Citation: | Yun Ji, Kaiji Sun, Ying Yang, Zhenlong Wu. Dihydroartemisinin ameliorates innate inflammatory response induced by Streptococcus suis-derived muramidase-released protein via inactivation of TLR4-dependent NF-κB signaling[J]. Journal of Pharmaceutical Analysis, 2023, 13(10): 1183-1194. doi: 10.1016/j.jpha.2023.05.013 |
J. Dutkiewicz, J. Sroka, V. Zajac, et al., Streptococcus suis: a re-emerging pathogen associated with occupational exposure to pigs or pork products. Part I - Epidemiology, Ann. Agric. Environ. Med. 24 (2017) 683-695.
|
G. Goyette-Desjardins, J.P. Auger, J. Xu, et al., Streptococcus suis, an important pig pathogen and emerging zoonotic agent-an update on the worldwide distribution based on serotyping and sequence typing, Emerg. Microbes Infect. 3 (2014), e45.
|
N. Fittipaldi, M. Segura, D. Grenier, et al., Virulence factors involved in the pathogenesis of the infection caused by the swine pathogen and zoonotic agent Streptococcus suis, Future Microbiol. 7 (2012) 259-279.
|
M. Gottschalk, J. Xu, C. Calzas, et al., Streptococcus suis: a new emerging or an old neglected zoonotic pathogen? Future Microbiol. 5 (2010) 371-391.
|
A.G. Tsiotou, G.H. Sakorafas, G. Anagnostopoulos, et al., Septic shock; current pathogenetic concepts from a clinical perspective, Med. Sci. Monit. 11 (2005) RA76-RA85.
|
M. Segura, G. Vanier, D. Al-Numani, et al., Proinflammatory cytokine and chemokine modulation by Streptococcus suis in a whole-blood culture system, FEMS Immunol. Med. Microbiol. 47 (2006) 92-106.
|
T. Tenenbaum, T.M. Asmat, M. Seitz, et al., Biological activities of suilysin: role in Streptococcus suis pathogenesis, Future Microbiol. 11 (2016) 941-954.
|
E. Vinogradov, G. Goyette-Desjardins, M. Okura, et al., Structure determination of Streptococcus suis serotype 9 capsular polysaccharide and assignment of functions of the cps locus genes involved in its biosynthesis, Carbohydr. Res. 433 (2016) 25-30.
|
C.G. Baums, G.J. Verkuhlen, T. Rehm, et al., Prevalence of Streptococcus suis genotypes in wild boars of northwestern Germany, Appl. Environ. Microbiol. 73 (2007) 711-717.
|
Q. Li, Y. Fu, C. Ma, et al., The non-conserved region of MRP is involved in the virulence of Streptococcus suis serotype 2, Virulence 8 (2017) 1274-1289.
|
C. Schwerk, Muramidase-released protein of Streptococcus suis: new insight into its impact on virulence, Virulence 8 (2017) 1078-1080.
|
J. Wang, D. Kong, S. Zhang, et al., Interaction of fibrinogen and muramidase-released protein promotes the development of Streptococcus suis meningitis, Front. Microbiol. 6 (2015), 1001.
|
Y. Pian, P. Wang, P. Liu, et al., Proteomics identification of novel fibrinogen-binding proteins of Streptococcus suis contributing to antiphagocytosis, Front. Cell. Infect. Microbiol. 5 (2015), 19.
|
L. Ferrero-Miliani, O.H. Nielsen, P.S. Andersen, et al., Chronic inflammation: importance of NOD2 and NALP3 in interleukin-1beta generation, Clin. Exp. Immunol. 147 (2007) 227-235.
|
M.P. Lecours, M. Segura, N. Fittipaldi, et al., Immune receptors involved in Streptococcus suis recognition by dendritic cells, PLoS One 7 (2012), e44746.
|
A. Wojtkowiak-Giera, M. Derda, D. Kosik-Bogacka, et al., Influence of Artemisia annua L. on toll-like receptor expression in brain of mice infected with Acanthamoeba sp, Exp. Parasitol. 185 (2018) 17-22.
|
C. Wu, J. Liu, X. Pan, et al., Design, synthesis and evaluation of the antibacterial enhancement activities of amino dihydroartemisinin derivatives, Molecules 18 (2013) 6866-6882.
|
X. Huang, Z. Xie, F. Liu, et al., Dihydroartemisinin inhibits activation of the Toll-like receptor 4 signaling pathway and production of type I interferon in spleen cells from lupus-prone MRL/lpr mice, Int. Immunopharmacol. 22 (2014) 266-272.
|
B. Li, R. Zhang, J. Li, et al., Antimalarial artesunate protects sepsis model mice against heat-killed Escherichia coli challenge by decreasing TLR4, TLR9 mRNA expressions and transcription factor NF-kappa B activation, Int. Immunopharmacol. 8 (2008) 379-389.
|
H.G. Kim, J.H. Yang, E.H. Han, et al., Inhibitory effect of dihydroartemisinin against phorbol ester-induced cyclooxygenase-2 expression in macrophages, Food Chem. Toxicol. 56 (2013) 93-99.
|
M. Wei, X. Xie, X. Chu, et al., Dihydroartemisinin suppresses ovalbumin-induced airway inflammation in a mouse allergic asthma model, Immunopharmacol. Immunotoxicol. 35 (2013) 382-389.
|
L. Jia, Q. Song, C. Zhou, et al., Dihydroartemisinin as a putative STAT3 inhibitor, suppresses the growth of head and neck squamous cell carcinoma by targeting Jak2/STAT3 signaling, PLoS One 11 (2016), e0147157.
|
K.J. Livak, T.D. Schmittgen, Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT Method, Methods 25 (2001) 402-408.
|
Q. Li, H. Liu, D. Du, et al., Identification of novel laminin- and fibronectin-binding proteins by far-Western blot: Capturing the adhesins of Streptococcus suis type 2, Front. Cell. Infect. Microbiol. 5 (2015), 82.
|
E.A. Ivanova, A.N. Orekhov, Monocyte activation in immunopathology: Cellular test for development of diagnostics and therapy, J. Immunol. Res. 2016 (2016), 4789279.
|
A. Lavagna, J.P. Auger, A. Dumesnil, et al., Interleukin-1 signaling induced by Streptococcus suis serotype 2 is strain-dependent and contributes to bacterial clearance and inflammation during systemic disease in a mouse model of infection, Vet. Res. 50 (2019), 52.
|
L. Zhang, J. Wang, W. Xu, et al., Magnolol inhibits Streptococcus suis-induced inflammation and ROS formation via TLR2/MAPK/NF-κB signaling in RAW264.7 cells, Pol. J. Vet. Sci. 21 (2018) 111-118.
|
Y. Zheng, Y. Li, X. Ran, et al., Mettl14 mediates the inflammatory response of macrophages in atherosclerosis through the NF-κB/IL-6 signaling pathway, Cell. Mol. Life Sci. 79 (2022), 311.
|
R. Graveline, M. Segura, D. Radzioch, et al., TLR2-dependent recognition of Streptococcus suis is modulated by the presence of capsular polysaccharide which modifies macrophage responsiveness, Int. Immunol. 19 (2007) 375-389.
|
R. Li, A. Zhang, B. Chen, et al., Response of swine spleen to Streptococcus suis infection revealed by transcription analysis, BMC Genomics 11 (2010), 556.
|
Q. Zhang, Y. Yang, S. Yan, et al., A novel pro-inflammatory protein of Streptococcus suis 2 induces the Toll-like receptor 2-dependent expression of pro-inflammatory cytokines in RAW 264.7 macrophages via activation of ERK1/2 pathway, Front. Microbiol. 6 (2015), 178.
|
Q. Zhang, J. Huang, J. Yu, et al., HP1330 contributes to Streptococcus suis virulence by inducing Toll-like receptor 2- and ERK1/2-dependent pro-inflammatory responses and influencing in vivo S. suis loads, Front. Immunol. 8 (2017), 869.
|
Z. Wang, M. Guo, L. Kong, et al., TLR4 agonist combined with trivalent protein JointS of Streptococcus suis provides immunological protection in animals, Vaccines (Basel) 9 (2021), 184.
|
L. Bi, Y. Pian, S. Chen, et al., Toll-like receptor 4 confers inflammatory response to Suilysin, Front. Microbiol. 6 (2015), 644.
|
S.M. Opal, C.E. Huber, Bench-to-bedside review: toll-like receptors and their role in septic shock, Crit. Care 6 (2002) 125-136.
|
S. Samarpita, J.Y. Kim, M.K. Rasool, et al., Investigation of toll-like receptor (TLR) 4 inhibitor TAK-242 as a new potential anti-rheumatoid arthritis drug, Arthritis Res. Ther. 22 (2020), 16.
|
F. Ma, X. Chang, G. Wang, et al., Streptococcus suis serotype 2 stimulates neutrophil extracellular traps formation via activation of p38 MAPK and ERK1/2, Front. Immunol. 9 (2018), 2854.
|
H. Zheng, H. Sun, M.C. Dominguez-Punaro, et al., Evaluation of the pathogenesis of meningitis caused by Streptococcus suis sequence type 7 using the infection of BV2 microglial cells, J. Med. Microbiol. 62 (2013) 360-368.
|
L. Swanson, G.D. Katkar, J. Tam, et al., TLR4 signaling and macrophage inflammatory responses are dampened by GIV/Girdin, Proc. Natl. Acad. Sci. U S A 117 (2020) 26895-26906.
|
M. Soutto, N. Bhat, S. Khalafi, et al., NF-kB-dependent activation of STAT3 by H. pylori is suppressed by TFF1, Cancer Cell Int. 21 (2021), 444.
|
L. Liu, H. Guo, A. Song, et al., Progranulin inhibits LPS-induced macrophage M1 polarization via NF-кB and MAPK pathways, BMC Immunol. 21 (2020), 32.
|
Y.G. Zhao, Y. Wang, Z. Guo, et al., Dihydroartemisinin ameliorates inflammatory disease by its reciprocal effects on Th and regulatory T cell function via modulating the mammalian target of rapamycin pathway, J. Immunol. 189 (2012) 4417-4425.
|
S.C. Yan, Y.J. Wang, Y.J. Li, et al., Dihydroartemisinin regulates the Th/Treg balance by inducing activated CD4+ T cell apoptosis via heme oxygenase-1 induction in mouse models of inflammatory bowel disease, Molecules 24 (2019), 2475.
|
Y. Niu, Y. Zhao, J. He, et al., Dietary dihydroartemisinin supplementation alleviates intestinal inflammatory injury through TLR4/NOD/NF-κB signaling pathway in weaned piglets with intrauterine growth retardation, Anim. Nutr. 7 (2021) 667-678.
|
T. Zhang, X. Zhang, C. Lin, et al., Artemisinin inhibits TLR4 signaling by targeting co-receptor MD2 in microglial BV-2 cells and prevents lipopolysaccharide-induced blood-brain barrier leakage in mice, J. Neurochem. 157 (2021) 611-623.
|