Citation: | Yanrong Ma, Fenglin Ran, Mingyan Xin, Xueyan Gou, Xinyi Wang, Xinan Wu. Albumin-bound kynurenic acid is an appropriate endogenous biomarker for assessment of the renal tubular OATs-MRP4 channel[J]. Journal of Pharmaceutical Analysis, 2023, 13(10): 1205-1220. doi: 10.1016/j.jpha.2023.05.007 |
A.J. McLachlan, S.E. Tett, Pharmacokinetics of fluconazole in people with HIV infection: A population analysis, Br. J. Clin. Pharmacol. 41 (1996) 291-298.
|
S. Tett, S. Moore, J. Ray, Pharmacokinetics and bioavailability of fluconazole in two groups of males with human immunodeficiency virus (HIV) infection compared with those in a group of males without HIV infection, Antimicrob. Agents Chemother. 39 (1995) 1835-1841.
|
E.N. Frazee, A.D. Rule, S.M. Herrmann, et al., Serum cystatin C predicts vancomycin trough levels better than serum creatinine in hospitalized patients: A cohort study, Crit. Care 18 (2014), R110.
|
J. Goncalves-Pereira, P. Povoa, Antibiotics in critically ill patients: A systematic review of the pharmacokinetics of β-lactams, Crit. Care 15 (2011), R206.
|
J.A. Roberts, M.H. Abdul-Aziz, J. Lipman, et al., Individualised antibiotic dosing for patients who are critically ill: Challenges and potential solutions, Lancet Infect. Dis. 14 (2014) 498-509.
|
K.M. Morrissey, S.L. Stocker, M.B. Wittwer, et al., Renal transporters in drug development, Annu. Rev. Pharmacol. Toxicol. 53 (2013) 503-529.
|
K. Wang, B. Kestenbaum, Proximal tubular secretory clearance: A neglected partner of kidney function, Clin. J. Am. Soc. Nephrol. 13 (2018) 1291-1296.
|
A.D. Rodrigues, K.S. Taskar, H. Kusuhara, et al., Endogenous probes for drug transporters: Balancing vision with reality, Clin. Pharmacol. Ther. 103 (2018) 434-448.
|
X. Chu, G.H. Chan, R. Evers, Identification of endogenous biomarkers to predict the propensity of drug candidates to cause hepatic or renal transporter-mediated drug-drug interactions, J. Pharm. Sci. 106 (2017) 2357-2367.
|
S.E. Tett, C.M. Kirkpatrick, A.S. Gross, et al., Principles and clinical application of assessing alterations in renal elimination pathways, Clin. Pharmacokinet. 42 (2003) 1193-1211.
|
Y. Cheng, A. Vapurcuyan, M. Shahidullah, et al., Expression of organic anion transporter 2 in the human kidney and its potential role in the tubular secretion of guanine-containing antiviral drugs, Drug Metab. Dispos. 40 (2012) 617-624.
|
T. Imaoka, H. Kusuhara, M. Adachi, et al., Functional involvement of multidrug resistance-associated protein 4 (MRP4/ABCC4) in the renal elimination of the antiviral drugs adefovir and tenofovir, Mol. Pharmacol. 71 (2007) 619-627.
|
A.A. El-Sheikh, R. Greupink, H.M. Wortelboer, et al., Interaction of immunosuppressive drugs with human organic anion transporter (OAT) 1 and OAT3, and multidrug resistance-associated protein (MRP) 2 and MRP4, Transl. Res. 162 (2013) 398-409.
|
R.S.D. Cunha, C.A.B. Azevedo, C.A. Falconi, et al., The interplay between uremic toxins and albumin, membrane transporters and drug interaction, Toxins 14 (2022), 177.
|
Y. Imamura, Y. Tsuruya, K. Damme, et al., 6β-Hydroxycortisol is an endogenous probe for evaluation of drug-drug interactions involving a multispecific renal organic anion transporter, OAT3/SLC22A8, in healthy subjects, Drug Metab. Dispos. 42 (2014) 685-694.
|
Y. Tsuruya, K. Kato, Y. Sano, et al., Investigation of endogenous compounds applicable to drug-drug interaction studies involving the renal organic anion transporters, OAT1 and OAT3, in humans, Drug Metab. Dispos. 44 (2016) 1925-1933.
|
Y. Imamura, N. Murayama, N. Okudaira, et al., Effect of the fluoroquinolone antibacterial agent DX-619 on the apparent formation and renal clearances of 6β-hydroxycortisol, an endogenous probe for CYP3A4 inhibition, in healthy subjects, Pharm. Res. 30 (2013) 447-457.
|
C.C. Peng, I. Templeton, K.E. Thummel, et al., Evaluation of 6β-hydroxycortisol, 6β-hydroxycortisone, and a combination of the two as endogenous probes for inhibition of CYP3A4 in vivo, Clin. Pharmacol. Ther. 89 (2011) 888-895.
|
Y. Itoh, A. Ezawa, K. Kikuchi, et al., Protein-bound uremic toxins in hemodialysis patients measured by liquid chromatography/tandem mass spectrometry and their effects on endothelial ROS production, Anal. Bioanal. Chem. 403 (2012) 1841-1850.
|
B.-C. Liu, T.-T. Tang, L.-L. Lv, et al., Renal tubule injury: A driving force toward chronic kidney disease, Kidney Int. 93 (2018) 568-579.
|
L. Zhang, Q. Liu, S.M. Huang, et al., Transporters in regulatory science: Notable contributions from Dr. Giacomini in the past two decades, Drug Metab. Dispos. 50 (2022) 1211-1217.
|
J.C. Granados, A. Richelle, J.M. Gutierrez, et al., Coordinate regulation of systemic and kidney tryptophan metabolism by the drug transporters OAT1 and OAT3, J. Biol. Chem. 296 (2021), 100575.
|
D.A. Bow, J.L. Perry, J.D. Simon, et al. The impact of plasma protein binding on the renal transport of organic anions, J. Pharmacol. Exp. Ther. 316 (2006) 349-355.
|
S.K. Nigam, K.T. Bush, V. Bhatnagar, Drug and toxicant handling by the OAT organic anion transporters in the kidney and other tissues, Nat. Clin. Pract. Nephrol. 3 (2007) 443-448.
|
R. Masereeuw, H.A. Mutsaers, T. Toyohara, et al., The kidney and uremic toxin removal: Glomerulus or tubule? Semin. Nephrol. 34 (2014) 191-208.
|
T. Deguchi, H. Kusuhara, A. Takadate, et al., Characterization of uremic toxin transport by organic anion transporters in the kidney, Kidney Int. 65 (2004) 162-174.
|
Y. Miyamoto, H. Watanabe, T. Noguchi, et al., Organic anion transporters play an important role in the uptake of p-cresyl sulfate, a uremic toxin, in the kidney, Nephrol. Dial. Transplant. 26 (2011) 2498-2502.
|
W. Wu, K.T. Bush, S.K. Nigam, Key role for the organic anion transporters, OAT1 and OAT3, in the in vivo handling of uremic toxins and solutes, Sci. Rep. 7 (2017), 4939.
|
J. Jansen, M. Fedecostante, M.J. Wilmer, et al., Bioengineered kidney tubules efficiently excrete uremic toxins, Sci. Rep. 6 (2016), 26715.
|
P.H. Smeets, R.A. van Aubel, A.C. Wouterse, et al., Contribution of multidrug resistance protein 2 (MRP2/ABCC2) to the renal excretion of p-aminohippurate (PAH) and identification of MRP4 (ABCC4) as a novel PAH transporter, J. Am. Soc. Nephrol. 15 (2004) 2828-2835.
|
Y.-R. Ma, M.-Y. Xin, K. Li, et al., An LC-MS/MS analytical method for the determination of uremic toxins in patients with end-stage renal disease, J. Pharm. Biomed. Anal. 191 (2020), 113551.
|
S.A. Eraly, V. Vallon, D.A. Vaughn, et al., Decreased renal organic anion secretion and plasma accumulation of endogenous organic anions in OAT1 knock-out mice, J. Biol. Chem. 281 (2006) 5072-5083.
|
H. Tahara, M. Shono, H. Kusuhara, et al., Molecular cloning and functional analyses of OAT1 and OAT3 from cynomolgus monkey kidney, Pharm. Res. 22 (2005) 647-660.
|
H.C. Liu, A. Goldenberg, Y. Chen, et al., Molecular properties of drugs interacting with SLC22 transporters OAT1, OAT3, OCT1, and OCT2: A machine-learning approach, J. Pharmacol. Exp. Ther. 359 (2016) 215-229.
|
L. Cheung, D.M. Yu, Z. Neiron, et al., Identification of new MRP4 inhibitors from a library of FDA approved drugs using a high-throughput bioluminescence screen, Biochem. Pharmacol. 93 (2015) 380-388.
|
T. Deguchi, Y. Kouno, T. Terasaki, et al., Differential contributions of rOat1 (Slc22a6) and rOat3 (Slc22a8) to the in vivo renal uptake of uremic toxins in rats, Pharm. Res. 22 (2005) 619-627.
|
Y. Dong, L. Gong, X. Lu, et al., Changes of transporters and drug-metabolizing enzymes in nephrotic syndrome, Curr. Drug Metab. 21 (2020) 368-378.
|
I. Sadok, A. Gamian, M.M. Staniszewska, Chromatographic analysis of tryptophan metabolites, J. Sep. Sci. 40 (2017) 3020-3045.
|
M. Platten, E.A.A. Nollen, U.F. Rohrig, et al., Tryptophan metabolism as a common therapeutic target in cancer, neurodegeneration and beyond, Nat. Rev. Drug Discov. 18 (2019) 379-401.
|
X. Chu, M. Liao, H. Shen, et al., Clinical probes and endogenous biomarkers as substrates for transporter drug-drug interaction evaluation: Perspectives from the international transporter consortium, Clin. Pharmacol. Ther. 104 (2018) 836-864.
|
J.J. Schentag, Cefmetazole sodium: Pharmacology, pharmacokinetics, and clinical trials, Pharmacotherapy 11 (1991) 2-19.
|
J. Rodriguez-Barbero, E.L. Marino, A. Dominguez-Gil, Pharmacokinetics of cefmetazole administered intramuscularly and intravenously to healthy adults, Antimicrob. Agents Chemother. 28 (1985) 544-547.
|
W.R. Wikoff, M.A. Nagle, V.L. Kouznetsova, et al., Untargeted metabolomics identifies enterobiome metabolites and putative uremic toxins as substrates of organic anion transporter 1 (Oat1), J. Proteome Res. 10 (2011) 2842-2851.
|
T. Watanabe, H. Kusuhara, K. Maeda, et al., Physiologically based pharmacokinetic modeling to predict transporter-mediated clearance and distribution of pravastatin in humans, J. Pharmacol. Exp. Ther. 328 (2009) 652-662.
|
T. Kume, Can drug interactions be evaluated by monitoring plasma drug concentrations? Drug Metab. Pharmacokinet. 28 (2013), 289.
|
A. Basit, Z. Radi, V.S. Vaidya, et al., Kidney cortical transporter expression across species using quantitative proteomics, Drug Metab. Dispos. 47 (2019) 802-808.
|
Y. Li, Z. Talebi, X. Chen, et al., Endogenous biomarkers for SLC transporter-mediated drug-drug interaction evaluation, Molecules 26 (2021), 5500.
|
F. Muller, A. Sharma, J. Konig, et al., Biomarkers for in vivo assessment of transporter function, Pharmacol. Rev. 70 (2018) 246-277.
|
F. Muller, C.A. Pontones, B. Renner, et al., N(1)-methylnicotinamide as an endogenous probe for drug interactions by renal cation transporters: Studies on the metformin-trimethoprim interaction, Eur. J. Clin. Pharmacol. 71 (2015) 85-94.
|
T. Watanabe, M. Miyake, T. Shimizu, et al., Utility of bilirubins and bile acids as endogenous biomarkers for the inhibition of hepatic transporters, Drug Metab. Dispos. 43 (2015) 459-466.
|
Y. Lai, S. Mandlekar, H. Shen, et al., Coproporphyrins in plasma and urine can be appropriate clinical biomarkers to recapitulate drug-drug interactions mediated by organic anion transporting polypeptide inhibition, J. Pharmacol. Exp. Ther. 358 (2016) 397-404.
|
J. Tang, H. Shen, X. Zhao, et al., Endogenous plasma kynurenic acid in human: A newly discovered biomarker for drug-drug interactions involving organic anion transporter 1 and 3 inhibition, Drug Metab. Dispos. 49 (2021) 1063-1069.
|
T.C. Dowling, E.S. Wang, L. Ferrucci, et al., Glomerular filtration rate equations overestimate creatinine clearance in older individuals enrolled in the Baltimore Longitudinal Study on Aging: Impact on renal drug dosing, Pharmacotherapy 33 (2013) 912-921.
|