Volume 13 Issue 12
Dec.  2023
Turn off MathJax
Article Contents
Zhengjie Lu, Tongyun Mao, Kaiqi Chen, Longxin Chai, Yongguo Dai, Kexin Liu. Ginsenoside Rc: A potential intervention agent for metabolic syndrome[J]. Journal of Pharmaceutical Analysis, 2023, 13(12): 1375-1387. doi: 10.1016/j.jpha.2023.08.013
Citation: Zhengjie Lu, Tongyun Mao, Kaiqi Chen, Longxin Chai, Yongguo Dai, Kexin Liu. Ginsenoside Rc: A potential intervention agent for metabolic syndrome[J]. Journal of Pharmaceutical Analysis, 2023, 13(12): 1375-1387. doi: 10.1016/j.jpha.2023.08.013

Ginsenoside Rc: A potential intervention agent for metabolic syndrome

doi: 10.1016/j.jpha.2023.08.013
  • Received Date: May 12, 2023
  • Accepted Date: Aug. 16, 2023
  • Rev Recd Date: Jul. 26, 2023
  • Publish Date: Aug. 21, 2023
  • Ginsenoside Rc, a dammarane-type tetracyclic triterpenoid saponin primarily derived from Panax ginseng, has garnered significant attention due to its diverse pharmacological properties. This review outlined the sources, putative biosynthetic pathways, extraction, and quantification techniques, as well as the pharmacokinetic properties of ginsenoside Rc. Furthermore, this study explored the pharmacological effects of ginsenoside Rc against metabolic syndrome (MetS) across various phenotypes including obesity, diabetes, atherosclerosis, non-alcoholic fatty liver disease, and osteoarthritis. It also highlighted the impact of ginsenoside Rc on multiple associated signaling molecules. In conclusion, the anti-MetS effect of ginsenoside Rc is characterized by its influence on multiple organs, multiple targets, and multiple ways. Although clinical investigations regarding the effects of ginsenoside Rc on MetS are limited, its proven safety and tolerability suggest its potential as an effective treatment option.
  • loading
  • [1]
    G. Fahed, L. Aoun, M. Bou Zerdan, et al., Metabolic syndrome: Updates on pathophysiology and management in 2021, Int. J. Mol. Sci. 23 (2022), 786.
    [2]
    M.G. Saklayen, The global epidemic of the metabolic syndrome, Curr. Hypertens. Rep. 20 (2018), 12.
    [3]
    F. Yao, Y. Bo, L. Zhao, et al., Prevalence and influencing factors of metabolic syndrome among adults in China from 2015 to 2017, Nutrients 13 (2021), 4475.
    [4]
    E. McCracken, M. Monaghan, S. Sreenivasan, Pathophysiology of the metabolic syndrome, Clin. Dermatol. 36 (2018) 14-20.
    [5]
    M. Garralda-Del-Villar, S. Carlos-Chilleron, J. Diaz-Gutierrez, et al., Healthy lifestyle and incidence of metabolic syndrome in the SUN cohort, Nutrients 11 (2018), 65.
    [6]
    G. Hirode, R.J. Wong, Trends in the prevalence of metabolic syndrome in the United States, 2011-2016, JAMA 323 (2020) 2526-2528.
    [7]
    J.L. Silveira Rossi, S.M. Barbalho, R. Reverete de Araujo, et al., Metabolic syndrome and cardiovascular diseases: Going beyond traditional risk factors, Diabetes Metab. Res. Rev. 38 (2022), e3502.
    [8]
    S.K. Wong, K.-Y. Chin, F.H. Suhaimi, et al., The relationship between metabolic syndrome and osteoporosis: A review, Nutrients 8 (2016), 347.
    [9]
    W. Ru, D. Wang, Y. Xu, et al., Chemical constituents and bioactivities of Panax ginseng (C. A. Mey.), Drug Discov. Ther. 9 (2015) 23-32.
    [10]
    T. Aminifard, B.M. Razavi, H. Hosseinzadeh, The effects of ginseng on the metabolic syndrome: An updated review, Food Sci. Nutr. 9 (2021) 5293-5311.
    [11]
    S.J. Yoon, S.K. Kim, N.Y. Lee, et al., Effect of Korean Red Ginseng on metabolic syndrome, J. Ginseng Res. 45 (2021) 380-389.
    [12]
    Z.-Y. Shi, J.-Z. Zeng, A.S.T. Wong, Chemical structures and pharmacological profiles of ginseng saponins, Molecules 24 (2019), 2443.
    [13]
    S. Chen, R. Feng, X. Lin, et al., Determination of nine ginsenosides in health foods by solid extraction phase-ultra performance liquid chromatography-tandem mass spectrometry, Se Pu 39 (2021) 526-533.
    [14]
    W. Chen, P. Balan, D.G. Popovich, Comparison of ginsenoside components of various tissues of New Zealand forest-grown Asian ginseng (Panax Ginseng) and American ginseng (Panax Quinquefolium L.), Biomolecules 10 (2020), 372.
    [15]
    J.B. Wan, F.Q. Yang, S.P. Li, et al., Chemical characteristics for different parts of Panax notoginseng using pressurized liquid extraction and HPLC-ELSD, J. Pharm. Biomed. Anal. 41 (2006) 1596-1601.
    [16]
    W. Liu, Y. Liu, Z. Wang, et al., Review on research progress on chemical constituents of ginseng and its transformation mechanism, J. Jilin Agric. Univ. 44 (2022) 1-11.
    [17]
    Y.-C. Zhang, G. Li, C. Jiang, et al., Tissue-specific distribution of ginsenosides in different aged ginseng and antioxidant activity of ginseng leaf, Molecules 19 (2014) 17381-17399.
    [18]
    J. Wei, S. Cao, Saponins in fruits pedicels of Panax notoginseng (Burk.). F.H. Chen, Zhongguo Zhong Yao Za Zhi 17 (1992) 96-98, 126.
    [19]
    X. Sun, H. Deng, T. Shu, et al., Study on chemical constituents of Panax notoginseng leaves, Molecules 28 (2023), 2194.
    [20]
    Z. Liu, R. Moore, Y. Gao, et al., Comparison of phytochemical profiles of wild and cultivated American ginseng using metabolomics by ultra-high performance liquid chromatography-high-resolution mass spectrometry, Molecules 28 (2022), 9.
    [21]
    K. Yoshizaki, H.P. Devkota, H. Fujino, et al., Saponins composition of rhizomes, taproots, and lateral roots of Satsuma-ninjin (Panax japonicus), Chem. Pharm. Bull. 61 (2013) 344-350.
    [22]
    Y.-J. Kim, D. Zhang, D.-C. Yang, Biosynthesis and biotechnological production of ginsenosides, Biotechnol. Adv. 33 (2015) 717-735.
    [23]
    J. Lu, J. Li, S. Wang, et al., Advances in ginsenoside biosynthesis and metabolic regulation, Biotechnol. Appl. Biochem. 65 (2018) 514-522.
    [24]
    M. Hou, R. Wang, S. Zhao, et al., Ginsenosides in Panax genus and their biosynthesis, Acta Pharm. Sin. B 11 (2021) 1813-1834.
    [25]
    H.N. Murthy, M.I. Georgiev, Y.-S. Kim, et al., Ginsenosides: Prospective for sustainable biotechnological production, Appl. Microbiol. Biotechnol. 98 (2014) 6243-6254.
    [26]
    C.E. Vickers, S. Sabri, Isoprene, Biotechnology of Isoprenoids, Springer Cham, 2015, pp. 289-317.
    [27]
    S. Chen, H. Luo, Y. Li, et al., 454 EST analysis detects genes putatively involved in ginsenoside biosynthesis in Panax ginseng, Plant Cell Rep. 30 (2011) 1593-1601.
    [28]
    M.-H. Liu, B.-R. Yang, W.-F. Cheung, et al., Transcriptome analysis of leaves, roots and flowers of Panax notoginseng identifies genes involved in ginsenoside and alkaloid biosynthesis, BMC Genomics 16 (2015), 265.
    [29]
    S. Zhao, L. Wang, L. Liu, et al., Both the mevalonate and the non-mevalonate pathways are involved in ginsenoside biosynthesis, Plant Cell Rep. 33 (2014) 393-400.
    [30]
    K. Haralampidis, M. Trojanowska, A.E. Osbourn, Biosynthesis of triterpenoid saponins in plants, Adv. Biochem. Eng. Biotechnol. 75 (2002) 31-49.
    [31]
    J.M. Augustin, V. Kuzina, S.B. Andersen, et al., Molecular activities, biosynthesis and evolution of triterpenoid saponins, Phytochemistry 72 (2011) 435-457.
    [32]
    Z. Xue, L. Duan, D. Liu, et al., Divergent evolution of oxidosqualene cyclases in plants, New Phytol. 193 (2012) 1022-1038.
    [33]
    R. Thimmappa, K. Geisler, T. Louveau, et al., Triterpene biosynthesis in plants, Annu. Rev. Plant Biol. 65 (2014) 225-257.
    [34]
    P. Tansakul, M. Shibuya, T. Kushiro, et al., Dammarenediol-II synthase, the first dedicated enzyme for ginsenoside biosynthesis, in Panax ginseng, FEBS Lett. 580 (2006) 5143-5149.
    [35]
    K.B. Kang, M. Jayakodi, Y.S. Lee, et al., Identification of candidate UDP-glycosyltransferases involved in protopanaxadiol-type ginsenoside biosynthesis in Panax ginseng, Sci. Rep. 8 (2018), 11744.
    [36]
    C. Yang, C. Li, W. Wei, et al., The unprecedented diversity of UGT94-family UDP-glycosyltransferases in Panax plants and their contribution to ginsenoside biosynthesis, Sci. Rep. 10 (2020), 15394.
    [37]
    S.-C. Jung, W. Kim, S.C. Park, et al., Two ginseng UDP-glycosyltransferases synthesize ginsenoside Rg3 and Rd, Plant Cell Physiol. 55 (2014) 2177-2188.
    [38]
    X. Yan, Y. Fan, W. Wei, et al., Production of bioactive ginsenoside compound K in metabolically engineered yeast, Cell Res. 24 (2014) 770-773.
    [39]
    F. Li, N. Mu, Y. Qu, et al., Optimization of ginsenoside by ultrasound enzymatic assisted extraction, Food Ind. 41 (2020) 48-51.
    [40]
    H. Yao, X. Li, Y. Liu, et al., An optimized microwave-assisted extraction method for increasing yields of rare ginsenosides from Panax quinquefolius L, J. Ginseng Res. 40 (2016) 415-422.
    [41]
    M. Razgonova, A. Zakharenko, T.-S. Shin, et al., Supercritical CO(2) extraction and identification of ginsenosides in Russian and North Korean ginseng by HPLC with tandem mass spectrometry, Molecules 25 (2020), 1407.
    [42]
    L.-Y. Zhu, Y.-D. Tang, H. Shen, et al., Effect of ultra high-pressure processing on microorganisms and ginsenosides of Panax ginseng, Zhongguo Zhong Yao Za Zhi 38 (2013) 564-568.
    [43]
    D. Wu, Q. Wang, S. Wang, et al., Research on biomimetic extraction of ginsenoside, Chin. J. Anal. Lab. 40 (2021) 145-149.
    [44]
    J. Hou, S. He, M. Ling, et al., A method of extracting ginsenosides from Panax ginseng by pulsed electric field, J. Sep. Sci. 33 (2010) 2707-2713.
    [45]
    X. Shi, Y. Jin, J. Liu, et al., Matrix solid phase dispersion extraction of ginsenosides in the leaves of Panax ginseng C.M. Mey, Food Chem. 129 (2011) 1253-1257.
    [46]
    Y. Tu, L. Li, W. Fan, et al., New method for green extraction of ginsenosides based on mechanochemically-assisted extraction and deepeutectic solvents, China J. Chin. Mater. Med. 47 (2022) 6409-6416.
    [47]
    H. Li, H. Jiang, L. Xu, et al., Effects of different extraction methods in pharmacopoeia on the content and structure transformation of ginsenosides, Molecules 27 (2022), 4347.
    [48]
    H.-R. Zheng, Y. Chu, D.-Z. Zhou, et al., Integrated pharmacokinetics of ginsenosides after intravenous administration of YiQiFuMai powder injection in rats with chronic heart failure by UFLC-MS/MS, J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 1072 (2018) 282-289.
    [49]
    J. Sun, W. Wu, Y. Guo, et al., Pharmacokinetic study of ginsenoside Rc and simultaneous determination of its metabolites in rats using RRLC-Q-TOF-MS, J. Pharm. Biomed. Anal. 88 (2014) 16-21.
    [50]
    L.-Y. Du, T. Jiang, K. Wei, et al., Simultaneous quantification of four ginsenosides in rat plasma and its application to a comparative pharmacokinetic study in normal and depression rats using UHPLC-MS/MS, J. Anal. Methods Chem. 2021 (2021), 4488822.
    [51]
    P. Li, B. Lv, X. Jiang, et al., Identification of NF-κB inhibitors following Shenfu injection and bioactivity-integrated UPLC/Q-TOF-MS and screening for related anti-inflammatory targets in vitro and in silico, J. Ethnopharmacol. 194 (2016) 658-667.
    [52]
    Y. Chu, H. Zhang, S. Li, et al., Determination of ginsenoside Rc in rat plasma by LC-MS/MS and its application to a pharmacokinetic study, J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 919-920 (2013) 75-78.
    [53]
    Z. Ju, J. Li, H. Han, et al., Analysis of bioactive components and multi-component pharmacokinetics of saponins from the leaves of Panax notoginseng in rat plasma after oral administration by LC-MS/MS, J. Sep. Sci. 41 (2018) 1512-1523.
    [54]
    Y. Zhang, D. Tian, Y. Huang, et al., Pharmacokinetic evaluation of Shenfu Injection in beagle dogs after intravenous drip administration, Acta Pharm. Sin. B 6 (2016) 584-592.
    [55]
    D. Wang, L. Di, A. Kang, et al., Effect of Bletilla striata polysaccharides on pharmacokinetics of 10 components in Panax notoginseng saponins, Chin. Tradit. Herb. Drugs 48 (2017) 737-746.
    [56]
    A. Kang, J. Qian, J. Shan, et al., In vivo pharmacokinetic study on total saponins from roots of Panax ginseng in rats, Chin. Tradit. Herb. Drugs 46 (2015) 3045-3050.
    [57]
    J. Zhao, C. Su, C. Yang, et al., Determination of ginsenosides Rb1, Rb2, and Rb3 in rat plasma by a rapid and sensitive liquid chromatography tandem mass spectrometry method: Application in a pharmacokinetic study, J. Pharm. Biomed. Anal. 64–65 (2012) 94-97.
    [58]
    E.-A. Bae, M.-K. Choo, E.-K. Park, et al., Metabolism of ginsenoside R(c) by human intestinal bacteria and its related antiallergic activity, Biol. Pharm. Bull. 25 (2002) 743-747.
    [59]
    K. Sasaki, D. Sasaki, K. Sasaki, et al., Growth stimulation of Bifidobacterium from human colon using daikenchuto in an in vitro model of human intestinal microbiota, Sci. Rep. 11 (2021), 4580.
    [60]
    H. Chi, D.-H. Kim, G.-E. Ji, Transformation of ginsenosides Rb2 and Rc from Panax ginseng by food microorganisms, Biol. Pharm. Bull. 28 (2005) 2102-2105.
    [61]
    J.-H. Jeon, J. Lee, M.-K. Choi, et al., Pharmacokinetics of ginsenosides following repeated oral administration of red ginseng extract significantly differ between species of experimental animals, Arch. Pharmacal Res. 43 (2020) 1335-1346.
    [62]
    X. Gao, R. Yang, S. Xia, et al., PK-PD correlation of ginsenoside Rc from Shengmai Injection in patients with angina pectoris, Drug Eval. Res. 41(2018) 1241-1245, 1259.
    [63]
    Z. Yang, Y. Yu, N. Sun, et al., Ginsenosides Rc, as a novel SIRT6 activator, protects mice against high fat diet induced NAFLD, J. Ginseng Res. 47 (2023) 376-384.
    [64]
    Z. Gao, X. Yang, Y. Zhang, et al., Abstracts of the 12th National Convention on Sport Science of China, March 25, 2022, Shandong, China, 2022, pp.129-130.
    [65]
    W. Liu, Y. Zheng, L. Han, et al., Saponins (Ginsenosides) from stems and leaves of Panax quinquefolium prevented high-fat diet-induced obesity in mice, Phytomedicine 15 (2008) 1140-1145.
    [66]
    Y. Zheng, H. Li, J. Zhang, et al., Effect of saponins of Panax quinquefolium on inhibiting high-fat diet induced obesity and lipase activity of mice, J. Jilin Agric. Univ. 27 (2005) 519-521, 542.
    [67]
    T.B. Ng, C.M. Wong, H.W. Yeung, Effect of ginsenosides Rg1, Rc and Rb2 on hormone-induced lipolysis and lipogenesis in rat epididymal fat cells, J. Ethnopharmacol. 16 (1986) 191-199.
    [68]
    J.-W. Yang, S.S. Kim, Ginsenoside Rc promotes anti-adipogenic activity on 3T3-L1 adipocytes by down-regulating C/EBPα and PPARγ, Molecules 20 (2015) 1293-1303.
    [69]
    Y. Wang, W. Fu, Y. Xue, et al., Ginsenoside Rc ameliorates endothelial insulin resistance via upregulation of angiotensin-converting enzyme 2, Front. Pharmacol. 12 (2021), 620524.
    [70]
    M.-S. Lee, J.-T. Hwang, S.-H. Kim, et al., Ginsenoside Rc, an active component of Panax ginseng, stimulates glucose uptake in C2C12 myotubes through an AMPK-dependent mechanism, J. Ethnopharmacol. 127 (2010) 771-776.
    [71]
    B. Xie, X. Zu, Z. Wang, et al., Ginsenoside Rc ameliorated atherosclerosis via regulating gut microbiota and fecal metabolites, Front. Pharmacol. 13 (2022), 990476.
    [72]
    N. Koyama, N. Morisaki, Y. Saito, et al., Inhibitory effect of ginsenosides on migration of arterial smooth muscle cells, Am. J. Chin. Med. 20 (1992) 167-173.
    [73]
    Z. Pan, J. Guo, K. Tang, et al., Ginsenoside Rc modulates SIRT6-NRF2 interaction to alleviate alcoholic liver disease, J. Agric. Food Chem. 70 (2022) 14220-14234.
    [74]
    J.H. Lee, H. Lim, O. Shehzad, et al., Ginsenosides from Korean red ginseng inhibit matrix metalloproteinase-13 expression in articular chondrocytes and prevent cartilage degradation, Eur. J. Pharmacol. 724 (2014) 145-151.
    [75]
    K. Rohde, M. Keller, L. la Cour Poulsen, et al., Genetics and epigenetics in obesity, Metabolism 92 (2019) 37-50.
    [76]
    Z. Li, G.E. Ji, Ginseng and obesity, J. Ginseng Res. 42 (2018) 1-8.
    [77]
    C. Couillard, P. Mauriege, P. Imbeault, et al., Hyperleptinemia is more closely associated with adipose cell hypertrophy than with adipose tissue hyperplasia, Int. J. Obes. Relat. Metab. Disord. 24(2000) 782-788.
    [78]
    M.A. Ambele, P. Dhanraj, R. Giles, et al., Adipogenesis: A complex interplay of multiple molecular determinants and pathways, Int. J. Mol. Sci. 21 (2020), 4283.
    [79]
    A. Kumar, S. Chauhan, Pancreatic lipase inhibitors: The road voyaged and successes, Life Sci. 271 (2021), 119115.
    [80]
    G. Jia, J. Zhang, L. Han, et al., Anti-obesity effect of saponins from stems and leaves of Panax quinquefolium, Nat. Prod. Res. Dev. 17 (2005) 160-162.
    [81]
    M.-Y. Song, B.-S. Kim, H. Kim, Influence of Panax ginseng on obesity and gut microbiota in obese middle-aged Korean women, J. Ginseng Res. 38 (2014) 106-115.
    [82]
    N.A. ElSayed, G. Aleppo, V.R. Aroda, et al., Erratum. 2. Classification and diagnosis of diabetes: Standards of care in diabetes-2023, Diabetes Care 46 (2023), 1106.
    [83]
    A. Rosengren, P. Dikaiou, Cardiovascular outcomes in type 1 and type 2 diabetes, Diabetologia 66 (2023) 425-437.
    [84]
    D. Ambroselli, F. Masciulli, E. Romano, et al., New advances in metabolic syndrome, from prevention to treatment: The role of diet and food, Nutrients 15 (2023), 640.
    [85]
    H.-D. Yuan, J.T. Kim, S.H. Kim, et al., Ginseng and diabetes: The evidences from in vitro, animal and human studies, J. Ginseng Res. 36 (2012) 27-39.
    [86]
    K. Naseri, S. Saadati, A. Sadeghi, et al., The efficacy of ginseng (Panax) on human prediabetes and type 2 diabetes mellitus: A systematic review and meta-analysis, Nutrients 14 (2022), 2401.
    [87]
    W. Lin, C. Chen, S. Liang, et al., Network pharmacology of ginsenosides improving insulin resistance, Chin. Tradit. Pat. Med. 38 (2016) 1455-1461.
    [88]
    K.E. Merz, D.C. Thurmond, Role of skeletal muscle in insulin resistance and glucose uptake, Compr. Physiol. 10 (2020) 785-809.
    [89]
    L. Sylow, V.L. Tokarz, E.A. Richter, et al., The many actions of insulin in skeletal muscle, the paramount tissue determining glycemia, Cell Metab. 33 (2021) 758-780.
    [90]
    R. Kjoebsted, J.R. Hingst, J. Fentz, et al., AMPK in skeletal muscle function and metabolism, FASEB J. 32 (2018) 1741-1777.
    [91]
    R.H. Pokhrel, S. Acharya, J.H. Ahn, et al., AMPK promotes antitumor immunity by downregulating PD-1 in regulatory T cells via the HMGCR/p38 signaling pathway, Mol. Cancer 20 (2021), 133.
    [92]
    J. Bouviere, R.S. Fortunato, C. Dupuy, et al., Exercise-stimulated ROS sensitive signaling pathways in skeletal muscle, Antioxidants 10 (2021), 537.
    [93]
    E.J. Bae, Sirtuin 6, a possible therapeutic target for type 2 diabetes, Arch. Pharm. Res. 40 (2017) 1380-1389.
    [94]
    T.R. Einarson, A. Acs, C. Ludwig, et al., Prevalence of cardiovascular disease in type 2 diabetes: A systematic literature review of scientific evidence from across the world in 2007-2017, Cardiovasc. Diabetol. 17 (2018), 83.
    [95]
    M. Knapp, X. Tu, R. Wu, Vascular endothelial dysfunction, a major mediator in diabetic cardiomyopathy, Acta Pharmacol. Sin. 40 (2019) 1-8.
    [96]
    G. Yang, P.-L. Chu, L.C. Rump, et al., ACE2 and the homolog collectrin in the modulation of nitric oxide and oxidative stress in blood pressure homeostasis and vascular injury, Antioxid. Redox Signal. 26 (2017) 645-659.
    [97]
    H. Zhang, R. Chen, C. Xu, et al., An integrated approach to discriminate the quality markers of traditional Chinese medicine preparation based on multi-dimensional characteristic network: Shenqi Jiangtang Granule as a case, J. Ethnopharmacol. 278 (2021), 114277.
    [98]
    P. Kong, Z.-Y. Cui, X.-F. Huang, et al., Inflammation and atherosclerosis: Signaling pathways and therapeutic intervention, Signal Transduct. Target. Ther. 7 (2022), 131.
    [99]
    P. Libby, The changing landscape of atherosclerosis, Nature 592 (2021) 524-533.
    [100]
    Y. Sun, Y. Liu, K. Chen, Roles and mechanisms of ginsenoside in cardiovascular diseases: Progress and perspectives, Sci. China Life Sci. 59 (2016) 292-298.
    [101]
    H. Lu, A. Daugherty, Atherosclerosis, Arterioscler. Thromb. Vasc. Biol. 35 (2015) 485-491.
    [102]
    P. Marchio, S. Guerra-Ojeda, J.M. Vila, et al., Targeting early atherosclerosis: A focus on oxidative stress and inflammation, Oxid. Med. Cell. Longev. 2019 (2019), 8563845.
    [103]
    M.A. Gimbrone Jr, G. Garcia-Cardena, Endothelial cell dysfunction and the pathobiology of atherosclerosis, Circ. Res. 118 (2016) 620-636.
    [104]
    M.O.J. Grootaert, M.R. Bennett, Vascular smooth muscle cells in atherosclerosis: Time for a re-assessment, Cardiovasc. Res. 117 (2021) 2326-2339.
    [105]
    D. Capece, D. Verzella, I. Flati, et al., NF-κB: Blending metabolism, immunity, and inflammation, Trends Immunol. 43 (2022) 757-775.
    [106]
    L. Xing, M. Jiang, L. Dong, et al., Cardioprotective effects of the YiQiFuMai injection and isolated compounds on attenuating chronic heart failure via NF-κB inactivation and cytokine suppression, J. Ethnopharmacol. 148 (2013) 239-245.
    [107]
    F. Li, Y.-S. Tan, H.-L. Chen, et al., Identification of schisandrin as a vascular endothelium protective component in YiQiFuMai Powder Injection using HUVECs binding and HPLC-DAD-Q-TOF-MS/MS analysis, J. Pharmacol. Sci. 129 (2015) 1-8.
    [108]
    R. Loomba, S.L. Friedman, G.I. Shulman, Mechanisms and disease consequences of nonalcoholic fatty liver disease, Cell 184 (2021) 2537-2564.
    [109]
    K. Yang, H.-H. Kim, Y.-R. Shim, et al., The efficacy of Panax ginseng for the treatment of nonalcoholic fatty liver disease: A systematic review and meta-analysis of preclinical studies, Nutrients 15 (2023), 721.
    [110]
    D.H. Ipsen, J. Lykkesfeldt, P. Tveden-Nyborg, Molecular mechanisms of hepatic lipid accumulation in non-alcoholic fatty liver disease, Cell. Mol. Life Sci. 75 (2018) 3313-3327.
    [111]
    M. Pawlak, P. Lefebvre, B. Staels, Molecular mechanism of PPARα action and its impact on lipid metabolism, inflammation and fibrosis in non-alcoholic fatty liver disease, J. Hepatol. 62 (2015) 720-733.
    [112]
    S. Naiman, F.K. Huynh, R. Gil, et al., SIRT6 promotes hepatic beta-oxidation via activation of PPARα, Cell Rep. 29 (2019) 4127-4143.e8.
    [113]
    Y. Xue, W. Fu, P. Yu, et al., Ginsenoside Rc alleviates myocardial ischemia-reperfusion injury by reducing mitochondrial oxidative stress and apoptosis: Role of SIRT1 activation, J. Agric. Food Chem. 71 (2023) 1547-1561.
    [114]
    Q.X. Huang, H. Su, B. Qi, et al., A SIRT1 activator, Ginsenoside Rc, promotes energy metabolism in cardiomyocytes and neurons, J. Am. Chem. Soc. 143 (2021) 1416-1427.
    [115]
    C. Zeng, M. Chen, Progress in nonalcoholic fatty liver disease: SIRT family regulates mitochondrial biogenesis, Biomolecules 12 (2022), 1079.
    [116]
    D.J. Hunter, S. Bierma-Zeinstra, Osteoarthritis, Lancet 393 (2019) 1745-1759.
    [117]
    M.T. Velasquez, J.D. Katz, Osteoarthritis: Another component of metabolic syndrome? Metab. Syndr. Relat. Disord. 8 (2010) 295-305.
    [118]
    H.I. Kim, S.J. Chon, K.E. Seon, et al., Clinical effects of Korean red ginseng in postmenopausal women with hand osteoarthritis: A double-blind, randomized controlled trial, Front. Pharmacol. 12 (2021), 745568.
    [119]
    A.M. Yassin, H.O. AbuBakr, A.I. Abdelgalil, et al., COL2A1 and caspase-3 as promising biomarkers for osteoarthritis prognosis in an Equus asinus model, Biomolecules 10 (2020), 354.
    [120]
    E.-E. Mehana, A.F. Khafaga, S.S. El-Blehi, The role of matrix metalloproteinases in osteoarthritis pathogenesis: An updated review, Life Sci. 234 (2019), 116786.
    [121]
    A. Batushansky, S. Zhu, R.K. Komaravolu, et al., Fundamentals of OA. An initiative of Osteoarthritis and Cartilage. Obesity and metabolic factors in OA, Osteoarthr. Cartil. 30 (2022) 501-515.
    [122]
    W.-S. Choi, G. Lee, W.-H. Song, et al., The CH25H-CYP7B1-RORα axis of cholesterol metabolism regulates osteoarthritis, Nature 566 (2019) 254-258.
    [123]
    T. Yu, M.H. Rhee, J. Lee, et al., Ginsenoside Rc from Korean red ginseng (Panax ginseng C.A. Meyer) attenuates inflammatory symptoms of gastritis, hepatitis and arthritis, Am. J. Chin. Med. 44 (2016) 595-615.
    [124]
    Y. Zhong, Y. Chen, Z. Pan, et al., Ginsenoside Rc, as an FXR activator, alleviates acetaminophen-induced hepatotoxicity via relieving inflammation and oxidative stress, Front. Pharmacol. 13 (2022), 1027731.
    [125]
    Y. Xue, X. Yu, X. Zhang, et al., Protective effects of ginsenoside Rc against acute cold exposure-induced myocardial injury in rats, J. Food Sci. 86 (2021) 3252-3264.
    [126]
    L. Shi, W. Fu, H. Xu, et al., Ginsenoside Rc attenuates myocardial ischaemic injury through antioxidative and anti-inflammatory effects, Pharm. Biol. 60 (2022) 1038-1046.
    [127]
    M.-K. Choi, S. Jin, J.-H. Jeon, et al., Tolerability and pharmacokinetics of ginsenosides Rb1, Rb2, Rc, Rd, and compound K after single or multiple administration of red ginseng extract in human beings, J. Ginseng Res. 44 (2020) 229-237.
    [128]
    C.O. Ong, L.Y. Chan, P.B. Yung, et al., Use of traditional Chinese herbal medicine during pregnancy: A prospective survey, Acta Obstet. Gynecol. Scand. 84 (2005) 699-700.
    [129]
    L.Y. Chan, P.Y. Chiu, T.K. Lau, Embryotoxicity study of ginsenoside Rc and Re in in vitro rat whole embryo culture, Reprod. Toxicol. 19 (2004) 131-134.
    [130]
    Y. Hu, J. Zhang, F. Jiang, et al., Influences of ginsenosides Rb1, Rc on embryonal brain development and expression of GPx gene in rats, Chin. J. Histochem. Cytochem. 18 (2009) 606-610.
    [131]
    M.C. Ichim, H.J. de Boer, A review of authenticity and authentication of commercial ginseng herbal medicines and food supplements, Front. Pharmacol. 11 (2021), 612071.
    [132]
    A.G. Atanasov, S.B. Zotchev, V.M. Dirsch, et al., Natural products in drug discovery: Advances and opportunities, Nat. Rev. Drug Discov. 20 (2021) 200-216.
    [133]
    A. Benitez-Paez, L. Kjoelbaek, E.M. Gomez Del Pulgar, et al., A multi-omics approach to unraveling the microbiome-mediated effects of arabinoxylan oligosaccharides in overweight humans, mSystems 4 (2019), e00209-e00219.
    [134]
    Y. Lu, M. Shao, H. Xiang, et al., Integrative transcriptomics and metabolomics explore the mechanism of kaempferol on improving nonalcoholic steatohepatitis, Food Funct. 11 (2020) 10058-10069.
    [135]
    L.Q. Jia, X. Ju, Y.X. Ma, et al., Comprehensive multiomics analysis of the effect of ginsenoside Rb1 on hyperlipidemia, Aging 13 (2021) 9732-9747.
    [136]
    F. Boniolo, E. Dorigatti, A.J. Ohnmacht, et al., Artificial intelligence in early drug discovery enabling precision medicine, Expert Opin. Drug Discov. 16 (2021) 991-1007.
    [137]
    Y. Zhu, Z. Ouyang, H. Du, et al., New opportunities and challenges of natural products research: When target identification meets single-cell multiomics, Acta Pharm. Sin. B 12 (2022) 4011-4039.
    [138]
    P.-X. Wang, X.-R. Deng, C.-H. Zhang, et al., Gut microbiota and metabolic syndrome, Chin. Med. J. 133 (2020) 808-816.
    [139]
    K. Dabke, G. Hendrick, S. Devkota, The gut microbiome and metabolic syndrome, J. Clin. Invest. 129 (2019) 4050-4057.
    [140]
    F. Zheng, M.-Y. Zhang, Y.-X. Wu, et al., Biotransformation of ginsenosides (Rb1, Rb2, Rb3, Rc) in human intestinal bacteria and its effect on intestinal flora, Chem. Biodivers. 18 (2021), e2100296.
    [141]
    M. Sellami, O. Slimeni, A. Pokrywka, et al., Herbal medicine for sports: A review, J. Int. Soc. Sports Nutr. 15 (2018), 14.
    [142]
    H. Lee, J.-K. Heo, G.-H. Lee, et al., Ginsenoside Rc is a new selective UGT1A9 inhibitor in human liver microsomes and recombinant human UGT isoforms, Drug Metab. Dispos. 47 (2019) 1372-1379.
    [143]
    J.-H. Jeon, S. Lee, W. Lee, et al., Herb-drug interaction of red ginseng extract and ginsenoside Rc with valsartan in rats, Molecules 25 (2020), 622.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (281) PDF downloads(19) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return