Citation: | Leeann Yao, Dejan Bojic, Mingyao Liu. Applications and safety of gold nanoparticles as therapeutic devices in clinical trials[J]. Journal of Pharmaceutical Analysis, 2023, 13(9): 960-967. doi: 10.1016/j.jpha.2023.06.001 |
M.B. Chaudhari, P.P. Desai, P.A. Patel, et al., Solid lipid nanoparticles of amphotericin B (AmbiOnp): In vitro and in vivo assessment towards safe and effective oral treatment module, Drug Deliv. Transl. Res. 6 (2016) 354-364.
|
C. Campanella, C. Caruso Bavisotto, M. Logozzi, et al., On the choice of the extracellular vesicles for therapeutic purposes, Int. J. Mol. Sci. 20 (2019), 236.
|
A.C. Anselmo, S. Mitragotri, A Review of Clinical Translation of Inorganic Nanoparticles, AAPS J. 17 (2015) 1041-1054.
|
M. Mir, S. Ishtiaq, S. Rabia, et al., Nanotechnology: From In Vivo Imaging System to Controlled Drug Delivery, Nanoscale Res. Lett. 12 (2017), 500.
|
Y.-C. Yeh, B. Creran, V.M. Rotello, Gold nanoparticles: Preparation, properties, and applications in bionanotechnology, Nanoscale 4 (2012) 1871-1880.
|
A. Kumar, X. Zhang, X.-J. Liang, Gold nanoparticles: Emerging paradigm for targeted drug delivery system, Biotechnol. Adv. 31 (2013) 593-606.
|
A. Majdalawieh, M.C. Kanan, O. El-Kadri, et al., Recent advances in gold and silver nanoparticles: Synthesis and applications, J. Nanosci. Nanotechnol. 14 (2014) 4757-4780.
|
Y. Li, S. Liu, T. Yao, et al., Controllable synthesis of gold nanoparticles with ultrasmall size and high monodispersity via continuous supplement of precursor, Dalton Trans. 41 (2012) 11725-11730.
|
M. Grzelczak, J. Perez-Juste, P. Mulvaney, et al., Shape control in gold nanoparticle synthesis, Chem. Soc. Rev. 37 (2008) 1783-1791.
|
L.A. Dykman, N.G. Khlebtsov, Gold nanoparticles in biology and medicine: recent advances and prospects, Acta Naturae 3 (2011) 34-55.
|
J.D.E.T. Wilton-Ely, The surface functionalisation of gold nanoparticles with metal complexes, Dalton Trans. (2008) 25-29.
|
A.S. Thakor, J. Jokerst, C. Zavaleta, et al., Gold nanoparticles: A revival in precious metal administration to patients, Nano Lett. 11 (2011) 4029-4036.
|
A. Liang, Q. Liu, G. Wen, et al., The surface-plasmon-resonance effect of nanogold/silver and its analytical applications, TrAC Trends Anal. Chem. 37 (2012) 32-47.
|
H. Yang, S.-Y. Fung, M. Liu, Programming the cellular uptake of physiologically stable peptide-gold nanoparticle hybrids with single amino acids, Angew. Chem. Int. Ed. 50 (2011) 9643-9646.
|
P. Singh, S. Pandit, V.R.S.S. Mokkapati, et al., Gold nanoparticles in diagnostics and therapeutics for human cancer, Int. J. Mol. Sci. 19 (2018), 1979.
|
S. Sindhwani, A.M. Syed, J. Ngai, et al., The entry of nanoparticles into solid tumours, Nat. Mater. 19 (2020) 566-575.
|
M. Zhao, M. Liu, New Avenues for Nanoparticle-Related Therapies, Nanoscale Res. Lett. 13 (2018), 136.
|
I. Javed, S.Z. Hussain, A. Shahzad, et al., Lecithin-gold hybrid nanocarriers as efficient and pH selective vehicles for oral delivery of diacerein-In-vitro and in-vivo study, Colloids Surf. B. 141 (2016) 1-9.
|
B.R. Dalvi, E.A. Siddiqui, A.S. Syed, et al., Nevirapine Loaded Core Shell Gold Nanoparticles by Double Emulsion Solvent Evaporation: In vitro and In vivo Evaluation, Curr. Drug Deliv. 13 (2016) 1071-1083.
|
I. Somasuntharam, K. Yehl, S.L. Carroll, et al., Knockdown of TNF-α by DNAzyme gold nanoparticles as an anti-inflammatory therapy for myocardial infarction, Biomaterials 83 (2016) 12-22.
|
K. Chaudhary, H. Moore, A. Tandon, et al., Nanotechnology and adeno-associated virus-based decorin gene therapy ameliorates peritoneal fibrosis, Am. J. Physiol. Ren. Physiol. 307 (2014) F777-F782.
|
W. Chen, W. Zeng, J. Sun, et al., Construction of an Aptamer-SiRNA Chimera-Modified Tissue-Engineered Blood Vessel for Cell-Type-Specific Capture and Delivery, ACS Nano 9 (2015) 6069-6076.
|
H. Nemati, M.-H. Ghahramani, R. Faridi-Majidi, et al., Using siRNA-based spherical nucleic acid nanoparticle conjugates for gene regulation in psoriasis, J. Control. Release 268 (2017) 259-268.
|
K.Y.J. Lee, G.Y. Lee, L.A. Lane, et al., Functionalized, long-circulating, and ultrasmall gold nanocarriers for overcoming the barriers of low nanoparticle delivery efficiency and poor tumor penetration, Bioconj. Chem. 28 (2017) 244-252.
|
T. Bhowmik, P.P. Saha, A. Sarkar, et al., Evaluation of cytotoxicity of a purified venom protein from Naja kaouthia (NKCT1) using gold nanoparticles for targeted delivery to cancer cell, Chem. Biol. Interact. 261 (2017) 35-49.
|
H. Hua, N. Zhang, D. Liu, et al., Multifunctional gold nanorods and docetaxel-encapsulated liposomes for combined thermo-and chemotherapy, Int. J. Nanomed. 12 (2017) 7869-7884.
|
R. Heo, H.Y. Yoon, H. Ko, et al., Gold-installed biostable nanocomplexes for tumor-targeted siRNA delivery in vivo, Chem. Commun. 51 (2015) 16656-16659.
|
E.S. Davidi, T. Dreifuss, M. Motiei, et al., Cisplatin-conjugated gold nanoparticles as a theranostic agent for head and neck cancer, Head Neck 40 (2018) 70-78.
|
S.K. Libutti, G.F. Paciotti, A.A. Byrnes, et al., Phase I and pharmacokinetic studies of CYT-6091, a novel PEGylated colloidal gold-rhTNF nanomedicine, Clin. Cancer Res. 16 (2010) 6139-6149.
|
P. Kumthekar, C.H. Ko, T. Paunesku, et al., A first-in-human phase 0 clinical study of RNA interference-based spherical nucleic acids in patients with recurrent glioblastoma, Sci. Transl. Med. 13 (2021), eabb3945.
|
D. Tatovic, M.A. McAteer, J. Barry, et al., Safety of the use of gold nanoparticles conjugated with proinsulin peptide and administered by hollow microneedles as an immunotherapy in type 1 diabetes, Immunother. Advanc. 2 (2022), ltac002.
|
M. Khoobchandani, K.K. Katti, A.R. Karikachery, et al., New approaches in breast cancer therapy through green nanotechnology and nano-ayurvedic medicine-pre-clinical and pilot human clinical investigations, Int. J. Nanomed. 15 (2020) 181-197.
|
N. Nilubol, Z. Yuan, G.F. Paciotti, et al., Novel dual-action targeted nanomedicine in mice with metastatic thyroid cancer and pancreatic neuroendocrine tumors, J. Natl. Cancer Inst. 110 (2018) 1019-1029.
|
J.B. Vines, J.-H. Yoon, N.-E. Ryu, et al., Gold Nanoparticles for Photothermal Cancer Therapy, Front. Chem. 7 (2019), 167.
|
A.N. Kharlamov, A.E. Tyurnina, V.S. Veselova, et al., Silica-gold nanoparticles for atheroprotective management of plaques: Results of the NANOM-FIM trial, Nanoscale 7 (2015) 8003-8015.
|
A.N. Kharlamov, J.A. Feinstein, J.A. Cramer, et al., Plasmonic photothermal therapy of atherosclerosis with nanoparticles: Long-term outcomes and safety in NANOM-FIM trial, Future Cardiol. 13 (2017) 345-363.
|
J.M. Stern, V.V. Kibanov Solomonov, E. Sazykina, et al., Initial Evaluation of the Safety of Nanoshell-Directed Photothermal Therapy in the Treatment of Prostate Disease, Int. J. Toxicol. 35 (2016) 38-46.
|
A.R. Rastinehad, H. Anastos, E. Wajswol, et al., Gold nanoshell-localized photothermal ablation of prostate tumors in a clinical pilot device study, Proc. Natl. Acad. Sci. U.S.A. 116 (2019) 18590-18596.
|
D. Paithankar, B.H. Hwang, G. Munavalli, et al., Ultrasonic delivery of silica-gold nanoshells for photothermolysis of sebaceous glands in humans: Nanotechnology from the bench to clinic, J. Control. Release 206 (2015) 30-36.
|
Y. Pang, C. Wei, R. Li, et al., Photothermal conversion hydrogel based mini-eye patch for relieving dry eye with long-term use of the light-emitting screen, Int. J. Nanomed. 14 (2019) 5125-5133.
|
ClinicalTrials.gov, MRI/US Fusion Imaging and Biopsy in Combination with Nanoparticle Directed Focal Therapy for Ablation of Prostate Tissue. https://clinicaltrials.gov/ct2/show/NCT02680535. (Accessed 22 April 2023).
|
ClinicalTrials.gov, An Extension Study MRI/US Fusion Imaging and Biopsy in Combination with Nanoparticle Directed Focal Therapy for Ablation of Prostate Tissue. https://clinicaltrials.gov/ct2/show/NCT04240639. (Accessed 22 April 2023).
|
ClinicalTrials.gov, Efficacy Study of AuroLase Therapy in Subjects with Primary and/or Metastatic Lung Tumors. https://www.clinicaltrials.gov/ct2/show/NCT01679470. (Accessed 22 April 2023).
|
ClinicalTrials.gov, Pilot Study of AuroLase(tm) Therapy in Refractory and/or Recurrent Tumors of the Head and Neck. https://clinicaltrials.gov/ct2/show/NCT00848042. (Accessed 22 April 2023).
|
ClinicalTrials.gov, Multiple Arm Study of Sebacia Microparticles in the Treatment of Acne Vulgaris. https://clinicaltrials.gov/ct2/show/NCT02219074. (Accessed 22 April 2023).
|
T. Hayashi, K. Tanaka, M. Haruta, Selective vapor-phase epoxidation of propylene over Au/TiO2 catalysts in the presence of oxygen and hydrogen, J. Catal. 178 (1998) 566-575.
|
X. Shen, W. Liu, X. Gao, et al., Mechanisms of Oxidase and Superoxide Dismutation-like Activities of Gold, Silver, Platinum, and Palladium, and Their Alloys: A General Way to the Activation of Molecular Oxygen, J. Am. Chem. Soc. 137 (2015) 15882-15891.
|
X. Huang, I.H. El-Sayed, X. Yi, et al., Gold nanoparticles: Catalyst for the oxidation of NADH to NAD+, J. Photochem. Photobiol. B 81 (2005) 76-83.
|
C. Canto, K.J. Menzies, J. Auwerx, NAD(+) Metabolism and the control of energy homeostasis: A balancing act between mitochondria and the nucleus, Cell Metab. 22 (2015) 31-53.
|
U. Funfschilling, L.M. Supplie, D. Mahad, et al., Glycolytic oligodendrocytes maintain myelin and long-term axonal integrity, Nature 485 (2012) 517-521.
|
M.B. Rone, Q.-L. Cui, J. Fang, et al., Oligodendrogliopathy in Multiple Sclerosis: Low Glycolytic Metabolic Rate Promotes Oligodendrocyte Survival, J. Neurosci. 36 (2016) 4698-4707.
|
A.P. Robinson, J.Z. Zhang, H.E. Titus, et al., Nanocatalytic activity of clean-surfaced, faceted nanocrystalline gold enhances remyelination in animal models of multiple sclerosis, Sci. Rep. 10 (2020), 1936.
|
ClinicalTrials.gov, A Phase I SAD and MAD Clinical Trial of CNM-Au8 in Healthy Male and Female Volunteers. https://clinicaltrials.gov/ct2/show/NCT02755870. (Accessed 21 April 2023).
|
ClinicalTrials.gov, 31P-MRS Imaging to Assess the Effects of CNM-Au8 on Impaired Neuronal Redox State in Amyotrophic Lateral Sclerosis (REPAIR-ALS) (REPAIR-ALS). https://clinicaltrials.gov/ct2/show/NCT03843710. (Accessed 21 April 2023).
|
ClinicalTrials.gov, 31P-MRS Imaging to Assess the Effects of CNM-Au8 on Impaired Neuronal Redox State in Multiple Sclerosis. (REPAIR-MS). https://clinicaltrials.gov/ct2/show/NCT03993171. (Accessed 22 April 2023).
|
ClinicalTrials.gov, 31P-MRS Imaging to Assess the Effects of CNM-Au8 on Impaired Neuronal Redox State in Parkinson’s Disease (REPAIR-PD). https://clinicaltrials.gov/ct2/show/NCT03815916. (Accessed 22 April 2023).
|
ClinicalTrials.gov, Intermediate Expanded Access Protocol for ALS. https://clinicaltrials.gov/ct2/show/NCT04081714. (Accessed 22 April 2023).
|
ClinicalTrials.gov, HEALEY ALS Platform Trial - Regimen C CNM-Au8. https://clinicaltrials.gov/ct2/show/NCT04414345. (Accessed 22 April 2023).
|
ClinicalTrials.gov, HEALEY ALS Platform Trial - Master Protocol. https://clinicaltrials.gov/ct2/show/NCT04297683. (Accessed 22 April 2023).
|
ClinicalTrials.gov, Therapeutic Nanocatalysis to Slow Disease Progression of Amyotrophic Lateral Sclerosis (ALS) (RESCUE-ALS). https://clinicaltrials.gov/ct2/show/NCT04098406. (Accessed 22 April 2023).
|
ClinicalTrials.gov, Nanocrystalline Gold to Treat Remyelination Failure in Chronic Optic Neuropathy in Multiple Sclerosis (VISIONARY-MS). https://clinicaltrials.gov/ct2/show/NCT03536559. (Accessed 22 April 2023).
|
ClinicalTrials.gov, A Multi-Center, Open-Label Long-Term Extension Study of CNM-Au8 in Patients with Stable Relapsing Multiple Sclerosis (VISIONMS-LTE). https://clinicaltrials.gov/ct2/show/NCT04626921. (Accessed 22 April 2023).
|
R. Goel, N. Shah, R. Visaria, et al., Biodistribution of TNF-α-coated gold nanoparticles in an in vivo model system, Nanomedicine (Lond). 4 (2009) 401-410.
|
H. Yang, Y. Zhou, S.-Y. Fung, et al., Amino Acid Structure Determines the Immune Responses Generated by Peptide-Gold Nanoparticle Hybrids, Part. Part. Syst. Charact. 30 (2013) 1039-1043.
|
H. Yang, S.-Y. Fung, S. Xu, et al., Amino Acid-Dependent Attenuation of Toll-like Receptor Signaling by Peptide-Gold Nanoparticle Hybrids, ACS Nano 9 (2015) 6774-6784.
|
D. Lee, J. Zhao, H. Yang, et al., Effective delivery of a rationally designed intracellular peptide drug with gold nanoparticle-peptide hybrids, Nanoscale 7 (2015) 12356-12360.
|
D.P. Cormode, P.C. Naha, Z.A. Fayad, Nanoparticle contrast agents for computed tomography: A focus on micelles, Contrast Media Mol. Imaging 9 (2014) 37-52.
|
Q.-Y. Cai, S.H. Kim, K.S. Choi, et al., Colloidal gold nanoparticles as a blood-pool contrast agent for X-ray computed tomography in mice, Investig. Radiol. 42 (2007) 797-806.
|
D. Kim, S. Park, J.H. Lee, et al., Antibiofouling polymer-coated gold nanoparticles as a contrast agent for in vivo X-ray computed tomography imaging, J. Am. Chem. Soc. 129 (2007) 7661-7665.
|
Y.C. Dong, M. Hajfathalian, P.S.N. Maidment, et al., Effect of Gold Nanoparticle Size on Their Properties as Contrast Agents for Computed Tomography, Sci. Rep. 9 (2019), 14912.
|
L. Moriggi, C. Cannizzo, E. Dumas, et al., Gold nanoparticles functionalized with gadolinium chelates as high-relaxivity MRI contrast agents, J. Am. Chem. Soc. 131 (2009) 10828-10829.
|
M. Shahid, Water soluble gold nanoparticles based high relaxivity MRI contrast agents, Mater. Res. Express 6 (2019), 1250h1.
|
S. Penninckx, A.-C. Heuskin, C. Michiels, et al., Gold Nanoparticles as a Potent Radiosensitizer: A Transdisciplinary Approach from Physics to Patient, Cancers 12 (2020), 2021.
|
W. He, Y.-T. Zhou, W.G. Wamer, et al., Intrinsic catalytic activity of Au nanoparticles with respect to hydrogen peroxide decomposition and superoxide scavenging, Biomaterials 34 (2013) 765-773.
|
Y. Lin, J. Ren, X. Qu, Nano-gold as artificial enzymes: Hidden talents, Adv. Mater. 26 (2014) 4200-4217.
|
A.A. Khan, A.H. Rahmani, Y.H. Aldebasi, et al., Biochemical and pathological studies on peroxidases-an updated review, Glob. J. Health Sci. 6 (2014) 87-98.
|
L. Goth, P. Rass, A. Pay, Catalase enzyme mutations and their association with diseases, Mol. Diagn. 8 (2004) 141-149.
|
National Nanotechnology Initiative, National Nanotechnology Initiative Supplement to the President’s 2021 Budget. https://www.nano.gov/sites/default/files/pub_resource/NNI-FY21-Budget-Supplement.pdf. (Accessed 21 April 2023).
|