Citation: | Karolina Żuchowska, Wojciech Filipiak. Modern approaches for detection of volatile organic compounds in metabolic studies focusing on pathogenic bacteria: Current state of the art[J]. Journal of Pharmaceutical Analysis, 2024, 14(4): 100898. doi: 10.1016/j.jpha.2023.11.005 |
[1] |
S. Report, European Centre for Disease Prevention and Control, Antimicrobial resistance in the EU/EEA (EARS-Net) - Annual Epidemiological Report 2019, ECDC, Stockholm, 2020.
|
[2] |
J. Gao, Y. Zou, Y. Wang, et al., Breath analysis for noninvasively differentiating Acinetobacter baumannii ventilator-associated pneumonia from its respiratory tract colonization of ventilated patients, J. Breath Res. 10 (2016), 027102.
|
[3] |
J.E. Belizario, J. Faintuch, M.G. Malpartida, Breath biopsy and discovery of exclusive volatile organic compounds for diagnosis of infectious diseases, Front. Cell. Infect. Microbiol. 10 (2021), 564194.
|
[4] |
I. Kviatkovski, S. Shushan, Y. Oron, et al., Smelling Pseudomonas aeruginosa infections using a whole-cell biosensor - An alternative for the gold-standard culturing assay, J. Biotechnol. 267 (2018) 45-49.
|
[5] |
N.M. Zetola, C. Modongo, O. Matsiri, et al., Diagnosis of pulmonary tuberculosis and assessment of treatment response through analyses of volatile compound patterns in exhaled breath samples, J. Infect. 74 (2017) 367-376.
|
[6] |
R. Coronel Teixeira, M. Rodriguez, N. Jimenez de Romero, et al., The potential of a portable, point-of-care electronic nose to diagnose tuberculosis J. Infect. 75 (2017) 441-447.
|
[7] |
A. Roine, T. Saviauk, P. Kumpulainen, et al., Rapid and accurate detection of urinary pathogens by mobile IMS-based electronic nose: A proof-of-principle study, PLoS One 9 (2014), e114279.
|
[8] |
E. Daulton, A. Wicaksono, J. Bechar, et al., The detection of wound infection by ion mobility chemical analysis Biosensors 10 (2020), 19.
|
[9] |
L. Lacey, E. Daulton, A. Wicaksono, et al., Detection of Group B Streptococcus in pregnancy by vaginal volatile organic compound analysis: A prospective exploratory study Transl. Res. 216 (2020) 23-29.
|
[10] |
A. Gomez-Mejia, K. Arnold, J. Bar, et al., Rapid detection of Staphylococcus aureus and Streptococcus pneumoniae by real-time analysis of volatile metabolites, iScience 25 (2022), 105080.
|
[11] |
H. Li, J. Zhu, Differentiating antibiotic-resistant Staphylococcus aureus using secondary electrospray ionization tandem mass spectrometry, Anal. Chem. 90 (2018) 12108-12115.
|
[12] |
K. Dryahina, K. Sovova, A. Nemec, et al., Differentiation of pulmonary bacterial pathogens in cystic fibrosis by volatile metabolites emitted by their in vitro cultures: Pseudomonas aeruginosa, Staphylococcus aureus, Stenotrophomonas maltophilia and the Burkholderia cepacia complex, J. Breath Res. 10 (2016), 037102.
|
[13] |
F.J. Gilchrist, J. Belcher, A.M. Jones, et al., Exhaled breath hydrogen cyanide as a marker of early Pseudomonas aeruginosa infection in children with cystic fibrosis, ERJ Open Res. 1 (2015) 00044-02015.
|
[14] |
N. Drabinska, K. Hewett, P. White, et al., Application of a solid-phase microextraction-gas chromatography-mass spectrometry/metal oxide sensor system for detection of antibiotic susceptibility in urinary tract infection-causing Escherichia coli - A proof of principle study, Adv. Med. Sci. 67 (2022) 1-9.
|
[15] |
W. Filipiak, K. Zuchowska, M. Marszalek, et al., GC-MS profiling of volatile metabolites produced by Klebsiella pneumoniae, Front. Mol. Biosci. 9 (2022), 1019290.
|
[16] |
S. Fitzgerald, L. Holland, A. Morrin, An investigation of stability and species and strain-level specificity in bacterial volatilomes, Front. Microbiol. 12 (2021), 693075.
|
[17] |
M. Beccaria, F.A. Franchina, M. Nasir, et al., Investigating bacterial volatilome for the classification and identification of mycobacterial species by HS-SPME-GC-MS and machine learning, Molecules 26 (2021), 4600.
|
[18] |
C.L. Jenkins, H.D. Bean, Influence of media on the differentiation of Staphylococcus spp. by volatile compounds, J. Breath Res. 14 (2019), 016007.
|
[19] |
K. Hewett, N. Drabinska, P. White, et al., Towards the identification of antibiotic-resistant bacteria causing urinary tract infections using volatile organic compounds analysis - A pilot study, Antibiotics (Basel) 9 (2020), 797.
|
[20] |
T. Koehler, I. Ackermann, D. Brecht, et al., Analysis of volatile metabolites from in vitro biofilms of Pseudomonas aeruginosa with thin-film microextraction by thermal desorption gas chromatography-mass spectrometry, Anal. Bioanal. Chem. 412 (2020) 2881-2892.
|
[21] |
S. Fitzgerald, E. Duffy, L. Holland, et al., Multi-strain volatile profiling of pathogenic and commensal cutaneous bacteria, Sci. Rep. 10 (2020), 17971.
|
[22] |
C.L. Jenkins, H.D. Bean, Dependence of the staphylococcal volatilome composition on microbial nutrition, Metabolites 10 (2020), 347.
|
[23] |
T.J. Davis, A.V. Karanjia, C.N. Bhebhe, et al., Pseudomonas aeruginosa volatilome characteristics and adaptations in chronic cystic fibrosis lung infections, mSphere 5 (2020) e00843-20.
|
[24] |
G. Purcaro, C.A. Rees, J.A. Melvin, et al., Volatile fingerprinting of Pseudomonas aeruginosa and respiratory syncytial virus infection in an in vitro cystic fibrosis co-infection model, J. Breath Res. 12 (2019), 046001.
|
[25] |
Q. Zhong, F. Cheng, J. Liang, et al., Profiles of volatile indole emitted by Escherichia coli based on CDI-MS, Sci. Rep. 9 (2019), 13139.
|
[26] |
C.A. Rees, A. Burklund, P.H. Stefanuto, et al., Comprehensive volatile metabolic fingerprinting of bacterial and fungal pathogen groups, J. Breath Res. 12 (2018), 026001.
|
[27] |
A. Smart, B. de Lacy Costello, P. White, et al., Sniffing out resistance - Rapid identification of urinary tract infection-causing bacteria and their antibiotic susceptibility using volatile metabolite profiles, J. Pharm. Biomed. Anal. 167 (2019) 59-65.
|
[28] |
C. Drees, W. Vautz, S. Liedtke, et al., GC-IMS headspace analyses allow early recognition of bacterial growth and rapid pathogen differentiation in standard blood cultures, Appl. Microbiol. Biotechnol. 103 (2019) 9091-9101.
|
[29] |
C.A. Rees, K.V. Nordick, F.A. Franchina, et al., Volatile metabolic diversity of Klebsiella pneumoniae in nutrient-replete conditions, Metabolomics 13 (2017), 18.
|
[30] |
C.A. Rees, M. Nasir, A. Smolinska, et al., Detection of high-risk carbapenem-resistant Klebsiella pneumoniae and Enterobacter cloacae isolates using volatile molecular profiles, Sci. Rep. 8 (2018), 13297.
|
[31] |
M. Ashrafi, L. Novak-Frazer, M. Bates, et al., Validation of biofilm formation on human skin wound models and demonstration of clinically translatable bacteria-specific volatile signatures, Sci. Rep. 8 (2018), 9341.
|
[32] |
M. Ashrafi, L. Novak-Frazer, J. Morris, et al., Electrical stimulation disrupts biofilms in a human wound model and reveals the potential for monitoring treatment response with volatile biomarkers, Wound Repair Regen. 27 (2019) 5-18.
|
[33] |
O. Lawal, H. Knobel, H. Weda, et al., Volatile organic compound signature from co-culture of lung epithelial cell line with Pseudomonas aeruginosa, Analyst 143 (2018) 3148-3155.
|
[34] |
O. Lawal, H. Knobel, H. Weda, et al., TD/GC-MS analysis of volatile markers emitted from mono- and co-cultures of Enterobacter cloacae and Pseudomonas aeruginosa in artificial sputum, Metabolomics. 14 (2018), 66.
|
[35] |
H. Devaraj, C. Pook, S. Swift, et al., Profiling of headspace volatiles from Escherichia coli cultures using silicone-based sorptive media and thermal desorption GC-MS, J. Sep. Sci. 41 (2018) 4133-4141.
|
[36] |
A. Kuntzel, P. Oertel, S. Fischer, et al., Comparative analysis of volatile organic compounds for the classification and identification of mycobacterial species, PLoS One 13 (2018), e0194348.
|
[37] |
C.M. Timm, E.P. Lloyd, A. Egan, et al., Direct growth of bacteria in headspace vials allows for screening of volatiles by gas chromatography mass spectrometry, Front. Microbiol. 9 (2018), 491.
|
[38] |
N. Karami, F. Mirzajani, H. Rezadoost, et al., Initial study of three different pathogenic microorganisms by gas chromatography-mass spectrometry, F1000Res. 6 (2017), 1415.
|
[39] |
H.D. Bean, C.A. Rees, J.E. Hill, Comparative analysis of the volatile metabolomes of Pseudomonas aeruginosa clinical isolates, J. Breath Res. 10 (2016), 047102.
|
[40] |
Y. Zhou, E. Chen, X. Wu, et al., Rational lung tissue and animal models for rapid breath tests to determine pneumonia and pathogens, Am. J. Transl. Res. 9 (2017) 5116-5126.
|
[41] |
N. Karami, A. Karimi, A. Aliahmadi, et al., Identification of bacteria using volatile organic compounds, Cell. Mol. Biol. (Noisy-le-grand) 63 (2) (2017) 112-121.
|
[42] |
P. Oertel, A. Bergmann, S. Fischer, et al., Evaluation of needle trap micro-extraction and solid-phase micro-extraction: Obtaining comprehensive information on volatile emissions from in vitro cultures, Biomed. Chromatogr. 32 (2018), e4285.
|
[43] |
T.R. Mellors, C.A. Rees, W.F. Wieland-Alter et al., The volatile molecule signature of four mycobacteria species J. Breath Res. 11 (2017), 031002.
|
[44] |
J. Chen, J. Tang, H. Shi, et al., Characteristics of volatile organic compounds produced from five pathogenic bacteria by headspace-solid phase micro-extraction/gas chromatography-mass spectrometry, J. Basic Microbiol. 57 (2017) 228-237.
|
[45] |
K.D. Nizio, K.A. Perrault, A.N. Troobnikoff, et al., In vitro volatile organic compound profiling using GC×GC-TOF-MS to differentiate bacteria associated with lung infections: A proof-of-concept study, J. Breath Res. 10 (2016), 026008.
|
[46] |
C.A. Rees, A. Smolinska, J.E. Hill, The volatile metabolome of Klebsiella pneumoniae in human blood, J. Breath Res. 10 (2016), 027101.
|
[47] |
R. Kramer, A. Sauer-Heilborn, T. Welte, et al., A rapid method for breath analysis in cystic fibrosis patients, Eur. J. Clin. Microbiol. Infect. Dis. 34 (2015) 745-751.
|
[48] |
E. Tait, J.D. Perry, S.P. Stanforth, et al., Identification of volatile organic compounds produced by bacteria using HS-SPME-GC-MS, J. Chromatogr. Sci. 52 (2014) 363-373.
|
[49] |
A.W. Boots, A. Smolinska, J.J. van Berkel, et al., Identification of microorganisms based on headspace analysis of volatile organic compounds by gas chromatography-mass spectrometry, J. Breath Res. 8 (2014), 027106.
|
[50] |
C. Zscheppank, H.L. Wiegand, C. Lenzen, et al., Investigation of volatile metabolites during growth of Escherichia coli and Pseudomonas aeruginosa by needle trap-GC-MS, Anal. Bioanal. Chem. 406 (2014) 6617-6628.
|
[51] |
B.J. Umber, H.-W. Shin, S. Meinardi, et al., Gas signatures from Escherichia coli and Escherichia coli-inoculated human whole blood, Clin. Transl. Med. 2 (2013), 13.
|
[52] |
M. Junger, W. Vautz, M. Kuhns, et al., Ion mobility spectrometry for microbial volatile organic compounds: A new identification tool for human pathogenic bacteria Appl. Microbiol. Biotechnol. 93 (2012) 2603-2614.
|
[53] |
W. Filipiak, A. Sponring, M.M. Baur, et al., Characterization of volatile metabolites taken up by or released from Streptococcus pneumoniae and Haemophilus influenzae by using GC-MS, Microbiology (Reading) 158 (2012) 3044-3053.
|
[54] |
T. Nawrath, G.F. Mgode, B. Weetjens, et al., The volatiles of pathogenic and nonpathogenic mycobacteria and related bacteria, Beilstein J. Org. Chem. 8 (2012) 290-299.
|
[55] |
V. Shestivska, P. Spanel, K. Dryahina, et al., Variability in the concentrations of volatile metabolites emitted by genotypically different strains of Pseudomonas aeruginosa, J. Appl. Microbiol. 113 (2012) 701-713.
|
[56] |
M. O’Hara, C.A. Mayhew, A preliminary comparison of volatile organic compounds in the headspace of cultures of Staphylococcus aureus grown in nutrient, dextrose and brain heart bovine broths measured using a proton transfer reaction mass spectrometer J. Breath Res. 3 (2009), 027001.
|
[57] |
M. Bunge, N. Araghipour, T. Mikoviny, et al., On-line monitoring of microbial volatile metabolites by proton transfer reaction-mass spectrometry, Appl. Environ. Microbiol. 74 (2008) 2179-2186.
|
[58] |
M. Lechner, M. Fille, J. Hausdorfer, et al., Diagnosis of bacteria in vitro by mass spectrometric fingerprinting: A pilot study, Curr. Microbiol. 51 (2005) 267-269.
|
[59] |
G. Purcaro, M. Nasir, F.A. Franchina, et al., Breath metabolome of mice infected with Pseudomonas aeruginosa, Metabolomics 15 (2019), 10.
|
[60] |
P.M. van Oort, P. Brinkman, G. Slingers, et al., Exhaled breath metabolomics reveals a pathogen-specific response in a rat pneumonia model for two human pathogenic bacteria: A proof-of-concept study, Am. J. Physiol. Lung Cell. Mol. Physiol. 316 (2019) L751-L756.
|
[61] |
F.A. Franchina, T.R. Mellors, M. Aliyeva, et al., Towards the use of breath for detecting mycobacterial infection: A case study in a murine model J. Breath Res. 12 (2018), 026008.
|
[62] |
H.D. Bean, J. Zhu, J.C. Sengle, et al., Identifying methicillin-resistant Staphylococcus aureus (MRSA) lung infections in mice via breath analysis using secondary electrospray ionization-mass spectrometry (SESI-MS), J. Breath Res. 8 (2014), 041001.
|
[63] |
J. Zhu, H.D. Bean, J. Jimenez-Diaz, et al., Secondary electrospray ionization-mass spectrometry (SESI-MS) breathprinting of multiple bacterial lung pathogens, a mouse model study, J. Appl. Physiol. (1985) 114(2013) 1544-1549.
|
[64] |
L. Guo, Z. Qiu, Y. Wang, et al., Volatile organic compounds to identify infectious (bacteria/viruses) diseases of the central nervous system: A pilot study Eur. Neurol. 84 (2021) 325-332.
|
[65] |
Z. Wen, M. Liu, D. Rui, et al., The metabolome of carbapenem-resistant Klebsiella pneumoniae infection in plasma, Dis. Markers 2021 (2021) 7155772.
|
[66] |
M.E. Dolch, S. Janitza, A.L. Boulesteix, et al., Gram-negative and -positive bacteria differentiation in blood culture samples by headspace volatile compound analysis, J. Biol. Res. (Thessalon) 23 (2016), 3.
|
[67] |
A.M. Kauppi, A. Edin, I. Ziegler, et al., Metabolites in blood for prediction of bacteremic sepsis in the emergency room, PLoS One 11 (2016), e0147670.
|
[68] |
K. Chingin, J. Liang, Y. Hang, et al., Rapid recognition of bacteremia in humans using atmospheric pressure chemical ionization mass spectrometry of volatiles emitted by blood, RSC Adv. 5 (2015) 13952-13957.
|
[69] |
M. Nasir, H.D. Bean, A. Smolinska, et al., Volatile molecules from bronchoalveolar lavage fluid can ‘rule-in’ Pseudomonas aeruginosa and ‘rule-out’ Staphylococcus aureus infections in cystic fibrosis patients, Sci. Rep. 8 (2018), 826.
|
[70] |
A.H. Neerincx, B.P. Geurts, J. van Loon, et al., Detection of Staphylococcus aureus in cystic fibrosis patients using breath VOC profiles, J. Breath Res. 10 (2016), 046014.
|
[71] |
F.J. Gilchrist, R.J. Bright-Thomas, A.M. Jones, et al., Hydrogen cyanide concentrations in the breath of adult cystic fibrosis patients with and without Pseudomonas aeruginosa infection, J. Breath Res. 7 (2013), 026010.
|
[72] |
P.C. Goeminne, T. Vandendriessche, J. Van Eldere, et al., Detection of Pseudomonas aeruginosa in sputum headspace through volatile organic compound analysis, Respir. Res. 13 (2012), 87.
|
[73] |
S.U. Savelev, J.D. Perry, S.J. Bourke, et al., Volatile biomarkers of Pseudomonas aeruginosa in cystic fibrosis and noncystic fibrosis bronchiectasis, Lett. Appl. Microbiol. 52 (2011) 610-613.
|
[74] |
M. Beccaria, C. Bobak, B. Maitshotlo, et al., Exhaled human breath analysis in active pulmonary tuberculosis diagnostics by comprehensive gas chromatography-mass spectrometry and chemometric techniques, J. Breath Res. 13 (2018), 016005.
|
[75] |
S.H. Lim, R. Martino, V. Anikst, et al., Rapid diagnosis of tuberculosis from analysis of urine volatile organic compounds, ACS Sens. 1 (2016) 852-856.
|
[76] |
A.S. Sahota, R. Gowda, R.P. Arasaradnam, et al., A simple breath test for tuberculosis using ion mobility: A pilot study, Tuberculosis (Edinb.) 99 (2016) 143-146.
|
[77] |
M.K. Nakhleh, R. Jeries, A. Gharra, et al., Detecting active pulmonary tuberculosis with a breath test using nanomaterial-based sensors, Eur. Respir. J. 43 (2014) 1522-1525.
|
[78] |
P.M. van Oort, S. de Bruin, H. Weda, et al., Exhaled breath metabolomics for the diagnosis of pneumonia in intubated and mechanically-ventilated intensive care unit (ICU)-patients, Int. J. Mol. Sci. 18 (2017), 449.
|
[79] |
W. Filipiak, R. Beer, A. Sponring, et al., Breath analysis for in vivo detection of pathogens related to ventilator-associated pneumonia in intensive care patients: A prospective pilot study, J. Breath Res. 9 (2015), 016004.
|
[80] |
R. Schnabel, R. Fijten, A. Smolinska, et al., Analysis of volatile organic compounds in exhaled breath to diagnose ventilator-associated pneumonia, Sci. Rep. 5 (2015), 17179.
|
[81] |
S.J. Fowler, M. Basanta-Sanchez, Y. Xu, et al., Surveillance for lower airway pathogens in mechanically ventilated patients by metabolomic analysis of exhaled breath: A case-control study Thorax 70 (2015) 320-325.
|
[82] |
L.D.J. Bos, P.J. Sterk, M.J. Schultz, Volatile metabolites of pathogens: A systematic review PLoS Pathog. 9 (2013), e1003311.
|
[83] |
C.Y. Chen, W.-C. Lin, H.-Y. Yang, Diagnosis of ventilator-associated pneumonia using electronic nose sensor array signals: Solutions to improve the application of machine learning in respiratory research, Respir. Res. 21 (2020), 45.
|
[84] |
T. Rogosch, N. Herrmann, R.F. Maier, et al., Detection of bloodstream infections and prediction of bronchopulmonary dysplasia in preterm neonates with an electronic nose, J. Pediatr. 165 (2014) 622-624.
|
[85] |
J.N. Dodds, E.S. Baker, Ion mobility spectrometry: Fundamental concepts, instrumentation, applications, and the road ahead, J. Am. Soc. Mass Spectrom. 30 (2019) 2185-2195.
|
[86] |
I. Steppert, J. Schönfelder, C. Schultz, et al., Rapid in vitro differentiation of bacteria by ion mobility spectrometry, Appl. Microbiol. Biotechnol. 105 (2021) 4297-4307.
|
[87] |
N. Kunze-Szikszay, M. Euler, M. Kuhns, et al., Headspace analyses using multi-capillary column-ion mobility spectrometry allow rapid pathogen differentiation in hospital-acquired pneumonia relevant bacteria, BMC Microbiol. 21 (2021), 69.
|
[88] |
R.A. Allardyce, V.S. Langford, A.L. Hill, et al., Detection of volatile metabolites produced by bacterial growth in blood culture media by selected ion flow tube mass spectrometry (SIFT-MS), J. Microbiol. Methods 65 (2006) 361-365.
|
[89] |
T.W.E. Chippendale, F.J. Gilchrist, P. Spanel, et al., Quantification by SIFT-MS of volatile compounds emitted by Aspergillus fumigatus cultures and in co-culture with Pseudomonas aeruginosa, Staphylococcus aureus and Streptococcus pneumoniae, Anal. Methods 6 (2014) 8154-8164.
|
[90] |
V. Shestivska, K. Dryahina, J. Nunvar, et al., Quantitative analysis of volatile metabolites released in vitro by bacteria of the genus Stenotrophomonas for identification of breath biomarkers of respiratory infection in cystic fibrosis, J. Breath Res. 9 (2015), 027104.
|
[91] |
E.A. Slade, R.M.S. Thorn, A.M. Lovering, et al., In vitro discrimination of wound associated bacteria by volatile compound profiling using selected ion flow tube-mass spectrometry, J. Appl. Microbiol. 123 (2017) 233-245.
|
[92] |
K. Segers, A. Slosse, J. Viaene, et al., Feasibility study on exhaled-breath analysis by untargeted Selected-Ion Flow-Tube Mass Spectrometry in children with cystic fibrosis, asthma, and healthy controls: Comparison of data pretreatment and classification techniques, Talanta 225 (2021), 122080.
|
[93] |
K. Schwarz, W. Filipiak, A. Amann, Determining concentration patterns of volatile compounds in exhaled breath by PTR-MS, J. Breath Res. 3 (2009), 027002.
|
[94] |
K. Roslund, M. Lehto, P. Pussinen, et al., On-line profiling of volatile compounds produced in vitro by pathogenic oral bacteria, J. Breath Res. 14 (2019), 016010.
|
[95] |
P. Martinez-Lozano Sinues, E. Criado, G. Vidal, Mechanistic study on the ionization of trace gases by an electrospray plume, Int. J. Mass Spectrom. 313 (2012) 21-29.
|
[96] |
C. Ballabio, S. Cristoni, G. Puccio, et al., Rapid identification of bacteria in blood cultures by mass-spectrometric analysis of volatiles, J. Clin. Pathol. 67 (2014) 743-746.
|
[97] |
J. Kaeslin, S. Micic, R. Weber, et al., Differentiation of cystic fibrosis-related pathogens by volatile organic compound analysis with secondary electrospray ionization mass spectrometry, Metabolites 11 (2021), 773.
|
[98] |
J. Zhu, J.E. Hill, Detection of Escherichia coli via VOC profiling using secondary electrospray ionization-mass spectrometry (SESI-MS), Food Microbiol. 34 (2013) 412-417.
|
[99] |
J. Zhu, J. Jimenez-Diaz, H.D. Bean, et al., Robust detection of P. aeruginosa and S. aureus acute lung infections by secondary electrospray ionization-mass spectrometry (SESI-MS) breathprinting: From initial infection to clearance, J. Breath Res. 7 (2013), 037106.
|
[100] |
T. Gaisl, L. Bregy, N. Stebler, et al., Real-time exhaled breath analysis in patients with cystic fibrosis and controls, J. Breath Res. 12 (2018), 036013.
|
[101] |
R. Weber, N. Perkins, T. Bruderer, et al., Identification of exhaled metabolites in children with cystic fibrosis, Metabolites 12 (2022), 980.
|
[102] |
K.D. Singh, G. Tancev, F. Decrue, et al., Standardization procedures for real-time breath analysis by secondary electrospray ionization high-resolution mass spectrometry, Anal. Bioanal. Chem. 411 (2019) 4883-4898.
|
[103] |
K. Dryahina, M. Polasek, D. Smith, et al., Sensitivity of secondary electrospray ionization mass spectrometry to a range of volatile organic compounds: ligand switching ion chemistry and the influence of ZsprayTM guiding electric fields, Rapid Commun. Mass Spectrom. 35 (2021), e9187.
|
[104] |
W.M. Ahmed, P. Brinkman, H. Weda, et al., Methodological considerations for large-scale breath analysis studies: Lessons from the U-BIOPRED severe asthma project, J. Breath Res. 13 (2018), 016001.
|
[105] |
W. Filipiak, B. Bojko, SPME in clinical, pharmaceutical, and biotechnological research - How far are we from daily practice? Trends Analyt. Chem. 115 (2019) 203-213.
|
[106] |
A. Azzollini, L. Boggia, J. Boccard, et al., Dynamics of metabolite induction in fungal co-cultures by metabolomics at both volatile and non-volatile levels, Front. Microbiol. 9 (2018), 72.
|
[107] |
J.E. Szulejko, K.H. Kim, Derivatization techniques for determination of carbonyls in air, Trends Analyt. Chem. 64 (2015) 29-41.
|
[108] |
A. Pineiro-Garcia, G. Gonzalez-Alatorre, F. Tristan, et al., Simple preparation of reduced graphene oxide coatings for solid phase micro-extraction (SPME) of furfural to be detected by gas chromatography/mass spectrometry, Mater. Chem. Phys. 213 (2018) 556-561.
|
[109] |
J. Li, H. Xu, A novel polyaniline/polypyrrole/graphene oxide fiber for the determination of volatile organic compounds in headspace gas of lung cell lines Talanta 167 (2017) 623-629.
|
[110] |
M. Ma, Y. Wei, H. Wei, et al., High-efficiency solid-phase microextraction performance of polypyrrole enhanced titania nanoparticles for sensitive determination of polar chlorophenols and triclosan in environmental water samples, RSC Adv. 11 (2021) 28632-28642.
|
[111] |
J.A. Koziel, M. Odziemkowski, J. Pawliszyn, Sampling and analysis of airborne particulate matter and aerosols using in-needle trap and SPME fiber devices, Anal. Chem. 73 (2001) 47-54.
|
[112] |
W. Filipiak, A. Filipiak, C. Ager, et al., Optimization of sampling parameters for collection and preconcentration of alveolar air by needle traps, J. Breath Res. 6 (2012), 027107.
|
[113] |
S. Zeinali, J. Pawliszyn, Needle-trap device containing a filter: A novel device for aerosol studies Anal. Chem. 93 (2021) 14401-14408.
|
[114] |
S. Zeinali, C. Ghosh, J. Pawliszyn, Simultaneous determination of exhaled breath vapor and exhaled breath aerosol using filter-incorporated needle-trap devices: A comparison of gas-phase and droplet-bound components, Anal. Chim. Acta 1203 (2022), 339671.
|
[115] |
Y. Li, J. Li, H. Xu, Graphene/polyaniline electrodeposited needle trap device for the determination of volatile organic compounds in human exhaled breath vapor and A549 cell, RSC Adv. 7 (2017) 11959-11968.
|
[116] |
R. Rahimpoor, A. Firoozichahak, S. Alizadeh, et al., Application of a needle trap device packed with a MIP@MOF nano-composite for efficient sampling and determination of airborne diazinon pesticide, RSC Adv. 12 (2022) 16267-16276.
|
[117] |
R. Rahimpoor, A. Firoozichahak, S. Alizadeh, et al., Urinary bio-monitoring of amphetamine derivatives by needle trap device packed with the zirconium-based metal-organic framework, Sci. Rep. 12 (2022), 13702.
|
[118] |
A. Firoozichahak, A. Bahrami, F. Ghorbani Shahna, et al., Development of a needle trap device packed with titanium-based metal-organic framework sorbent for extraction of phenolic derivatives in air, J. Sep. Sci. 43 (2020) 1011-1018.
|
[119] |
I. Bruheim, X. Liu, J. Pawliszyn, Thin-film microextraction, Anal. Chem. 75 (2003) 1002-1010.
|
[120] |
J.J. Grandy, E. Boyaci, J. Pawliszyn, Development of a carbon mesh supported thin film microextraction membrane as a means to lower the detection limits of benchtop and portable GC/MS instrumentation, Anal. Chem. 88 (2016) 1760-1767.
|
[121] |
R.V. Emmons, R. Tajali, E. Gionfriddo, Development, optimization and applications of thin film solid phase microextraction (TF-SPME) devices for thermal desorption: A comprehensive review Separations 6 (2019), 39.
|
[122] |
W. Filipiak, K. Jaroch, P. Szeliska, et al., Application of thin-film microextraction to analyze volatile metabolites in A549 cancer cells, Metabolites 11 (2021), 704.
|
[123] |
M.S. Mulani, E.E. Kamble, S.N. Kumkar, et al., Emerging strategies to combat ESKAPE pathogens in the era of antimicrobial resistance: A review, Front. Microbiol. 10 (2019), 539.
|
[124] |
M.S. Pepe, R. Etzioni, Z. Feng, et al., Phases of biomarker development for early detection of cancer, J. Natl. Cancer Inst. 93 (2001) 1054-1061.
|
[125] |
W. Filipiak, A. Sponring, M.M. Baur, et al., Molecular analysis of volatile metabolites released specifically by Staphylococcus aureus and Pseudomonas aeruginosa, BMC Microbiol. 12 (2012), 113.
|
[126] |
Z. Chen, H. Sun, J. Huang, et al., Metabolic engineering of Klebsiella pneumoniae for the production of 2-butanone from glucose, PLoS One 10 (2015), e0140508.
|
[127] |
M. Kai, M. Haustein, F. Molina, et al., Bacterial volatiles and their action potential, Appl. Microbiol. Biotechnol. 81 (2009) 1001-1012.
|
[128] |
W. Filipiak, V. Ruzsanyi, P. Mochalski, et al., Dependence of exhaled breath composition on exogenous factors, smoking habits and exposure to air pollutants, J. Breath Res. 6 (2012), 036008.
|
[129] |
L. Weisskopf, S. Schulz, P. Garbeva, Microbial volatile organic compounds in intra-kingdom and inter-kingdom interactions, Nat. Rev. Microbiol. 19 (2021) 391-404.
|
[130] |
X.N. Zeng, J.J. Leyden, H.J. Lawley, et al., Analysis of characteristic odors from human male axillae, J. Chem. Ecol. 17 (1991) 1469-1492.
|
[131] |
M.C. Lemfack, S.R. Ravella, N. Lorenz, et al., Novel volatiles of skin-borne bacteria inhibit the growth of Gram-positive bacteria and affect quorum-sensing controlled phenotypes of Gram-negative bacteria, Syst. Appl. Microbiol. 39 (2016) 503-515.
|
[132] |
S.L. Forbes, L. Rust, K. Trebilcock, et al., Effect of age and storage conditions on the volatile organic compound profile of blood, Forensic Sci. Med. Pathol. 10 (2014) 570-582.
|
[133] |
L.M. Filkins, J.A. Graber, D.G. Olson, et al., Coculture of Staphylococcus aureus with Pseudomonas aeruginosa drives S. aureus towards fermentative metabolism and reduced viability in a cystic fibrosis model, J. Bacteriol. 197 (2015) 2252-2264.
|
[134] |
W. Filipiak, A. Sponring, A. Filipiak, et al., TD-GC-MS analysis of volatile metabolites of human lung cancer and normal cells in vitro, Cancer Epidemiol. Biomarkers Prev. 19 (2010) 182-195.
|
[135] |
M.R. Hendricks, L.P. Lashua, D.K. Fischer, et al., Respiratory syncytial virus infection enhances Pseudomonas aeruginosa biofilm growth through dysregulation of nutritional immunity, Proc. Natl. Acad. Sci. U S A 113 (2016) 1642-1647.
|
[136] |
W.G.D. Fernando, R. Ramarathnam, A.S. Krishnamoorthy, et al., Identification and use of potential bacterial organic antifungal volatiles in biocontrol, Soil Biol. Biochem. 37 (2005) 955-964.
|
[137] |
N. Mirtalaei, A. Farazi, M. Ebrahimi Monfared, et al., Efficacy of antibiotic prophylaxis against ventilator-associated pneumonia, J. Hosp. Infect. 101 (2019) 272-275.
|
[138] |
T.R. Sterling, G. Njie, D. Zenner, et al. Guidelines for the Treatment of Latent Tuberculosis Infection: Recommendations from the National Tuberculosis Controllers Association and CDC, 2020, Recomm. Reports. 69 (2020) 1-11.
|
[139] |
D. Smith, P. Spanel, F.J. Gilchrist, et al., Hydrogen cyanide, a volatile biomarker of Pseudomonas aeruginosa infection, J. Breath Res. 7 (2013), 044001.
|
[140] |
SepNet Critical Care Trials Group, Incidence of severe sepsis and septic shock in German intensive care units: The prospective, multicentre INSEP study Intensive Care Med. 42 (2016) 1980-1989.
|