Citation: | Zhengjie Lu, Tongyun Mao, Kaiqi Chen, Longxin Chai, Yongguo Dai, Kexin Liu. Ginsenoside Rc: A potential intervention agent for metabolic syndrome[J]. Journal of Pharmaceutical Analysis, 2023, 13(12): 1375-1387. doi: 10.1016/j.jpha.2023.08.013 |
[1] |
G. Fahed, L. Aoun, M. Bou Zerdan, et al., Metabolic syndrome: Updates on pathophysiology and management in 2021, Int. J. Mol. Sci. 23 (2022), 786.
|
[2] |
M.G. Saklayen, The global epidemic of the metabolic syndrome, Curr. Hypertens. Rep. 20 (2018), 12.
|
[3] |
F. Yao, Y. Bo, L. Zhao, et al., Prevalence and influencing factors of metabolic syndrome among adults in China from 2015 to 2017, Nutrients 13 (2021), 4475.
|
[4] |
E. McCracken, M. Monaghan, S. Sreenivasan, Pathophysiology of the metabolic syndrome, Clin. Dermatol. 36 (2018) 14-20.
|
[5] |
M. Garralda-Del-Villar, S. Carlos-Chilleron, J. Diaz-Gutierrez, et al., Healthy lifestyle and incidence of metabolic syndrome in the SUN cohort, Nutrients 11 (2018), 65.
|
[6] |
G. Hirode, R.J. Wong, Trends in the prevalence of metabolic syndrome in the United States, 2011-2016, JAMA 323 (2020) 2526-2528.
|
[7] |
J.L. Silveira Rossi, S.M. Barbalho, R. Reverete de Araujo, et al., Metabolic syndrome and cardiovascular diseases: Going beyond traditional risk factors, Diabetes Metab. Res. Rev. 38 (2022), e3502.
|
[8] |
S.K. Wong, K.-Y. Chin, F.H. Suhaimi, et al., The relationship between metabolic syndrome and osteoporosis: A review, Nutrients 8 (2016), 347.
|
[9] |
W. Ru, D. Wang, Y. Xu, et al., Chemical constituents and bioactivities of Panax ginseng (C. A. Mey.), Drug Discov. Ther. 9 (2015) 23-32.
|
[10] |
T. Aminifard, B.M. Razavi, H. Hosseinzadeh, The effects of ginseng on the metabolic syndrome: An updated review, Food Sci. Nutr. 9 (2021) 5293-5311.
|
[11] |
S.J. Yoon, S.K. Kim, N.Y. Lee, et al., Effect of Korean Red Ginseng on metabolic syndrome, J. Ginseng Res. 45 (2021) 380-389.
|
[12] |
Z.-Y. Shi, J.-Z. Zeng, A.S.T. Wong, Chemical structures and pharmacological profiles of ginseng saponins, Molecules 24 (2019), 2443.
|
[13] |
S. Chen, R. Feng, X. Lin, et al., Determination of nine ginsenosides in health foods by solid extraction phase-ultra performance liquid chromatography-tandem mass spectrometry, Se Pu 39 (2021) 526-533.
|
[14] |
W. Chen, P. Balan, D.G. Popovich, Comparison of ginsenoside components of various tissues of New Zealand forest-grown Asian ginseng (Panax Ginseng) and American ginseng (Panax Quinquefolium L.), Biomolecules 10 (2020), 372.
|
[15] |
J.B. Wan, F.Q. Yang, S.P. Li, et al., Chemical characteristics for different parts of Panax notoginseng using pressurized liquid extraction and HPLC-ELSD, J. Pharm. Biomed. Anal. 41 (2006) 1596-1601.
|
[16] |
W. Liu, Y. Liu, Z. Wang, et al., Review on research progress on chemical constituents of ginseng and its transformation mechanism, J. Jilin Agric. Univ. 44 (2022) 1-11.
|
[17] |
Y.-C. Zhang, G. Li, C. Jiang, et al., Tissue-specific distribution of ginsenosides in different aged ginseng and antioxidant activity of ginseng leaf, Molecules 19 (2014) 17381-17399.
|
[18] |
J. Wei, S. Cao, Saponins in fruits pedicels of Panax notoginseng (Burk.). F.H. Chen, Zhongguo Zhong Yao Za Zhi 17 (1992) 96-98, 126.
|
[19] |
X. Sun, H. Deng, T. Shu, et al., Study on chemical constituents of Panax notoginseng leaves, Molecules 28 (2023), 2194.
|
[20] |
Z. Liu, R. Moore, Y. Gao, et al., Comparison of phytochemical profiles of wild and cultivated American ginseng using metabolomics by ultra-high performance liquid chromatography-high-resolution mass spectrometry, Molecules 28 (2022), 9.
|
[21] |
K. Yoshizaki, H.P. Devkota, H. Fujino, et al., Saponins composition of rhizomes, taproots, and lateral roots of Satsuma-ninjin (Panax japonicus), Chem. Pharm. Bull. 61 (2013) 344-350.
|
[22] |
Y.-J. Kim, D. Zhang, D.-C. Yang, Biosynthesis and biotechnological production of ginsenosides, Biotechnol. Adv. 33 (2015) 717-735.
|
[23] |
J. Lu, J. Li, S. Wang, et al., Advances in ginsenoside biosynthesis and metabolic regulation, Biotechnol. Appl. Biochem. 65 (2018) 514-522.
|
[24] |
M. Hou, R. Wang, S. Zhao, et al., Ginsenosides in Panax genus and their biosynthesis, Acta Pharm. Sin. B 11 (2021) 1813-1834.
|
[25] |
H.N. Murthy, M.I. Georgiev, Y.-S. Kim, et al., Ginsenosides: Prospective for sustainable biotechnological production, Appl. Microbiol. Biotechnol. 98 (2014) 6243-6254.
|
[26] |
C.E. Vickers, S. Sabri, Isoprene, Biotechnology of Isoprenoids, Springer Cham, 2015, pp. 289-317.
|
[27] |
S. Chen, H. Luo, Y. Li, et al., 454 EST analysis detects genes putatively involved in ginsenoside biosynthesis in Panax ginseng, Plant Cell Rep. 30 (2011) 1593-1601.
|
[28] |
M.-H. Liu, B.-R. Yang, W.-F. Cheung, et al., Transcriptome analysis of leaves, roots and flowers of Panax notoginseng identifies genes involved in ginsenoside and alkaloid biosynthesis, BMC Genomics 16 (2015), 265.
|
[29] |
S. Zhao, L. Wang, L. Liu, et al., Both the mevalonate and the non-mevalonate pathways are involved in ginsenoside biosynthesis, Plant Cell Rep. 33 (2014) 393-400.
|
[30] |
K. Haralampidis, M. Trojanowska, A.E. Osbourn, Biosynthesis of triterpenoid saponins in plants, Adv. Biochem. Eng. Biotechnol. 75 (2002) 31-49.
|
[31] |
J.M. Augustin, V. Kuzina, S.B. Andersen, et al., Molecular activities, biosynthesis and evolution of triterpenoid saponins, Phytochemistry 72 (2011) 435-457.
|
[32] |
Z. Xue, L. Duan, D. Liu, et al., Divergent evolution of oxidosqualene cyclases in plants, New Phytol. 193 (2012) 1022-1038.
|
[33] |
R. Thimmappa, K. Geisler, T. Louveau, et al., Triterpene biosynthesis in plants, Annu. Rev. Plant Biol. 65 (2014) 225-257.
|
[34] |
P. Tansakul, M. Shibuya, T. Kushiro, et al., Dammarenediol-II synthase, the first dedicated enzyme for ginsenoside biosynthesis, in Panax ginseng, FEBS Lett. 580 (2006) 5143-5149.
|
[35] |
K.B. Kang, M. Jayakodi, Y.S. Lee, et al., Identification of candidate UDP-glycosyltransferases involved in protopanaxadiol-type ginsenoside biosynthesis in Panax ginseng, Sci. Rep. 8 (2018), 11744.
|
[36] |
C. Yang, C. Li, W. Wei, et al., The unprecedented diversity of UGT94-family UDP-glycosyltransferases in Panax plants and their contribution to ginsenoside biosynthesis, Sci. Rep. 10 (2020), 15394.
|
[37] |
S.-C. Jung, W. Kim, S.C. Park, et al., Two ginseng UDP-glycosyltransferases synthesize ginsenoside Rg3 and Rd, Plant Cell Physiol. 55 (2014) 2177-2188.
|
[38] |
X. Yan, Y. Fan, W. Wei, et al., Production of bioactive ginsenoside compound K in metabolically engineered yeast, Cell Res. 24 (2014) 770-773.
|
[39] |
F. Li, N. Mu, Y. Qu, et al., Optimization of ginsenoside by ultrasound enzymatic assisted extraction, Food Ind. 41 (2020) 48-51.
|
[40] |
H. Yao, X. Li, Y. Liu, et al., An optimized microwave-assisted extraction method for increasing yields of rare ginsenosides from Panax quinquefolius L, J. Ginseng Res. 40 (2016) 415-422.
|
[41] |
M. Razgonova, A. Zakharenko, T.-S. Shin, et al., Supercritical CO(2) extraction and identification of ginsenosides in Russian and North Korean ginseng by HPLC with tandem mass spectrometry, Molecules 25 (2020), 1407.
|
[42] |
L.-Y. Zhu, Y.-D. Tang, H. Shen, et al., Effect of ultra high-pressure processing on microorganisms and ginsenosides of Panax ginseng, Zhongguo Zhong Yao Za Zhi 38 (2013) 564-568.
|
[43] |
D. Wu, Q. Wang, S. Wang, et al., Research on biomimetic extraction of ginsenoside, Chin. J. Anal. Lab. 40 (2021) 145-149.
|
[44] |
J. Hou, S. He, M. Ling, et al., A method of extracting ginsenosides from Panax ginseng by pulsed electric field, J. Sep. Sci. 33 (2010) 2707-2713.
|
[45] |
X. Shi, Y. Jin, J. Liu, et al., Matrix solid phase dispersion extraction of ginsenosides in the leaves of Panax ginseng C.M. Mey, Food Chem. 129 (2011) 1253-1257.
|
[46] |
Y. Tu, L. Li, W. Fan, et al., New method for green extraction of ginsenosides based on mechanochemically-assisted extraction and deepeutectic solvents, China J. Chin. Mater. Med. 47 (2022) 6409-6416.
|
[47] |
H. Li, H. Jiang, L. Xu, et al., Effects of different extraction methods in pharmacopoeia on the content and structure transformation of ginsenosides, Molecules 27 (2022), 4347.
|
[48] |
H.-R. Zheng, Y. Chu, D.-Z. Zhou, et al., Integrated pharmacokinetics of ginsenosides after intravenous administration of YiQiFuMai powder injection in rats with chronic heart failure by UFLC-MS/MS, J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 1072 (2018) 282-289.
|
[49] |
J. Sun, W. Wu, Y. Guo, et al., Pharmacokinetic study of ginsenoside Rc and simultaneous determination of its metabolites in rats using RRLC-Q-TOF-MS, J. Pharm. Biomed. Anal. 88 (2014) 16-21.
|
[50] |
L.-Y. Du, T. Jiang, K. Wei, et al., Simultaneous quantification of four ginsenosides in rat plasma and its application to a comparative pharmacokinetic study in normal and depression rats using UHPLC-MS/MS, J. Anal. Methods Chem. 2021 (2021), 4488822.
|
[51] |
P. Li, B. Lv, X. Jiang, et al., Identification of NF-κB inhibitors following Shenfu injection and bioactivity-integrated UPLC/Q-TOF-MS and screening for related anti-inflammatory targets in vitro and in silico, J. Ethnopharmacol. 194 (2016) 658-667.
|
[52] |
Y. Chu, H. Zhang, S. Li, et al., Determination of ginsenoside Rc in rat plasma by LC-MS/MS and its application to a pharmacokinetic study, J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 919-920 (2013) 75-78.
|
[53] |
Z. Ju, J. Li, H. Han, et al., Analysis of bioactive components and multi-component pharmacokinetics of saponins from the leaves of Panax notoginseng in rat plasma after oral administration by LC-MS/MS, J. Sep. Sci. 41 (2018) 1512-1523.
|
[54] |
Y. Zhang, D. Tian, Y. Huang, et al., Pharmacokinetic evaluation of Shenfu Injection in beagle dogs after intravenous drip administration, Acta Pharm. Sin. B 6 (2016) 584-592.
|
[55] |
D. Wang, L. Di, A. Kang, et al., Effect of Bletilla striata polysaccharides on pharmacokinetics of 10 components in Panax notoginseng saponins, Chin. Tradit. Herb. Drugs 48 (2017) 737-746.
|
[56] |
A. Kang, J. Qian, J. Shan, et al., In vivo pharmacokinetic study on total saponins from roots of Panax ginseng in rats, Chin. Tradit. Herb. Drugs 46 (2015) 3045-3050.
|
[57] |
J. Zhao, C. Su, C. Yang, et al., Determination of ginsenosides Rb1, Rb2, and Rb3 in rat plasma by a rapid and sensitive liquid chromatography tandem mass spectrometry method: Application in a pharmacokinetic study, J. Pharm. Biomed. Anal. 64–65 (2012) 94-97.
|
[58] |
E.-A. Bae, M.-K. Choo, E.-K. Park, et al., Metabolism of ginsenoside R(c) by human intestinal bacteria and its related antiallergic activity, Biol. Pharm. Bull. 25 (2002) 743-747.
|
[59] |
K. Sasaki, D. Sasaki, K. Sasaki, et al., Growth stimulation of Bifidobacterium from human colon using daikenchuto in an in vitro model of human intestinal microbiota, Sci. Rep. 11 (2021), 4580.
|
[60] |
H. Chi, D.-H. Kim, G.-E. Ji, Transformation of ginsenosides Rb2 and Rc from Panax ginseng by food microorganisms, Biol. Pharm. Bull. 28 (2005) 2102-2105.
|
[61] |
J.-H. Jeon, J. Lee, M.-K. Choi, et al., Pharmacokinetics of ginsenosides following repeated oral administration of red ginseng extract significantly differ between species of experimental animals, Arch. Pharmacal Res. 43 (2020) 1335-1346.
|
[62] |
X. Gao, R. Yang, S. Xia, et al., PK-PD correlation of ginsenoside Rc from Shengmai Injection in patients with angina pectoris, Drug Eval. Res. 41(2018) 1241-1245, 1259.
|
[63] |
Z. Yang, Y. Yu, N. Sun, et al., Ginsenosides Rc, as a novel SIRT6 activator, protects mice against high fat diet induced NAFLD, J. Ginseng Res. 47 (2023) 376-384.
|
[64] |
Z. Gao, X. Yang, Y. Zhang, et al., Abstracts of the 12th National Convention on Sport Science of China, March 25, 2022, Shandong, China, 2022, pp.129-130.
|
[65] |
W. Liu, Y. Zheng, L. Han, et al., Saponins (Ginsenosides) from stems and leaves of Panax quinquefolium prevented high-fat diet-induced obesity in mice, Phytomedicine 15 (2008) 1140-1145.
|
[66] |
Y. Zheng, H. Li, J. Zhang, et al., Effect of saponins of Panax quinquefolium on inhibiting high-fat diet induced obesity and lipase activity of mice, J. Jilin Agric. Univ. 27 (2005) 519-521, 542.
|
[67] |
T.B. Ng, C.M. Wong, H.W. Yeung, Effect of ginsenosides Rg1, Rc and Rb2 on hormone-induced lipolysis and lipogenesis in rat epididymal fat cells, J. Ethnopharmacol. 16 (1986) 191-199.
|
[68] |
J.-W. Yang, S.S. Kim, Ginsenoside Rc promotes anti-adipogenic activity on 3T3-L1 adipocytes by down-regulating C/EBPα and PPARγ, Molecules 20 (2015) 1293-1303.
|
[69] |
Y. Wang, W. Fu, Y. Xue, et al., Ginsenoside Rc ameliorates endothelial insulin resistance via upregulation of angiotensin-converting enzyme 2, Front. Pharmacol. 12 (2021), 620524.
|
[70] |
M.-S. Lee, J.-T. Hwang, S.-H. Kim, et al., Ginsenoside Rc, an active component of Panax ginseng, stimulates glucose uptake in C2C12 myotubes through an AMPK-dependent mechanism, J. Ethnopharmacol. 127 (2010) 771-776.
|
[71] |
B. Xie, X. Zu, Z. Wang, et al., Ginsenoside Rc ameliorated atherosclerosis via regulating gut microbiota and fecal metabolites, Front. Pharmacol. 13 (2022), 990476.
|
[72] |
N. Koyama, N. Morisaki, Y. Saito, et al., Inhibitory effect of ginsenosides on migration of arterial smooth muscle cells, Am. J. Chin. Med. 20 (1992) 167-173.
|
[73] |
Z. Pan, J. Guo, K. Tang, et al., Ginsenoside Rc modulates SIRT6-NRF2 interaction to alleviate alcoholic liver disease, J. Agric. Food Chem. 70 (2022) 14220-14234.
|
[74] |
J.H. Lee, H. Lim, O. Shehzad, et al., Ginsenosides from Korean red ginseng inhibit matrix metalloproteinase-13 expression in articular chondrocytes and prevent cartilage degradation, Eur. J. Pharmacol. 724 (2014) 145-151.
|
[75] |
K. Rohde, M. Keller, L. la Cour Poulsen, et al., Genetics and epigenetics in obesity, Metabolism 92 (2019) 37-50.
|
[76] |
Z. Li, G.E. Ji, Ginseng and obesity, J. Ginseng Res. 42 (2018) 1-8.
|
[77] |
C. Couillard, P. Mauriege, P. Imbeault, et al., Hyperleptinemia is more closely associated with adipose cell hypertrophy than with adipose tissue hyperplasia, Int. J. Obes. Relat. Metab. Disord. 24(2000) 782-788.
|
[78] |
M.A. Ambele, P. Dhanraj, R. Giles, et al., Adipogenesis: A complex interplay of multiple molecular determinants and pathways, Int. J. Mol. Sci. 21 (2020), 4283.
|
[79] |
A. Kumar, S. Chauhan, Pancreatic lipase inhibitors: The road voyaged and successes, Life Sci. 271 (2021), 119115.
|
[80] |
G. Jia, J. Zhang, L. Han, et al., Anti-obesity effect of saponins from stems and leaves of Panax quinquefolium, Nat. Prod. Res. Dev. 17 (2005) 160-162.
|
[81] |
M.-Y. Song, B.-S. Kim, H. Kim, Influence of Panax ginseng on obesity and gut microbiota in obese middle-aged Korean women, J. Ginseng Res. 38 (2014) 106-115.
|
[82] |
N.A. ElSayed, G. Aleppo, V.R. Aroda, et al., Erratum. 2. Classification and diagnosis of diabetes: Standards of care in diabetes-2023, Diabetes Care 46 (2023), 1106.
|
[83] |
A. Rosengren, P. Dikaiou, Cardiovascular outcomes in type 1 and type 2 diabetes, Diabetologia 66 (2023) 425-437.
|
[84] |
D. Ambroselli, F. Masciulli, E. Romano, et al., New advances in metabolic syndrome, from prevention to treatment: The role of diet and food, Nutrients 15 (2023), 640.
|
[85] |
H.-D. Yuan, J.T. Kim, S.H. Kim, et al., Ginseng and diabetes: The evidences from in vitro, animal and human studies, J. Ginseng Res. 36 (2012) 27-39.
|
[86] |
K. Naseri, S. Saadati, A. Sadeghi, et al., The efficacy of ginseng (Panax) on human prediabetes and type 2 diabetes mellitus: A systematic review and meta-analysis, Nutrients 14 (2022), 2401.
|
[87] |
W. Lin, C. Chen, S. Liang, et al., Network pharmacology of ginsenosides improving insulin resistance, Chin. Tradit. Pat. Med. 38 (2016) 1455-1461.
|
[88] |
K.E. Merz, D.C. Thurmond, Role of skeletal muscle in insulin resistance and glucose uptake, Compr. Physiol. 10 (2020) 785-809.
|
[89] |
L. Sylow, V.L. Tokarz, E.A. Richter, et al., The many actions of insulin in skeletal muscle, the paramount tissue determining glycemia, Cell Metab. 33 (2021) 758-780.
|
[90] |
R. Kjoebsted, J.R. Hingst, J. Fentz, et al., AMPK in skeletal muscle function and metabolism, FASEB J. 32 (2018) 1741-1777.
|
[91] |
R.H. Pokhrel, S. Acharya, J.H. Ahn, et al., AMPK promotes antitumor immunity by downregulating PD-1 in regulatory T cells via the HMGCR/p38 signaling pathway, Mol. Cancer 20 (2021), 133.
|
[92] |
J. Bouviere, R.S. Fortunato, C. Dupuy, et al., Exercise-stimulated ROS sensitive signaling pathways in skeletal muscle, Antioxidants 10 (2021), 537.
|
[93] |
E.J. Bae, Sirtuin 6, a possible therapeutic target for type 2 diabetes, Arch. Pharm. Res. 40 (2017) 1380-1389.
|
[94] |
T.R. Einarson, A. Acs, C. Ludwig, et al., Prevalence of cardiovascular disease in type 2 diabetes: A systematic literature review of scientific evidence from across the world in 2007-2017, Cardiovasc. Diabetol. 17 (2018), 83.
|
[95] |
M. Knapp, X. Tu, R. Wu, Vascular endothelial dysfunction, a major mediator in diabetic cardiomyopathy, Acta Pharmacol. Sin. 40 (2019) 1-8.
|
[96] |
G. Yang, P.-L. Chu, L.C. Rump, et al., ACE2 and the homolog collectrin in the modulation of nitric oxide and oxidative stress in blood pressure homeostasis and vascular injury, Antioxid. Redox Signal. 26 (2017) 645-659.
|
[97] |
H. Zhang, R. Chen, C. Xu, et al., An integrated approach to discriminate the quality markers of traditional Chinese medicine preparation based on multi-dimensional characteristic network: Shenqi Jiangtang Granule as a case, J. Ethnopharmacol. 278 (2021), 114277.
|
[98] |
P. Kong, Z.-Y. Cui, X.-F. Huang, et al., Inflammation and atherosclerosis: Signaling pathways and therapeutic intervention, Signal Transduct. Target. Ther. 7 (2022), 131.
|
[99] |
P. Libby, The changing landscape of atherosclerosis, Nature 592 (2021) 524-533.
|
[100] |
Y. Sun, Y. Liu, K. Chen, Roles and mechanisms of ginsenoside in cardiovascular diseases: Progress and perspectives, Sci. China Life Sci. 59 (2016) 292-298.
|
[101] |
H. Lu, A. Daugherty, Atherosclerosis, Arterioscler. Thromb. Vasc. Biol. 35 (2015) 485-491.
|
[102] |
P. Marchio, S. Guerra-Ojeda, J.M. Vila, et al., Targeting early atherosclerosis: A focus on oxidative stress and inflammation, Oxid. Med. Cell. Longev. 2019 (2019), 8563845.
|
[103] |
M.A. Gimbrone Jr, G. Garcia-Cardena, Endothelial cell dysfunction and the pathobiology of atherosclerosis, Circ. Res. 118 (2016) 620-636.
|
[104] |
M.O.J. Grootaert, M.R. Bennett, Vascular smooth muscle cells in atherosclerosis: Time for a re-assessment, Cardiovasc. Res. 117 (2021) 2326-2339.
|
[105] |
D. Capece, D. Verzella, I. Flati, et al., NF-κB: Blending metabolism, immunity, and inflammation, Trends Immunol. 43 (2022) 757-775.
|
[106] |
L. Xing, M. Jiang, L. Dong, et al., Cardioprotective effects of the YiQiFuMai injection and isolated compounds on attenuating chronic heart failure via NF-κB inactivation and cytokine suppression, J. Ethnopharmacol. 148 (2013) 239-245.
|
[107] |
F. Li, Y.-S. Tan, H.-L. Chen, et al., Identification of schisandrin as a vascular endothelium protective component in YiQiFuMai Powder Injection using HUVECs binding and HPLC-DAD-Q-TOF-MS/MS analysis, J. Pharmacol. Sci. 129 (2015) 1-8.
|
[108] |
R. Loomba, S.L. Friedman, G.I. Shulman, Mechanisms and disease consequences of nonalcoholic fatty liver disease, Cell 184 (2021) 2537-2564.
|
[109] |
K. Yang, H.-H. Kim, Y.-R. Shim, et al., The efficacy of Panax ginseng for the treatment of nonalcoholic fatty liver disease: A systematic review and meta-analysis of preclinical studies, Nutrients 15 (2023), 721.
|
[110] |
D.H. Ipsen, J. Lykkesfeldt, P. Tveden-Nyborg, Molecular mechanisms of hepatic lipid accumulation in non-alcoholic fatty liver disease, Cell. Mol. Life Sci. 75 (2018) 3313-3327.
|
[111] |
M. Pawlak, P. Lefebvre, B. Staels, Molecular mechanism of PPARα action and its impact on lipid metabolism, inflammation and fibrosis in non-alcoholic fatty liver disease, J. Hepatol. 62 (2015) 720-733.
|
[112] |
S. Naiman, F.K. Huynh, R. Gil, et al., SIRT6 promotes hepatic beta-oxidation via activation of PPARα, Cell Rep. 29 (2019) 4127-4143.e8.
|
[113] |
Y. Xue, W. Fu, P. Yu, et al., Ginsenoside Rc alleviates myocardial ischemia-reperfusion injury by reducing mitochondrial oxidative stress and apoptosis: Role of SIRT1 activation, J. Agric. Food Chem. 71 (2023) 1547-1561.
|
[114] |
Q.X. Huang, H. Su, B. Qi, et al., A SIRT1 activator, Ginsenoside Rc, promotes energy metabolism in cardiomyocytes and neurons, J. Am. Chem. Soc. 143 (2021) 1416-1427.
|
[115] |
C. Zeng, M. Chen, Progress in nonalcoholic fatty liver disease: SIRT family regulates mitochondrial biogenesis, Biomolecules 12 (2022), 1079.
|
[116] |
D.J. Hunter, S. Bierma-Zeinstra, Osteoarthritis, Lancet 393 (2019) 1745-1759.
|
[117] |
M.T. Velasquez, J.D. Katz, Osteoarthritis: Another component of metabolic syndrome? Metab. Syndr. Relat. Disord. 8 (2010) 295-305.
|
[118] |
H.I. Kim, S.J. Chon, K.E. Seon, et al., Clinical effects of Korean red ginseng in postmenopausal women with hand osteoarthritis: A double-blind, randomized controlled trial, Front. Pharmacol. 12 (2021), 745568.
|
[119] |
A.M. Yassin, H.O. AbuBakr, A.I. Abdelgalil, et al., COL2A1 and caspase-3 as promising biomarkers for osteoarthritis prognosis in an Equus asinus model, Biomolecules 10 (2020), 354.
|
[120] |
E.-E. Mehana, A.F. Khafaga, S.S. El-Blehi, The role of matrix metalloproteinases in osteoarthritis pathogenesis: An updated review, Life Sci. 234 (2019), 116786.
|
[121] |
A. Batushansky, S. Zhu, R.K. Komaravolu, et al., Fundamentals of OA. An initiative of Osteoarthritis and Cartilage. Obesity and metabolic factors in OA, Osteoarthr. Cartil. 30 (2022) 501-515.
|
[122] |
W.-S. Choi, G. Lee, W.-H. Song, et al., The CH25H-CYP7B1-RORα axis of cholesterol metabolism regulates osteoarthritis, Nature 566 (2019) 254-258.
|
[123] |
T. Yu, M.H. Rhee, J. Lee, et al., Ginsenoside Rc from Korean red ginseng (Panax ginseng C.A. Meyer) attenuates inflammatory symptoms of gastritis, hepatitis and arthritis, Am. J. Chin. Med. 44 (2016) 595-615.
|
[124] |
Y. Zhong, Y. Chen, Z. Pan, et al., Ginsenoside Rc, as an FXR activator, alleviates acetaminophen-induced hepatotoxicity via relieving inflammation and oxidative stress, Front. Pharmacol. 13 (2022), 1027731.
|
[125] |
Y. Xue, X. Yu, X. Zhang, et al., Protective effects of ginsenoside Rc against acute cold exposure-induced myocardial injury in rats, J. Food Sci. 86 (2021) 3252-3264.
|
[126] |
L. Shi, W. Fu, H. Xu, et al., Ginsenoside Rc attenuates myocardial ischaemic injury through antioxidative and anti-inflammatory effects, Pharm. Biol. 60 (2022) 1038-1046.
|
[127] |
M.-K. Choi, S. Jin, J.-H. Jeon, et al., Tolerability and pharmacokinetics of ginsenosides Rb1, Rb2, Rc, Rd, and compound K after single or multiple administration of red ginseng extract in human beings, J. Ginseng Res. 44 (2020) 229-237.
|
[128] |
C.O. Ong, L.Y. Chan, P.B. Yung, et al., Use of traditional Chinese herbal medicine during pregnancy: A prospective survey, Acta Obstet. Gynecol. Scand. 84 (2005) 699-700.
|
[129] |
L.Y. Chan, P.Y. Chiu, T.K. Lau, Embryotoxicity study of ginsenoside Rc and Re in in vitro rat whole embryo culture, Reprod. Toxicol. 19 (2004) 131-134.
|
[130] |
Y. Hu, J. Zhang, F. Jiang, et al., Influences of ginsenosides Rb1, Rc on embryonal brain development and expression of GPx gene in rats, Chin. J. Histochem. Cytochem. 18 (2009) 606-610.
|
[131] |
M.C. Ichim, H.J. de Boer, A review of authenticity and authentication of commercial ginseng herbal medicines and food supplements, Front. Pharmacol. 11 (2021), 612071.
|
[132] |
A.G. Atanasov, S.B. Zotchev, V.M. Dirsch, et al., Natural products in drug discovery: Advances and opportunities, Nat. Rev. Drug Discov. 20 (2021) 200-216.
|
[133] |
A. Benitez-Paez, L. Kjoelbaek, E.M. Gomez Del Pulgar, et al., A multi-omics approach to unraveling the microbiome-mediated effects of arabinoxylan oligosaccharides in overweight humans, mSystems 4 (2019), e00209-e00219.
|
[134] |
Y. Lu, M. Shao, H. Xiang, et al., Integrative transcriptomics and metabolomics explore the mechanism of kaempferol on improving nonalcoholic steatohepatitis, Food Funct. 11 (2020) 10058-10069.
|
[135] |
L.Q. Jia, X. Ju, Y.X. Ma, et al., Comprehensive multiomics analysis of the effect of ginsenoside Rb1 on hyperlipidemia, Aging 13 (2021) 9732-9747.
|
[136] |
F. Boniolo, E. Dorigatti, A.J. Ohnmacht, et al., Artificial intelligence in early drug discovery enabling precision medicine, Expert Opin. Drug Discov. 16 (2021) 991-1007.
|
[137] |
Y. Zhu, Z. Ouyang, H. Du, et al., New opportunities and challenges of natural products research: When target identification meets single-cell multiomics, Acta Pharm. Sin. B 12 (2022) 4011-4039.
|
[138] |
P.-X. Wang, X.-R. Deng, C.-H. Zhang, et al., Gut microbiota and metabolic syndrome, Chin. Med. J. 133 (2020) 808-816.
|
[139] |
K. Dabke, G. Hendrick, S. Devkota, The gut microbiome and metabolic syndrome, J. Clin. Invest. 129 (2019) 4050-4057.
|
[140] |
F. Zheng, M.-Y. Zhang, Y.-X. Wu, et al., Biotransformation of ginsenosides (Rb1, Rb2, Rb3, Rc) in human intestinal bacteria and its effect on intestinal flora, Chem. Biodivers. 18 (2021), e2100296.
|
[141] |
M. Sellami, O. Slimeni, A. Pokrywka, et al., Herbal medicine for sports: A review, J. Int. Soc. Sports Nutr. 15 (2018), 14.
|
[142] |
H. Lee, J.-K. Heo, G.-H. Lee, et al., Ginsenoside Rc is a new selective UGT1A9 inhibitor in human liver microsomes and recombinant human UGT isoforms, Drug Metab. Dispos. 47 (2019) 1372-1379.
|
[143] |
J.-H. Jeon, S. Lee, W. Lee, et al., Herb-drug interaction of red ginseng extract and ginsenoside Rc with valsartan in rats, Molecules 25 (2020), 622.
|