Citation: | Ru-Jie Yang, Jian Zou, Jia-Yue Liu, Jiang-Kun Dai, Jian-Bo Wan. Click chemistry-based enrichment strategy for tracing cellular fatty acid metabolism by LC-MS/MS[J]. Journal of Pharmaceutical Analysis, 2023, 13(10): 1221-1231. doi: 10.1016/j.jpha.2023.05.001 |
F. Xia, R. Feng, F.-G. Xu, et al., Quantification of phospholipid fatty acids by chemical isotope labeling coupled with atmospheric pressure gas chromatography quadrupole- time-of-flight mass spectrometry (APGC/Q-TOF MS), Anal. Chim. Acta 1082 (2019) 86-97.
|
G.D. Lopaschuk, J.R. Ussher, C.D. Folmes, et al., Myocardial fatty acid metabolism in health and disease, Physiol. Rev. 90 (2010) 207-258.
|
J.-F. Qiu, K.-L. Zhang, X.-J. Zhang, et al., Abnormalities in plasma phospholipid fatty acid profiles of patients with hepatocellular carcinoma, Lipids 50 (2015) 977-985.
|
C.N. Bennett, D.F. Horrobin, Gene targets related to phospholipid and fatty acid metabolism in schizophrenia and other psychiatric disorders: An update, Prostaglandins Leukot. Essent. Fatty Acids 63(2000) 47-59.
|
F. Magkos, B. Mittendorfer, Stable isotope-labeled tracers for the investigation of fatty acid and triglyceride metabolism in humans in vivo, Clin. Lipidol. 4 (2009) 215-230.
|
J. Mead, D.R. Howton, Radioisotope Studies of Fatty Acid Metabolism, Pergamon Press, London, 1960.
|
E.A. Emken, Stable isotope approaches, applications, and issues related to polyunsaturated fatty acid metabolism studies, Lipids 36 (2001) 965-973.
|
S. Tumanov, V. Bulusu, J.J. Kamphorst, Analysis of fatty acid metabolism using stable isotope tracers and mass spectrometry, Methods Enzymol. 561 (2015) 197-217.
|
C. Thiele, C. Papan, D. Hoelper, et al., Tracing fatty acid metabolism by click chemistry, ACS Chem. Biol. 7 (2012) 2004-2011.
|
A.M. Umpleby, HORMONE MEASUREMENT GUIDELINES: Tracing lipid metabolism: The value of stable isotopes, J. Endocrinol. 226 (2015) G1-G10.
|
C. Thiele, K. Wunderling, P. Leyendecker, Multiplexed and single cell tracing of lipid metabolism, Nat. Methods 16 (2019) 1123-1130.
|
Z.-X. Yuan, S. Majchrzak-Hong, G.S. Keyes, et al., Lipidomic profiling of targeted oxylipins with ultra-performance liquid chromatography-tandem mass spectrometry, Anal. Bioanal. Chem. 410 (2018) 6009-6029.
|
C. Arnold, A. Konkel, R. Fischer, et al., Cytochrome P450-dependent metabolism of ω-6 and ω-3 long-chain polyunsaturated fatty acids, Pharmacol. Rep. 62 (2010) 536-547.
|
F. Xia, J.-B. Wan, Chemical derivatization strategy for mass spectrometry-based lipidomics, Mass Spectrom Rev. 42 (2023) 432-452.
|
R. Yang, F. Xia, H. Su, et al., Quantitative analysis of n-3 polyunsaturated fatty acids and their metabolites by chemical isotope labeling coupled with liquid chromatography - mass spectrometry, J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 1172 (2021), 122666.
|
F. Xia, C. He, M. Ren, et al., Quantitative profiling of eicosanoids derived from n-6 and n-3 polyunsaturated fatty acids by twin derivatization strategy combined with LC-MS/MS in patients with type 2 diabetes mellitus, Anal. Chim. Acta 1120 (2020) 24-35.
|
K. Guo, L. Li, High-performance isotope labeling for profiling carboxylic acid-containing metabolites in biofluids by mass spectrometry, Anal. Chem. 82 (2010) 8789-8793.
|
J. Peng, L. Li, Liquid-liquid extraction combined with differential isotope dimethylaminophenacyl labeling for improved metabolomic profiling of organic acids, Anal. Chim. Acta 803 (2013) 97-105.
|
Q.-F. Zhu, Y.-H. Hao, M.-Z. Liu, et al., Analysis of cytochrome P450 metabolites of arachidonic acid by stable isotope probe labeling coupled with ultra high-performance liquid chromatography/mass spectrometry, J. Chromatogr. A 1410 (2015) 154-163.
|
S.M. Houten, S. Violante, F.V. Ventura, et al., The biochemistry and physiology of mitochondrial fatty acid β-oxidation and its genetic disorders, Annu. Rev. Physiol. 78 (2016) 23-44.
|
W. Raphael, L.M. Sordillo, Dietary polyunsaturated fatty acids and inflammation: The role of phospholipid biosynthesis, Int. J. Mol. Sci. 14 (2013) 21167-21188.
|
M. Wang, L.-J. Ma, Y. Yang, et al., n-3 Polyunsaturated fatty acids for the management of alcoholic liver disease: A critical review, Crit. Rev. Food Sci. Nutr. 59 (2019) S116-S129.
|
H.C. Kolb, M.G. Finn, K.B. Sharpless, Click chemistry: Diverse chemical function from a few good reactions, Angew. Chem. Int. Ed Engl. 40 (2001) 2004-2021.
|
K. Hofmann, C. Thiele, H.F. Schott, et al., A novel alkyne cholesterol to trace cellular cholesterol metabolism and localization, J. Lipid Res. 55 (2014) 583-591.
|
J.J. Hulce, A.B. Cognetta, M.J. Niphakis, et al., Proteome-wide mapping of cholesterol-interacting proteins in mammalian cells, Nat. Methods 10 (2013) 259-264.
|
M. Nuriya, Y. Ashikari, T. Iino, et al., Alkyne-tagged dopamines as versatile analogue probes for dopaminergic system analysis, Anal. Chem. 93 (2021) 9345-9355.
|
I. Alecu, A. Tedeschi, N. Behler, et al., Localization of 1-deoxysphingolipids to mitochondria induces mitochondrial dysfunction, J. Lipid Res. 58 (2017) 42-59.
|
J.S. Hoki, H.H. Le, K.E. Mellott, et al., Deep interrogation of metabolism using a pathway-targeted click-chemistry approach, J. Am. Chem. Soc. 142 (2020) 18449-18459.
|
A.K. Agrahari, P. Bose, M.K. Jaiswal, et al., Cu(I)-catalyzed click chemistry in glycoscience and their diverse applications, Chem. Rev. 121 (2021) 7638-7956.
|
M.J. Niphakis, K.M. Lum, A.B. Cognetta 3rd, et al., A global map of lipid-binding proteins and their ligandability in cells, Cell 161 (2015) 1668-1680.
|
A.J. Pradhan, D. Lu, L.R. Parisi, et al., Protein acylation by saturated very long chain fatty acids and endocytosis are involved in necroptosis, Cell Chem. Biol. 28 (2021) 1298-1309.e7.
|
M. Wang, X. Zhang, L.-J. Ma, et al., Omega-3 polyunsaturated fatty acids ameliorate ethanol-induced adipose hyperlipolysis: A mechanism for hepatoprotective effect against alcoholic liver disease, Biochim. Biophys. Acta Mol. Basis Dis. 1863 (2017) 3190-3201.
|
M. Hachem, M. Belkouch, A. Lo Van, et al., Brain targeting with docosahexaenoic acid as a prospective therapy for neurodegenerative diseases and its passage across blood brain barrier, Biochimie 170 (2020) 203-211.
|
J.-B. Wan, L.-L. Huang, R. Rong, et al., Endogenously decreasing tissue n-6/n-3 fatty acid ratio reduces atherosclerotic lesions in apolipoprotein E-deficient mice by inhibiting systemic and vascular inflammation, Arterioscler. Thromb. Vasc. Biol. 30 (2010) 2487-2494.
|
L.-L. Huang, J.-B. Wan, B. Wang, et al., Suppression of acute ethanol-induced hepatic steatosis by docosahexaenoic acid is associated with downregulation of stearoyl-CoA desaturase 1 and inflammatory cytokines, Prostaglandins Leukot. Essent. Fatty Acids 88 (2013) 347-353.
|
P.C. Calder, n-3 polyunsaturated fatty acids, inflammation, and inflammatory diseases, Am. J. Clin. Nutr. 83 (2006) 1505S-1519S.
|
C.T. Chen, R.P. Bazinet, β-oxidation and rapid metabolism, but not uptake regulate brain eicosapentaenoic acid levels, Prostaglandins Leukot. Essent. Fat. Acids 92 (2015) 33-40.
|
J.G. Martins, EPA but not DHA appears to be responsible for the efficacy of omega-3 long chain polyunsaturated fatty acid supplementation in depression: Evidence from a meta-analysis of randomized controlled trials, J. Am. Coll. Nutr. 28 (2009) 525-542.
|
Y. Liao, B. Xie, H. Zhang, et al., Efficacy of omega-3 PUFAs in depression: A meta-analysis, Transl. Psychiatry 9 (2019), 190.
|
M. Okudaira, A. Inoue, A. Shuto, et al., Separation and quantification of 2-acyl-1-lysophospholipids and 1-acyl-2-lysophospholipids in biological samples by LC-MS/MS, J. Lipid Res. 55 (2014) 2178-2192.
|
D.Y. Oh, S. Talukdar, E.J. Bae, et al., GPR120 is an omega-3 fatty acid receptor mediating potent anti-inflammatory and insulin-sensitizing effects, Cell 142 (2010) 687-698.
|
C. Westphal, A. Konkel, W.H. Schunck, CYP-eicosanoids - A new link between omega-3 fatty acids and cardiac disease? Prostaglandins Other Lipid Mediat. 96 (2011) 99-108.
|
A. Jakobsson, R. Westerberg, A. Jacobsson, Fatty acid elongases in mammals: Their regulation and roles in metabolism, Prog. Lipid Res. 45 (2006) 237-249.
|
H. Nakanishi, Y. Iida, T. Shimizu, et al., Separation and quantification of sn-1 and sn-2 fatty acid positional isomers in phosphatidylcholine by RPLC-ESIMS/MS, J. Biochem. 147 (2010) 245-256.
|
Q. Li, W.R. Wong, A. Chakrabarti, et al., Serum lysophosphatidic acid measurement by liquid chromatography-mass spectrometry in COPD patients, J. Am. Soc. Mass Spectrom. 32 (2021) 1987-1997.
|
J.M. Onorato, P. Shipkova, A. Minnich, et al., Challenges in accurate quantitation of lysophosphatidic acids in human biofluids, J. Lipid Res. 55 (2014) 1784-1796.
|
H. Shindou, H. Koso, J. Sasaki, et al., Docosahexaenoic acid preserves visual function by maintaining correct disc morphology in retinal photoreceptor cells, J. Biol. Chem. 292 (2017) 12054-12064.
|
L.A. Horrocks, Y.K. Yeo, Health benefits of docosahexaenoic acid (DHA), Pharmacol. Res. 40 (1999) 211-225.
|
N. Wang, R.E. Anderson, Synthesis of docosahexaenoic acid by retina and retinal pigment epithelium, Biochemistry 32 (1993) 13703-13709.
|
H.M. Su, A.B. Moser, H.W. Moser, et al., Peroxisomal straight-chain acyl-CoA oxidase and D-bifunctional protein are essential for the retroconversion step in docosahexaenoic acid synthesis, J. Biol. Chem. 276 (2001) 38115-38120.
|