias in Japan, Europe, and the United States:toward the further convergence of international pharmacopoeial standards, Chem. Pharm. Bull. 67(2019)1301-1313.
|
[46] |
J.M. Wiggins, J.A. Albanese, Detailed consideration of global and national pharmacopoeias, Biopharm Int. eBook (2019)20-21.
|
[47] |
M. Buda, O. Kolaj-Robin, E. Charton, Biotherapeutic products in the European Pharmacopoeia:have all challenges been tackled?GaBI J 11(2022)7-12.
|
[48] |
J. Guo, H. Tu, L. Jing, et al., USP reference standard monoclonal antibodies:tools to verify glycan structure, Pharmaceuticals (Basel)15(2022), 315.
|
[49] |
A.Y. Szajek, F. Atouf, D. Schmidt, et al., USP publishes monoclonal antibody guidelines, Biopharm Int. 28(2015)40-45.
|
[50] |
J.A. Albanese, J.M. Wiggins, Biologic standards in the pharmacopoeias:An update, Pharmaceut. Technol. 46(2022)56-58.
|
[51] |
USP, Filgrastim, in:USPeNF, USP. Rockville, MD:USP, 1 Jan., 2021. https://doi.usp.org/USPNF/USPNF_M33170_05_01.html. (Accessed 22 June 2022).
|
[52] |
USP. Insulin Aspart Injection, in:USPeNF. Rockville, MD:USP, 1 Jan., 2019. https://doi.usp.org/USPNF/USPNF_M1450_04_01.html. (Accessed 25 October 2022).
|
[53] |
USP, Insulin Aspart, in:USPeNF. Rockville, MD:USP, 1 May, 2018. https://doi.usp.org/USPNF/USPNF_M1448_03_01.html. (Accessed 25 October 2022).
|
[54] |
USP, Insulin Glargine Injection, in:USPeNF. Rockville, MD:USP, 1 May, 2018. https://doi.usp.org/USPNF/USPNF_M40555_03_01.html. (Accessed 25 October 2022).
|
[55] |
USP, Insulin Glargine, in:USPeNF. Rockville, MD:USP, 1 May, 2018. https://doi.usp.org/USPNF/USPNF_M40550_04_01.html. (Accessed 25 October 2022).
|
[56] |
USP, Insulin Human Injection, in:USPeNF. Rockville, MD:USP, 1 May, 2018. https://doi.usp.org/USPNF/USPNF_M40605_03_01.html.(Accessed 22 June 2022).
|
[57] |
USP, Insulin Human, in:USPeNF. Rockville, MD:USP, 1 May, 2021. https://doi.usp.org/USPNF/USPNF_M40600_04_01.html.(Accessed 22 June 2022).
|
[58] |
USP, Insulin Lispro Injection, in:USPeNF. Rockville, MD:USP, 1 Jan., 2019. https://doi.usp.org/USPNF/USPNF_M40613_05_01.html. (Accessed 25 October 2022).
|
[59] |
USP, Insulin Lispro, in:USPeNF. Rockville, MD:USP, Jan 1, 2019. https://doi.usp.org/USPNF/USPNF_M40610_04_01.html. (Accessed 25 October 2022).
|
[60] |
USP, Isophane Insulin Human Suspension, in:USPeNF. Rockville, MD:USP, 1 May, 2019. https://doi.usp.org/USPNF/USPNF_M40625_05_01.html. (Accessed 25 October 2022).
|
[61] |
USP, Somatropin for Injection, in:USPeNF. Rockville, MD:USP, 1 May, 2018. https://doi.usp.org/USPNF/USPNF_M77500_03_01.html. (Accessed 22 June 2022).
|
[62] |
USP, Somatropin, in:USPeNF. Rockville, MD:USP, Aug 1, 2018. https://doi.usp.org/USPNF/USPNF_M77490_04_01.html. (Accessed 22 June 2022).
|
[63] |
USP, rAlbumin Human, in:USPeNF. Rockville, MD:USP, May 1, 2018. https://doi.usp.org/USPNF/USPNF_M2992_03_01.html. (Accessed 26 October 2022).
|
[64] |
Ph. Eur., Filgrastim concentrated solution (2206), in:Ph. Eur. Vol. 10.0, EDQM-Council of Europe, Strasbourg, France, 2020, pp. 2631-2634.
|
[65] |
Ph. Eur., Follitropin concentrated solution (2286), in:Ph. Eur. Vol. 10.0, EDQM-Council of Europe, Strasbourg, France, 2020, pp. 2697-2703.
|
[66] |
Ph. Eur., Monoclonal Antibodies for Human Use (2031), in:Ph. Eur. Vol. 10.0, EDQM-Council of Europe, Strasbourg, France, 2020, pp. 878-880.
|
[67] |
Ph. Eur., Erythropoietin Concentrated Solution (1316), in:Ph. Eur. Vol. 10.5, EDQM-Council of Europe, Strasbourg, France, 2021, pp. 5810-5815.
|
[68] |
USP, Epoetin, in:USPeNF. Rockville, MD:USP, 1 May, 2018. https://doi.usp.org/USPNF/USPNF_M29702_02_01.html. (Accessed 22 June 2022).
|
[69] |
USP, Alteplase for Injection, in:USPeNF. Rockville, MD:USP, 1 May, 2018. https://doi.usp.org/USPNF/USPNF_M1673_03_01.html. (Accessed 25 October 2022).
|
[70] |
USP, Alteplase, in:USPeNF. Rockville, MD:USP, 1 May, 2018. https://doi.usp.org/USPNF/USPNF_M1670_03_01.html. (Accessed 25 October 2022).
|
[71] |
Ph. Eur., Etanercept (2895), in:Ph. Eur. Vol. 10.3, EDQM-Council of Europe, Strasbourg, France, 2021, pp. 4979-4983.
|
[72] |
Ph. Eur., Infliximab Concentrated Solution (2928), in:Ph. Eur. Vol. 10.3, EDQM-Council of Europe, Strasbourg, France, 2021, pp. 5019-5024.
|
[73] |
Ph. Eur., Filgrastim injection (2848), in:Ph Eur. Vol. 10.0, EDQM-Council of Europe, Strasbourg, France, 2020, pp. 2634-2636.
|
[74] |
USP,(129) Analytical Procedures for Recombinant Therapeutic Monoclonal Antibodies, in:USPeNF, USP, Rockville, MD, 1 May, 2016. https://doi.usp.org/USPNF/USPNF_M6297_02_01.html. (Accessed 20 August 2022).
|
[75] |
World Health Organization (WHO), WHO Guideline for the safe production and quality control of monoclonal antibodies for use in humans, Oct. 2021. https://cdn.who.int/media/docs/default-source/biologicals/mabsmanufacture-guideline-draft-for-1st-public-comment.pdf. (Accessed 22 June 2022).
|
[76] |
European Medicines Agency, Guideline on development, production, characterisation and specification for monoclonal antibodies and related products, Sep., 2016. https://www.ema.europa.eu/en/documents/scientificguideline/guideline-development-production-characterisationspecification-monoclonal-antibodies-related_en.pdf. (Accessed 22 June 2022).
|
[77] |
U.S. Food&Drug Administration, Guidance for Industry for the Submission of Chemistry, Manufacturing, and Controls Information for a Therapeutic Recombinant DNA-Derived Product or a Monoclonal Antibody Product for In Vivo Use, Aug., 1996. https://www.fda.gov/regulatory-information/search-fdaguidance-documents/guidance-industry-submission-chemistrymanufacturing-and-controls-information-therapeutic. (Accessed 6 July 2022).
|
[78] |
ICH Harmonised Tripartite Guideline, Q8(R2) Pharmaceutical Development, Aug., 2009. https://database.ich.org/sites/default/files/Q8%28R2%29%20Guideline.pdf. (Accessed 28 August 2022).
|
[79] |
USP,(1058) Analytical Instrument Qualification, in:USPeNF. Rockville, MD:USP, 1 Aug., 2017. https://doi.usp.org/USPNF/USPNF_M1124_01_01.html. (Accessed 22 June 2022).
|
[80] |
ICH Harmonised Tripartite Guideline, Q2(R1) Validation of Analytical Procedures, 2005 Nov. https://database.ich.org/sites/default/files/Q2%28R1% 29%20Guideline.pdf.(Accessed 28 August 2022).
|
[81] |
USP,(1225) Validation of Compendial Procedures, in:USPeNF. Rockville, MD:USP, 1 Aug., 2017. https://doi.usp.org/USPNF/USPNF_M99945_04_01.html. (Accessed 22 June 2022).
|
[82] |
ICH Harmonised Tripartite Guideline, Q2(R2) Validation of analytical procedures (Draft Version), Mar., 2022. https://database.ich.org/sites/default/files/ICH_Q2-R2_Document_Step2_Guideline_2022_0324.pdf. (Accessed 24 September 2022).
|
[83] |
J. Bongers, J.J. Cummings, M.B. Ebert, et al., Validation of a peptide mapping method for a therapeutic monoclonal antibody:What could we possibly learn about a method we have Run 100 times?J. Pharm. Biomed. Anal. 21(2000)1099-1128.
|
[84] |
S.S. Rane, A. Ajameri, R. Mody, et al., Development and validation of RP-HPLC and RP-UPLC methods for quantification of erythropoietin formulated with human serum albumin, J. Pharm. Anal. 2(2012)160-165.
|
[85] |
D. Rustichelli, S. Castiglia, M. Gunetti, et al., Validation of analytical methods in compliance with good manufacturing practice:A practical approach, J. Transl. Med. 11(2013), 197.
|
[86] |
A. Izydor, K. Ira, K. Drew, S.K. Ira, Analytical method validation for biopharmaceuticals, Anal. Chem., IntechOpen, Rijeka (2012).
|
[87] |
W. Zheng, L. Jiang, Q. Lei, et al., Development and validation of quantitative real-time PCR for the detection of residual CHO host cell DNA and optimization of sample pretreatment method in biopharmaceutical products, Biol. Proced. Online 21(2019), 17.
|
[88] |
AOAC Official Methods of Analysis, Appendix F:Guidelines for Standard Method Performance Requirements, 2016. https://www.aoac.org/wpcontent/uploads/2019/08/app_f.pdf. (Accessed 28 September 2023).
|
[89] |
USP,(1033) Biological Assay Validation, in:USPeNF. Rockville, MD:USP, 1 Aug., 2017. https://doi.usp.org/USPNF/USPNF_M912_01_01.html. (Accessed 22 June 2022).
|
[90] |
USP,(1226) Verification of Compendial Procedures, in:USPeNF, USP, Rockville, MD, 1 Dec., 2019. https://doi.usp.org/USPNF/USPNF_M870_03_01.html. (Accessed 22 June 2022).
|
[91] |
U.S. Food&Drug Administration, Bioanalytical Method Validation, Guidance for Industry, May, 2018. https://www.fda.gov/files/drugs/published/Bioanalytical-Method-Validation-Guidance-for-Industry.pdf. (Accessed 6 July 2022).
|
[92] |
ICH Harmonised Tripartite Guideline, M10 Bioanalytical Method Validation and Study Sample Analysis, May, 2022. https://database.ich.org/sites/default/files/M10_Guideline_Step4_2022_0524.pdf. (Accessed 28 September 2023).
|
[93] |
X. Peng, B. Liu, Y. Li, et al., Development and validation of LCeMS/MS method for the quantitation of infliximab in human serum, Chromatographia 78(2015)521-531.
|
[94] |
M. Fresnais, R. Longuespee, M. Sauter, et al., Development and validation of an LC-MS-based quantification assay for new therapeutic antibodies:Application to a novel therapy against herpes simplex virus, ACS Omega 5(2020)24329-24339.
|
[95] |
C. Desvignes, S.R. Edupuganti, F. Darrouzain, et al., Development and validation of an enzyme-linked immunosorbent assay to measure adalimumab concentration, Bioanalysis 7(2015)1253-1260.
|
[96] |
G. Lovato, L. Ciriolo, M. Perrucci, et al., HPLC-DAD validated method for DM4 and its metabolite S-Me-DM4 quantification in biological matrix for clinical and pharmaceutical applications, J. Pharm. Biomed. Anal. 235(2023), 115642.
|
[97] |
Y. Xu, D. Wang, B. Mason, et al., Structure, heterogeneity and developability assessment of therapeutic antibodies, MAbs 11(2019)239-264.
|
[98] |
A. Ambrogelly, S. Gozo, A. Katiyar, et al., Analytical comparability study of recombinant monoclonal antibody therapeutics, MAbs 10(2018)513-538.
|
[99] |
V. Filipe, A. Hawe, J.F. Carpenter, et al., Analytical approaches to assess the degradation of therapeutic proteins, Trac. Trends Anal. Chem. 49(2013)118-125.
|
[100] |
A. Beck, H. Diemer, D. Ayoub, et al., Analytical characterization of biosimilar antibodies and Fc-fusion proteins, Trac. Trends Anal. Chem. 48(2013)81-95.
|
[101] |
S.A. Berkowitz, J.R. Engen, J.R. Mazzeo, et al., Analytical tools for characterizing biopharmaceuticals and the implications for biosimilars, Nat. Rev. Drug Discov. 11(2012)527-540.
|
[102] |
A.J. Chirino, A. Mire-Sluis, Characterizing biological products and assessing comparability following manufacturing changes, Nat. Biotechnol. 22(2004)1383-1391.
|
[103] |
B. Raynal, P. Lenormand, B. Baron, et al., Quality assessment and optimization of purified protein samples:Why and how?Microb. Cell Fact. 13(2014), 180.
|
[104] |
A. Beck, E. Wagner-Rousset, D. Ayoub, et al., Characterization of therapeutic antibodies and related products, Anal. Chem. 85(2013)715-736.
|
[105] |
S. Fekete, D. Guillarme, P. Sandra, et al., Chromatographic, electrophoretic, and mass spectrometric methods for the analytical characterization of protein biopharmaceuticals, Anal. Chem. 88(2016)480-507.
|
[106] |
I.A. Kaltashov, C.E. Bobst, R.R. Abzalimov, et al., Advances and challenges in analytical characterization of biotechnology products:Mass spectrometrybased approaches to study properties and behavior of protein therapeutics, Biotechnol. Adv. 30(2012)210-222.
|
[107] |
I.A. Kaltashov, S. Wang, G. Wang, Mass Spectrometry in Biopharmaceutical Analysis, De Gruyter, 2022.
|
[108] |
D.J. Houde, S.A. Berkowitz, Biophysical characterization. Biophysical Characterization of Proteins in Developing Biopharmaceuticals, Elsevier, Amsterdam, 2020, pp. 539-551.
|
[109] |
G. Chen, Characterization of Protein Therapeutics Using Mass Spectrometry, Springer, Boston, 2013.
|
[110] |
J.R. Lill, W. Sandoval, Analytical Characterization of Biotherapeutics, John Wiley&Sons, New York, 2017.
|
[111] |
S. Schreiber, K. Yamamoto, R. Muniz, et al., Physicochemical analysis and biological characterization of FKB327 as a biosimilar to adalimumab, Pharmacol. Res. Perspect. 8(2020), e00604.
|
[112] |
S.K. Jung, K.H. Lee, J.W. Jeon, et al., Physicochemical characterization of remsima, MAbs 6(2014)1163-1177.
|
[113] |
N. Seo, A. Polozova, M. Zhang, et al., Analytical and functional similarity of Amgen biosimilar ABP 215 to bevacizumab, MAbs 10(2018)678-691.
|
[114] |
N. Seo, Z. Huang, S. Kuhns, et al., Analytical and functional similarity of biosimilar ABP 798 with rituximab reference product, Biologicals 68(2020)79-91.
|
[115] |
I. Ruppen, M.E. Beydon, C. Solís, et al., Similarity demonstrated between isolated charge variants of MB02, a biosimilar of bevacizumab, and Avastin® following extended physicochemical and functional characterization, Biologicals 73(2021)41-56.
|
[116] |
P. Goyal, H.V. Pai, P. Kodali, et al., Physicochemical and functional characterization of MYL-1501D, a proposed biosimilar to insulin glargine, PLoS One 16(2021), e0253168.
|
[117] |
H. Wang, L. Wu, C. Wang, et al., Biosimilar or not:Physicochemical and biological characterization of MabThera and its two biosimilar candidates, ACS Pharmacol. Transl. Sci. 4(2021)790-801.
|
[118] |
G. Vishwakarma, N. Nupur, A.S. Rathore, Assessing the structural and functional similarity of insulin glargine biosimilars, J. Diabetes Sci. Technol. 17(2023)417-427.
|
[119] |
N. Lee, J.J. Lee, H. Yang, et al., Evaluation of similar quality attribute characteristics in SB5 and reference product of adalimumab, MAbs 11(2019)129-144.
|
[120] |
K.M. Hutterer, A. Polozova, S. Kuhns, et al., Assessing analytical and functional similarity of proposed amgen biosimilar ABP 980 to trastuzumab, BioDrugs 33(2019)321-333.
|
[121] |
N. Nupur, N. Chhabra, R. Dash, et al., Assessment of structural and functional similarity of biosimilar products:Rituximab as a case study, MAbs 10(2018)143-158.
|
[122] |
Y. Xu, L. Xie, E. Zhang, et al., Physicochemical and functional assessments demonstrating analytical similarity between rituximab biosimilar HLX01 and the MabThera®, MAbs 11(2019)606-620.
|
[123] |
K.H. Lee, J. Lee, J.S. Bae, et al., Analytical similarity assessment of rituximab biosimilar CT-P10 to reference medicinal product, MAbs 10(2018)380-396.
|
[124] |
S. Miao, L. Fan, L. Zhao, et al., Physicochemical and biological characterization of the proposed biosimilar tocilizumab, BioMed Res. Int. 2017(2017), 4926168.
|
[125] |
J. Hong, Y. Lee, C. Lee, et al., Physicochemical and biological characterization of SB2, a biosimilar of Remicade®(infliximab), MAbs 9(2017)364-382.
|
[126] |
R. Saleem, G. Cantin, M. Wikstrom, et al., Analytical and functional similarity assessment of ABP 710, a biosimilar to infliximab reference product, Pharm. Res. 37(2020)114.
|
[127] |
D. Gao, L. Nie, J. Yuan, et al., Physicochemical and functional characterization of HS016, a biosimilar of adalimumab (humira), J. Pharm. Sci. 111(2022)1142-1151.
|
[128] |
L. Xie, E. Zhang, Y. Xu, et al., Demonstrating analytical similarity of trastuzumab biosimilar HLX02 to herceptin® with a panel of sensitive and orthogonal methods including a novel FcgRIIIa affinity chromatography technology, BioDrugs 34(2020)363-379.
|
[129] |
J.C. Kwon, O.H. Kwon, R.U. Jeong, et al., Physicochemical and biological similarity assessment of LBAL, a biosimilar to adalimumab reference product (Humira®), Anim. Cell Syst. 25(2021)182-194.
|
[130] |
E. Kim, J. Han, Y. Chae, et al., Evaluation of the structural, physicochemical, and biological characteristics of SB11, as lucentis®(ranibizumab) biosimilar, Ophthalmol. Ther. 11(2022)639-652.
|
[131] |
S.K. Singh, S. Pokalwar, S. Bose, et al., Structural and functional comparability study of anti-CD20 monoclonal antibody with reference product, Biologics 12(2018)159-170.
|
[132] |
O. Montacir, H. Montacir, A. Springer, et al., Physicochemical characterization, glycosylation pattern and biosimilarity assessment of the fusion protein etanercept, Protein J. 37(2018)164-179.
|
[133] |
Q. Tan, Q. Guo, C. Fang, et al., Characterization and comparison of commercially available TNF receptor 2-Fc fusion protein products, MAbs 4(2012)761-774.
|
[134] |
L. Chen, L. Wang, H. Shion, et al., In-depth structural characterization of Kadcyla®(ado-trastuzumab emtansine) and its biosimilar candidate, MAbs 8(2016)1210-1223.
|
[135] |
J. Visser, I. Feuerstein, T. Stangler, et al., Physicochemical and functional comparability between the proposed biosimilar rituximab GP2013 and originator rituximab, BioDrugs 27(2013)495-507.
|
[136] |
M.L. Cerutti, A. Pesce, C. Bes, et al., Physicochemical and biological charac-terization of RTXM83, a new rituximab biosimilar, BioDrugs 33(2019)307-319.
|
[137] |
Q. An, Y. Zheng, Y. Zhao, et al., Physicochemical characterization and phase I study of CMAB008, an infliximab biosimilar produced by a different expression system, Drug Des. Dev. Ther. 13(2019)791-805.
|
[138] |
J. Liu, T. Eris, C. Li, et al., Assessing analytical similarity of proposed amgen biosimilar ABP 501 to adalimumab, BioDrugs 30(2016)321-338.
|
[139] |
L. Zhang, L. Yu, Y. Xu, et al., Demonstrating analytical similarity of a biosimilar HLX04 to bevacizumab with a panel of state-of-the-art methods and tiering of quality attributes, Anal. Bioanal. Chem. 415(2023)3341-3362.
|
[140] |
H. Kim, E. Hong, J. Lee, et al., Characterization for the similarity assessment between proposed biosimilar SB12 and eculizumab reference product using a state-of-the-art analytical method, BioDrugs 37(2023)569-581.
|
[141] |
J. Nandal, K.N. Mihooliya, H. Verma, et al., Evaluation of physicochemical and functional similarity of a new CHO derived anti-EGFR antibody P-MAb to its reference medicinal product, Artif. Cells, Nanomed. Biotechnol. 50(2022)17-28.
|
[142] |
V. Gusarova, M. Degterev, I. Lyagoskin, et al., Analytical and functional similarity of biosimilar Elizaria® with eculizumab reference product, J. Pharm. Biomed. Anal. 220(2022), 115004.
|
[143] |
P. Goyal, B. Vats, M. Subbarao, et al., Analytical similarity assessment of MYL-1402O to reference Bevacizumab, Expet Opin. Biol. Ther. 22(2022)271-298.
|
[144] |
T. Kinumi, K. Saikusa, M. Kato, et al., Characterization and value assignment of a monoclonal antibody reference material, NMIJ RM 6208a, AIST-MAB, Front. Mol. Biosci. 9(2022), 842041.
|
[145] |
E. Zhang, L. Xie, P. Qin, et al., Quality by design-based assessment for analytical similarity of adalimumab biosimilar HLX03 to humira®, AAPS J. 22(2020), 69.
|
[146] |
S. Carillo, R. Perez-Robles, C. Jakes, et al., Comparing different domains of analysis for the characterisation of N-glycans on monoclonal antibodies, J. Pharm. Anal. 10(2020)23-34.
|
[147] |
L. Magnenat, A. Palmese, C. Fremaux, et al., Demonstration of physicochemical and functional similarity between the proposed biosimilar adalimumab MSB11022 and Humira®, MAbs 9(2017)127-139.
|
[148] |
T. Kaschak, D. Boyd, F. Lu, et al., Characterization of the basic charge variants of a human IgG1:effect of copper concentration in cell culture media, MAbs 3(2011)577-583.
|
[149] |
J. Yuan, D. Gao, F. Hu, et al., Isolation and characterization of charge variants of infliximab biosimilar HS626, J. Chromatogr., B:Anal. Technol. Biomed. Life Sci. 1162(2021), 122485.
|
[150] |
C. Yu, F. Zhang, G. Xu, et al., Analytical similarity of a proposed biosimilar BVZ-BC to bevacizumab, Anal. Chem. 92(2020)3161-3170.
|
[151] |
M. Derzi, T.R. Johnson, A.M. Shoieb, et al., Nonclinical evaluation of PF-06438179:A potential biosimilar to remicade®(infliximab), Adv. Ther. 33(2016)1964-1982.
|
[152] |
J. Lee, H.A. Kang, J.S. Bae, et al., Evaluation of analytical similarity between trastuzumab biosimilar CT-P6 and reference product using statistical analyses, MAbs 10(2018)547-571.
|
[153] |
K. Pisupati, A. Benet, Y. Tian, et al., Biosimilarity under stress:A forced degradation study of Remicade® and RemsimaTM, MAbs 9(2017)1197-1209.
|
[154] |
F. Füssl, A. Trappe, K. Cook, et al., Comprehensive characterisation of the heterogeneity of adalimumab via charge variant analysis hyphenated on-line to native high resolution Orbitrap mass spectrometry, MAbs 11(2019)116-128.
|
[155] |
M. Cao, N. De Mel, A. Shannon, et al., Charge variants characterization and release assay development for co-formulated antibodies as a combination therapy, MAbs 11(2019)489-499.
|
[156] |
R.S. Rogers, N.S. Nightlinger, B. Livingston, et al., Development of a quantitative mass spectrometry multi-attribute method for characterization, quality control testing and disposition of biologics, MAbs 7(2015)881-890.
|
[157] |
Z. Shen, Y. Wang, H. Xu, et al., Analytical comparability assessment on glycosylation of ziv-aflibercept and the biosimilar candidate, Int. J. Biol. Macromol. 180(2021)494-509.
|
[158] |
S. Weiser, C. Burns, E.R. Zartler, Physicochemical stability of PF-05280014(trastuzumaβ-qyyp; TrazimeraTM), a trastuzumab biosimilar, under extended in-use conditions, J. Oncol. Pharm. Pract. 29(2023)590-600.
|
[159] |
W. Xu, R.B. Jimenez, R. Mowery, et al., A Quadrupole Dalton-based multiattribute method for product characterization, process development, and quality control of therapeutic proteins, MAbs 9(2017)1186-1196.
|
[160] |
Y. Wang, C. Zheng, C. Zhuang, et al., Characterization and pre-clinical assessment of a proposed biosimilar to its originator Omalizumab, Eur. J. Pharmaceut. Sci. 178(2022), 106292.
|
[161] |
S. Hurst, A.M. Ryan, C.K. Ng, et al., Comparative nonclinical assessments of the proposed biosimilar PF-05280014 and trastuzumab (Herceptin (®)), BioDrugs 28(2014)451-459.
|
[162] |
M. Jaffar-Aghaei, F. Khanipour, A. Maghsoudi, et al., QbD-guided pharmaceutical development of Pembrolizumab biosimilar candidate PSG-024 propelled to industry meeting primary requirements of comparability to Keytruda®, Eur. J. Pharmaceut. Sci. 173(2022), 106171.
|
[163] |
C. Watson, J.S. Sharp, Conformational analysis of therapeutic proteins by hydroxyl radical protein footprinting, AAPS J. 14(2012)206-217.
|
[164] |
A.O. Bailey, G. Han, W. Phung, et al., Charge variant native mass spectrometry benefits mass precision and dynamic range of monoclonal antibody intact mass analysis, MAbs 10(2018)1214-1225.
|
[165] |
N. Navas, J. Hermosilla, A. Torrente-Lopez, et al., Use of subcutaneous toci-lizumab to prepare intravenous solutions for COVID-19 emergency shortage:Comparative analytical study of physicochemical quality attributes, J. Pharm. Anal. 10(2020)532-545.
|
[166] |
J.J. Lee, N. Lee, Y.J. Seo, et al., Consistency of product quality for SB5, an adalimumab biosimilar, BioDrugs 37(2023)271-277.
|
[167] |
V. D'Atri, S. Fekete, A. Beck, et al., Hydrophilic interaction chromatography hyphenated with mass spectrometry:A powerful analytical tool for the comparison of originator and biosimilar therapeutic monoclonal antibodies at the middle-up level of analysis, Anal. Chem. 89(2017)2086-2092.
|
[168] |
M. Szabo, C. Filep, M. Nagy, et al., N-glycosylation structureefunction characterization of omalizumab, an anti-asthma biotherapeutic product, J. Pharm. Biomed. Anal. 209(2022), 114483.
|
[169] |
J.H. Lee, K. Paek, J.H. Moon, et al., Biological characterization of SB3, a trastuzumab biosimilar, and the influence of changes in reference product characteristics on the similarity assessment, BioDrugs 33(2019)411-422.
|
[170] |
C. Lee, M. Jeong, J.J. Lee, et al., Glycosylation profile and biological activity of Remicade® compared with Flixabi® and Remsima®, MAbs 9(2017)968-977.
|
[171] |
A. Ambrogelly, The different colors of mAbs in solution, Antibodies (Basel)10(2021), 21.
|
[172] |
C. Du, J. Xu, H. Song, et al., Mechanisms of color formation in drug substance and mitigation strategies for the manufacture and storage of therapeutic proteins produced using mammalian cell culture, Process. Biochem. 86(2019)127-135.
|
[173] |
USP,(788) Particulate Matter in Injections, in:USPeNF. Rockville, MD:USP, 1 May, 2013. https://doi.usp.org/USPNF/USPNF_M99586_02_01.html. (Accessed 22 August 2022).
|
[174] |
USP,(1) Injections and Implanted Drug Products (Parenterals) dProduct Quality Tests, in:USPeNF. Rockville, MD:USP, 1 Dec., 2020. https://doi.usp.org/USPNF/USPNF_M98730_03_01.html. (Accessed 20 August 2022).
|
[175] |
USP,(1790) Visual Inspection Injections, in:USPeNF. Rockville, MD:USP, 1 May, 2022, https://doi.org/10.31003/USPNF_M7198_06_01. (Accessed 2 October 2023).
|
[176] |
USP,(790) Visible Particulate Matter in Injections, in:USPeNF. Rockville, MD:USP, 1 May, 2016, https://doi.org/10.31003/USPNF_M7197_01_01. (Accessed 2 October 2023).
|
[177] |
USP,(787) Subvisible Particulate Matter in Therapeutic Protein Injections, in:USPeNF. Rockville, MD:USP, May 1, 2021. https://doi.usp.org/USPNF/USPNF_M6497_02_01.html. (Accessed 20 August 2022).
|
[178] |
A.S. Rathore, S. Sreenivasan, Image analysis algorithm for therapeutic mAb aggregate analysis, Biopharm Int. 36(2023)12-21.
|
[179] |
S. Zölls, R. Tantipolphan, M. Wiggenhorn, et al., Particles in therapeutic protein formulations, Part 1:overview of analytical methods, J. Pharm. Sci. 101(2012)914-935.
|
[180] |
D. Farkas, L. Madar asz, Z.K. Nagy, et al., Image analysis:A versatile tool in the manufacturing and quality control of pharmaceutical dosage forms, Pharmaceutics 13(2021)685.
|
[181] |
C. Maas, S. Hermeling, B. Bouma, et al., A role for protein misfolding in immunogenicity of biopharmaceuticals, J. Biol. Chem. 282(2007)2229-2236.
|
[182] |
USP,(1055) Biotechnology-Derived ArticlesdPeptide Mapping, in:USPeNF. Rockville, MD:USP, 1 Jan., 2013. https://doi.usp.org/USPNF/USPNF_M861_01_01.html. (Accessed 20 August 2022).
|
[183] |
USP,(121.1) Physicochemical Analytical Procedures for Insulins, in:USPeNF. Rockville, MD:USP, 1 Dec., 2016. https://doi.usp.org/USPNF/USPNF_M7582_01_01.html. (Accessed 20 August 2022).
|
[184] |
W.F. Weiss 4th, J.P. Gabrielson, W. Al-Azzam, et al., Technical decision making with higher order structure data:perspectives on higher order structure characterization from the biopharmaceutical industry, J. Pharm. Sci. 105(2016)3465-3470.
|
[185] |
J.P. Gabrielson, W.F. Weiss 4th, Technical decision-making with higher order structure data:starting a new dialogue, J. Pharm. Sci. 104(2015)1240-1245.
|
[186] |
Z. Wei, E. Shacter, M. Schenerman, et al., The role of higher-order structure in defining biopharmaceutical quality, BioProcess International (2011), in:https://www.bioprocessintl.com/business/cmc%E2%88%92forums/the%E2%88%92role%E2%88%92of%E2%88%92higher%E2%88%92order%E2%88%92structure%E2%88%92in%E2%88%92defining%E2%88%92biopharmaceutical%E2%88%92quality%E2%88%92313472.
|
[187] |
B. Japelj, G. Ilc, J. Maru si c, et al., Biosimilar structural comparability assessment by NMR:from small proteins to monoclonal antibodies, Sci. Rep. 6(2016), 32201.
|
[188] |
C.A. Amezcua, C.M. Szabo, Assessment of higher order structure comparability in therapeutic proteins using nuclear magnetic resonance spectroscopy, J. Pharm. Sci. 102(2013)1724-1733.
|
[189] |
L.W. Arbogast, F. Delaglio, J.E. Schiel, et al., Multivariate analysis of twodimensional 1H, 13C methyl NMR spectra of monoclonal antibody therapeutics to facilitate assessment of higher order structure, Anal. Chem. 89(2017)11839-11845.
|
[190] |
I. Oganesyan, C. Lento, D.J. Wilson, Contemporary hydrogen deuterium exchange mass spectrometry, Methods 144(2018)27-42.
|
[191] |
H. Wei, J. Mo, L. Tao, et al., Hydrogen/deuterium exchange mass spectrometry for probing higher order structure of protein therapeutics:Methodology and applications, Drug Discov. Today 19(2014)95-102.
|
[192] |
I.A. Kaltashov, C.E. Bobst, R.R. Abzalimov, et al., Conformation and dynamics of biopharmaceuticals:transition of mass spectrometry-based tools from academe to industry, J. Am. Soc. Mass Spectrom. 21(2010)323-337.
|
[193] |
P. Limpikirati, T. Liu, R.W. Vachet, Covalent labeling-mass spectrometry with non-specific reagents for studying protein structure and interactions, Methods 144(2018)79-93.
|
[194] |
USP.(1086) Impurities in Drug Subsrances and Drug Products, in:USPeNF. Rockville, MD:USP, May 1, 2021, https://doi.org/10.31003/USPNF_M99805_04_01. (Accessed 13 July 2022).
|
[195] |
A.S. Rosenberg, Effects of protein aggregates:An immunologic perspective, AAPS J. 8(2006) E501-E507.
|
[196] |
D.R. Goulet, W.M. Atkins, Considerations for the design of antibody-based therapeutics, J. Pharm. Sci. 109(2020)74-103.
|
[197] |
W. Wang, S. Singh, D.L. Zeng, et al., Antibody structure, instability, and formulation, J. Pharm. Sci. 96(2007)1-26.
|
[198] |
T. Lapto s, J. Omersel, The importance of handling high-value biologicals:Physico-chemical instability and immunogenicity of monoclonal antibodies, Exp. Ther. Med. 15(2018)3161-3168.
|
[199] |
S. Rogstad, H. Yan, X. Wang, et al., Multi-attribute method for quality control of therapeutic proteins, Anal. Chem. 91(2019)14170-14177.
|
[200] |
R.S. Rogers, M. Abernathy, D.D. Richardson, et al., A view on the importance of "multi-attribute method" for measuring purity of biopharmaceuticals and improving overall control strategy, AAPS J. 20(2017), 7.
|
[201] |
USP,(1084) Glycoprotein and Glycan AnalysisdGeneral Considerations, in:USPeNF. Rockville, MD:USP, Jan. 1, 2013. https://doi.usp.org/USPNF/USPNF_M916_01_01.html. (Accessed 27 August 2022).
|
[202] |
USP,(212) Oligosaccharide Analysis, USP, Rockville, MD, Jun. 1, 2017. https://doi.usp.org/USPNF/USPNF_M5879_03_01.html. (Accessed 27 August 2022).
|
[203] |
USP,(210) Monosaccharide Analysis, in:USPeNF. Rockville, MD:USP, May 1, 2021. https://doi.usp.org/USPNF/USPNF_M5878_07_01.html. (Accessed 22 August 2022).
|
[204] |
Ph Eur, Glycan analysis of glycoproteins (2.2.59), in:Ph. Eur. Vol. vol. 10.0, EDQM-Council of Europe, Strasbourg, France, 2020, pp. 109-115.
|
[205] |
USP,(1132) Residual Host Cell Protein Measurement in Biopharmaceuticals, in:USPeNF. Rockville, MD:USP, Dec. 1, 2015. https://doi.usp.org/USPNF/USPNF_M8647_01_01.html. (Accessed 22 August 2022).
|
[206] |
USP,(509) Residual DNA Testing, in:USPeNF. Rockville, MD:USP, Dec. 1, 2019. https://doi.usp.org/USPNF/USPNF_M7146_02_01.html. (Accessed 22 August 2022).
|
[207] |
M. Jones, N. Palackal, F. Wang, et al., "High-risk" host cell proteins (HCPs):a multi-company collaborative view, Biotechnol. Bioeng. 118(2021)2870-2885.
|
[208] |
D.G. Bracewell, R. Francis, C.M. Smales, The future of host cell protein (HCP) identification during process development and manufacturing linked to a risk-based management for their control, Biotechnol. Bioeng. 112(2015)1727-1737.
|
[209] |
K. Pilely, M.R. Johansen, R.R. Lund, et al., Monitoring process-related impurities in biologics-host cell protein analysis, Anal. Bioanal. Chem. 414(2022)747-758.
|
[210] |
J. Guo, R. Kufer, D. Li, et al., Technical advancement and practical considerations of LC-MS/MS-based methods for host cell protein identification and quantitation to support process development, MAbs 15(2023), 2213365.
|
[211] |
ICH Harmonised Tripartite Guideline, Q3C (R8) Impurities:Guideline for Residual Solvents, Apr., 2021. https://database.ich.org/sites/default/files/ICH_Q3C-R8_Guideline_Step4_2021_0422_1.pdf. (Accessed 25 March 2023).
|
[212] |
European Federation of Pharmaceutical Industries Associations, N-nitrosamine Impurities in Biological Medicinal Products, Nov., 2020. https://www.efpia.eu/media/580595/n-nitrosamine-impurities-in-biological-medicinalproducts.pdf. (Accessed 3 April 2023).
|
[213] |
A.R. Mire-Sluis, Expression of potency:why units of biological activity not mass?Pharmacol. Commun. 3(1997)15-18.
|
[214] |
J.R. White, M. Abodeely, S. Ahmed, et al., Best practices in bioassay development to support registration of biopharmaceuticals, Biotechniques 67(2019)126-137.
|
[215] |
R. Dash, S.K. Singh, N. Chirmule, et al., Assessment of functional characterization and comparability of biotherapeutics:a review, AAPS J. 24(2021), 15.
|
[216] |
A. Martelet, V. Garrigue, Z. Zhang, et al., Multi-attribute method based characterization of antibody drug conjugates (ADC) at the intact and subunit levels, J. Pharm. Biomed. Anal. 201(2021), 114094.
|
[217] |
A. Wagh, H. Song, M. Zeng, et al., Challenges and new frontiers in analytical characterization of antibody-drug conjugates, MAbs 10(2018)222-243.
|
[218] |
H. Yang, Establishing acceptable limits of residual DNA, PDA J. Pharm. Sci. Technol. 67(2013)155-163.
|
[219] |
World Health Organization (WHO), Meeting Report Study Group on Cell Substrates for Production of Biologicals, June 11 and 12, 2007.
|
[220] |
V. Grachev, D. Magrath, E. Griffiths, WHO requirements for the use of animal cells as in vitro substrates for the production of biologicals (Requirements for biological susbstances no. 50), Biologicals 26(1998)175-193.
|
[221] |
USP,(85) Bacterial Endotoxins Test, in:USPeNF. Rockville, MD:USP, May 1, 2018. https://doi.usp.org/USPNF/USPNF_M98830_02_01.html. (Accessed 22 August 2022).
|
[222] |
USP,(61) Microbiological Examination of Nonsterile Products:Microbial Enumeration Tests, in:USPeNF. Rockville, MD:USP, Jan. 1, 2013. https://doi.usp.org/USPNF/USPNF_M98800_01_01.html. (Accessed 22 August 2022).
|
[223] |
USP,(1111) Microbiological Examination of Nonsterile Products:Acceptance Criteria for Pharmaceutical Preparations and Substances for Pharmaceutical Use, in:USPeNF, USP, Rockville, MD, Jan. 1, 2013.(Accessed 4 October 2023).
|
[224] |
USP,(71) Sterility Tests, in:USPeNF. Rockville, MD:USP, Jan. 1, 2013. https://doi.usp.org/USPNF/USPNF_M98810_01_01.html. (Accessed 20 August 2022).
|
[225] |
USP,(905) Uniformity of Dosage Units, in:USPeNF. Rockville, MD:USP, Jan. 1, 2013. https://doi.usp.org/USPNF/USPNF_M99694_01_01.html. (Accessed 20 August 2022).
|
[226] |
ICH Harmonised Tripartite Guideline, Q10 Pharmaceutical Quality System, Jun., 2008. https://database.ich.org/sites/default/files/Q10%20Guideline.pdf. (Accessed 28 August 2022).
|
[227] |
ICH Harmonised Tripartite Guideline, Q11 Development and manufacture of drug substances (chemical entities and biotechnological/biological entities), May, 2012. https://database.ich.org/sites/default/files/Q11%20Guideline.pdf. (Accessed 28 August 2022).
|
[228] |
ICH Harmonised Tripartite Guideline, Q12 Technical and regulatory considerations for pharmaceutical product lifecycle management, Nov., 2019. https://database.ich.org/sites/default/files/Q12_Guideline_Step4_2019_1119.pdf. (Accessed 28 August 2022).
|
[229] |
K.S. Murray, S. Reich, Quality risk management (QRM) tool selection:Getting to right first time, Pharm. Eng. 31(2011)1-6.
|
[230] |
J.E. Schiel, A. Turner, The NISTmAb Reference Material 8671 lifecycle management and quality plan, Anal. Bioanal. Chem. 410(2018)2067-2078.
|
[231] |
J.E. Schiel, A. Turner, T. Mouchahoir, et al., The NISTmAb Reference Material 8671 value assignment, homogeneity, and stability, Anal. Bioanal. Chem. 410(2018)2127-2139.
|
[232] |
International Society for Pharmaceutical Engineering (ISPE), Patient-Centric Specification:Regulatory&Pharma Industry Progress, Sep./Oct, 2019. https://ispe.org/pharmaceutical-engineering/patient-centric-specificationregulatory-industry-progress. (Accessed 28 August 2022).
|
[233] |
J. Bercu, S.C. Berlam, J. Berridge, et al., Establishing patient centric specifications for drug substance and drug product impurities, J. Pharm. Innov. 14(2019)76-89.
|
[234] |
F. Atouf, J. Venema, Do standards matter?What is their value?J. Pharm. Sci. 109(2020)2387-2392.
|
[235] |
ICH Harmonised Tripartite Guideline, Q14 Analytical Procedure Development (Draft Version), Mar, 2022. https://database.ich.org/sites/default/files/ICH_Q14_Document_Step2_Guideline_2022_0324.pdf. (Accessed 24 September 2022).
|
[236] |
P. Jackson, P. Borman, C. Campa, et al., Using the analytical target profile to drive the analytical method lifecycle, Anal. Chem. 91(2019)2577-2585.
|
[237] |
A. Guiraldelli, J. Weitzel, Evolution of Analytical Procedure Validation Concepts:Part I e Analytical Procedure Life Cycle and Compendial Approaches, in:https://www.pharmtech.com/view/evolution-of-analytical-procedurevalidation-concepts-part-i-analytical-procedure-life-cycle-and-compendialapproaches.(Accessed 25 September 2023).
|
[238] |
A. Guiraldelli, J. Weitzel, Evolution of Analytical Procedure Validation Concepts:Part IIe Incorporation of Science and Risk-based Principles in ICH Q14 and Q2(R2) Guidelines, in:https://www.pharmtech.com/view/evolution-ofanalytical-procedure-validation-concepts-part-ii-incorporation-of-scienceand-risk-based-principles-in-ich-q14-and-q2-r2-guidelines. (Accessed 25 September 2023).
|
[239] |
G. Gerzon, Y. Sheng, M. Kirkitadze, Process Analytical TechnologieseAdvances in bioprocess integration and future perspectives, J. Pharm. Biomed. Anal. 207(2022), 114379.
|
[240] |
A.S. Rathore, R. Bhambure, V. Ghare, Process analytical technology (PAT) for biopharmaceutical products, Anal. Bioanal. Chem. 398(2010)137-154.
|
[241] |
E.K. Read, J.T. Park, R.B. Shah, et al., Process analytical technology (PAT) for biopharmaceutical products:Part I. concepts and applications, Biotechnol. Bioeng. 105(2010)276-284.
|
[242] |
E.K. Read, J.T. Park, R.B. Shah, et al., Process analytical technology (PAT) for biopharmaceutical products:Part I. concepts and applications, Biotechnol. Bioeng. 105(2010)276-284.
|
[243] |
B. Wei, N. Woon, L. Dai, et al., Multi-attribute Raman spectroscopy (MARS) for monitoring product quality attributes in formulated monoclonal antibody therapeutics, MAbs 14(2022), 2007564.
|
[244] |
B.S. McAvan, L.A. Bowsher, T. Powell, et al., Raman spectroscopy to monitor post-translational modifications and degradation in monoclonal antibody therapeutics, Anal. Chem. 92(2020)10381-10389.
|
[245] |
Y. Tian, L. Han, A.C. Buckner, et al., Collision induced unfolding of intact antibodies:rapid characterization of disulfide bonding patterns, glycosylation, and structures, Anal. Chem. 87(2015)11509-11515.
|
[246] |
J.A. Madsen, Y. Yin, J. Qiao, et al., Covalent labeling denaturation mass spectrometry for sensitive localized higher order structure comparisons, Anal. Chem. 88(2016)2478-2488.
|
[247] |
L. Bonnington, I. Lindner, U. Gilles, et al., Application of hydrogen/deuterium exchange-mass spectrometry to biopharmaceutical development requirements:Improved sensitivity to detection of conformational changes, Anal. Chem. 89(2017)8233-8237.
|
[248] |
G. van Schaick, E. Domínguez-Vega, J. Castel, et al., Online collision-induced unfolding of therapeutic monoclonal antibody glyco-variants through direct hyphenation of cation exchange chromatography with native ion mobilitymass spectrometry, Anal. Chem. 95(2023)3932-3939.
|