Volume 13 Issue 6
Jun.  2023
Turn off MathJax
Article Contents
Zhiwei Zheng, Benyu Nan, Chang Liu, Dongmei Tang, Wen Li, Liping Zhao, Guohui Nie, Yingzi He. Inhibition of histone methyltransferase PRMT5 attenuates cisplatin-induced hearing loss through the PI3K/Akt-mediated mitochondrial apoptotic pathway[J]. Journal of Pharmaceutical Analysis, 2023, 13(6): 590-602. doi: 10.1016/j.jpha.2023.04.014
Citation: Zhiwei Zheng, Benyu Nan, Chang Liu, Dongmei Tang, Wen Li, Liping Zhao, Guohui Nie, Yingzi He. Inhibition of histone methyltransferase PRMT5 attenuates cisplatin-induced hearing loss through the PI3K/Akt-mediated mitochondrial apoptotic pathway[J]. Journal of Pharmaceutical Analysis, 2023, 13(6): 590-602. doi: 10.1016/j.jpha.2023.04.014

Inhibition of histone methyltransferase PRMT5 attenuates cisplatin-induced hearing loss through the PI3K/Akt-mediated mitochondrial apoptotic pathway

doi: 10.1016/j.jpha.2023.04.014
Funds:

This work was supported by grants from the National Natural Science Foundation of China (Grant Nos.: 82271158, 82192865, and 82071045), and Wenzhou Municipal Science and Technology Research Program (Grant No.: 2021Y0681).

  • Received Date: Dec. 22, 2022
  • Accepted Date: Apr. 21, 2023
  • Rev Recd Date: Apr. 19, 2023
  • Publish Date: Apr. 26, 2023
  • This study aimed to evaluate the therapeutic potential of inhibiting protein arginine methyltransferase 5 (PRMT5) in cisplatin-induced hearing loss. The effects of PRMT5 inhibition on cisplatin-induced auditory injury were determined using immunohistochemistry, apoptosis assays, and auditory brainstem response. The mechanism of PRMT5 inhibition on hair cell survival was assessed using RNA-seq and Cleavage Under Targets and Tagment-quantitative polymerase chain reaction (CUT&Tag-qPCR) analyses in the HEI-OC1 cell line. Pharmacological inhibition of PRMT5 significantly alleviated cisplatin-induced damage to hair cells and spiral ganglion neurons in the cochlea and decreased apoptosis by protecting mitochondrial function and preventing the accumulation of reactive oxygen species. CUT&Tag-qPCR analysis demonstrated that inhibition of PRMT5 in HEI-OC1 cells reduced the accumulation of H4R3me2s/H3R8me2s marks at the promoter region of the Pik3ca gene, thus activating the expression of Pik3ca. These findings suggest that PRMT5 inhibitors have strong potential as agents against cisplatin-induced ototoxicity and can lay the foundation for further research on treatment strategies of hearing loss.
  • loading
  • Z.P. Stojanova, T. Kwan, N. Segil, Epigenetic regulation of Atoh1 guides hair cell development in the mammalian cochlea, Development 142 (2015) 3529-3536.
    D. Roellig, M.E. Bronner, The epigenetic modifier DNMT3A is necessary for proper otic placode formation, Dev. Biol. 411 (2016) 294-300.
    R.A. Uribe, A.L. Buzzi, M.E. Bronner, et al., Histone demethylase KDM4B regulates otic vesicle invagination via epigenetic control of Dlx3 expression, J. Cell Biol. 211 (2015) 815-827.
    Y.Z. He, H.Q. Yu, S. Sun, et al., Trans-2-phenylcyclopropylamine regulates zebrafish lateral line neuromast development mediated by depression of LSD1 activity, Int. J. Dev. Biol. 57 (2013) 365-373.
    Y.Z. He, Z.M. Wang, S.Y. Sun, et al., HDAC3 is required for posterior lateral line development in zebrafish, Mol. Neurobiol. 53 (2016) 5103-5117.
    Y.Z. He, D.M. Tang, W.Y. Li, et al., Histone deacetylase 1 is required for the development of the zebrafish inner ear, Sci. Rep. 6 (2016), 16535.
    Y. He, H. Mei, H. Yu, et al., Role of histone deacetylase activity in the developing lateral line neuromast of zebrafish larvae, Exp. Mol. Med. 46 (2014), e94.
    Y.Z. He, H.Q. Yu, C.F. Cai, et al., Inhibition of H3K4me2 demethylation protects auditory hair cells from neomycin-induced apoptosis, Mol. Neurobiol. 52 (2015) 196-205.
    K. Nimura, K. Ura, H. Shiratori, et al., A histone H3 lysine 36 trimethyltransferase links Nkx2-5 to Wolf-Hirschhorn syndrome, Nature 460 (2009) 287-291.
    M. Ahmed, K. Ura, A. Streit, Auditory hair cell defects as potential cause for sensorineural deafness in Wolf-Hirschhorn syndrome, Dis. Models Mech. 8 (2015) 1027-1035.
    T. Kouzarides, Chromatin modifications and their function, Cell 128 (2007) 693-705.
    P.A. Jones, Functions of DNA methylation: Islands, start sites, gene bodies and beyond, Nat. Rev. Genet. 13 (2012) 484-492.
    B.N. Zheng, C.H. Ding, S.J. Chen, et al., Targeting PRMT5 activity inhibits the malignancy of hepatocellular carcinoma by promoting the transcription of HNF4α, Theranostics 9 (2019) 2606-2617.
    R.S. Blanc, S. Richard, Arginine methylation: The coming of age, Mol. Cell 65 (2017) 8-24.
    Y.Z. He, W. Li, Z.W. Zheng, et al., Inhibition of Protein arginine methyltransferase 6 reduces reactive oxygen species production and attenuates aminoglycoside- and cisplatin-induced hair cell death, Theranostics 10 (2020) 133-150.
    N. Stopa, J.E. Krebs, D. Shechter, The PRMT5 arginine methyltransferase: Many roles in development, cancer and beyond, Cell. Mol. Life Sci. 72 (2015) 2041-2059.
    V. Karkhanis, Y.J. Hu, R.A. Baiocchi, et al., Versatility of PRMT5-induced methylation in growth control and development, Trends Biochem. Sci. 36 (2011) 633-641.
    E.C. Cho, S.S. Zheng, S. Munro, et al., Arginine methylation controls growth regulation by E2F-1, EMBO J. 31 (2012) 1785-1797.
    M. Kanda, D. Shimizu, T. Fujii, et al., Protein arginine methyltransferase 5 is associated with malignant phenotype and peritoneal metastasis in gastric cancer, Int. J. Oncol. 49 (2016) 1195-1202.
    J.Q. Ren, Y.Q. Wang, Y.H. Liang, et al., Methylation of ribosomal protein S10 by protein-arginine methyltransferase 5 regulates ribosome biogenesis, J. Biol. Chem. 285 (2010) 12695-12705.
    S.E. LeBlanc, Q. Wu, P. Lamba, et al., Promoter-enhancer looping at the PPARγ2 locus during adipogenic differentiation requires the Prmt5 methyltransferase, Nucleic Acids Res. 44 (2016) 5133-5147.
    S. Majumder, L. Alinari, S. Roy, et al., Methylation of histone H3 and H4 by PRMT5 regulates ribosomal RNA gene transcription, J. Cell. Biochem. 109 (2010) 553-563.
    E. Fabbrizio, S. El Messaoudi, J. Polanowska, et al., Negative regulation of transcription by the type II arginine methyltransferase PRMT5, EMBO Rep. 3 (2002) 641-645.
    Y.L. Jin, J.F. Zhou, F. Xu, et al., Targeting methyltransferase PRMT5 eliminates leukemia stem cells in chronic myelogenous leukemia, J. Clin. Investig. 126 (2016) 3961-3980.
    S. Huang, Y.Y. Chi, Y. Qin, et al., CAPG enhances breast cancer metastasis by competing with PRMT5 to modulate STC-1 transcription, Theranostics 8 (2018) 2549-2564.
    J. Serio, J. Ropa, W. Chen, et al., The PAF complex regulation of Prmt5 facilitates the progression and maintenance of MLL fusion leukemia, Oncogene 37 (2018) 450-460.
    A. Chittka, J. Nitarska, U. Grazini, et al., Transcription factor positive regulatory domain 4 (PRDM4) recruits protein arginine methyltransferase 5 (PRMT5) to mediate histone arginine methylation and control neural stem cell proliferation and differentiation, J. Biol. Chem. 287 (2012) 42995-43006.
    W.W. Tee, M. Pardo, T.W. Theunissen, et al., Prmt5 is essential for early mouse development and acts in the cytoplasm to maintain ES cell pluripotency, Genes Dev. 24 (2010) 2772-2777.
    F. Liu, G.Y. Cheng, P.J. Hamard, et al., Arginine methyltransferase PRMT5 is essential for sustaining normal adult hematopoiesis, J. Clin. Investig. 125 (2015) 3532-3544.
    H. Tanaka, Y. Hoshikawa, T. Oh-hara, et al., PRMT5, a novel TRAIL receptor-binding protein, inhibits TRAIL-induced apoptosis via nuclear factor-κB activation, Mol. Cancer Res. 7 (2009) 557-569.
    H. Wei, B. Wang, M. Miyagi, et al., PRMT5 dimethylates R30 of the p65 subunit to activate NF-κB, Proc. Natl. Acad. Sci. USA 110 (2013) 13516-13521.
    S.K. Lim, Y.W. Jeong, D.I. Kim, et al., Activation of PRMT1 and PRMT5 mediates hypoxia- and ischemia-induced apoptosis in human lung epithelial cells and the lung of miniature pigs: The role of p38 and JNK mitogen-activated protein kinases, Biochem. Biophys. Res. Commun. 440 (2013) 707-713.
    M.C. Braun, C.N. Kelly, A.E. Prada, et al., Human PRMT5 expression is enhanced during in vitro tubule formation and after in vivo ischemic injury in renal epithelial cells, Am. J. Nephrol. 24 (2004) 250-257.
    H. Yu, Q. Lin, Y. Wang, et al., Inhibition of H3K9 methyltransferases G9a/GLP prevents ototoxicity and ongoing hair cell death, Cell Death Dis. 4 (2013), e506.
    H.S. Kaya-Okur, S.J. Wu, C.A. Codomo, et al., CUT&Tag for efficient epigenomic profiling of small samples and single cells, Nat. Commun. 10 (2019), 1930.
    H. Chen, B. Lorton, V. Gupta, et al., A TGFβ-PRMT5-MEP50 axis regulates cancer cell invasion through histone H3 and H4 arginine methylation coupled transcriptional activation and repression, Oncogene 36 (2017) 373-386.
    M. Bezzi, S.X. Teo, J. Muller, et al., Regulation of constitutive and alternative splicing by
    M. Jansson, S.T. Durant, E.C. Cho, et al., Arginine methylation regulates the p53 response, Nat. Cell Biol. 10 (2008) 1431-1439.
    C.S. Dacwag, Y. Ohkawa, S. Pal, et al., The protein arginine methyltransferase Prmt5 is required for myogenesis because it facilitates ATP-dependent chromatin remodeling, Mol. Cell. Biol. 27 (2007) 384-394.
    S. Gkountela, Z.W. Li, C.J. Chin, et al., PRMT5 is required for human embryonic stem cell proliferation but not pluripotency, Stem Cell Rev. Rep. 10 (2014) 230-239.
    C.S. Dacwag, M.T. Bedford, S. Sif, et al., Distinct protein arginine methyltransferases promote ATP-dependent chromatin remodeling function at different stages of skeletal muscle differentiation, Mol. Cell. Biol. 29 (2009) 1909-1921.
    C. Paul, C. Sardet, E. Fabbrizio, The histone- and PRMT5-associated protein COPR5 is required for myogenic differentiation, Cell Death Differ. 19 (2012) 900-908.
    S.R. Kanade, R.L. Eckert, Protein arginine methyltransferase 5 (PRMT5) signaling suppresses protein kinase CΔ- and p38Δ-dependent signaling and keratinocyte differentiation, J. Biol. Chem. 287 (2012) 7313-7323.
    P. Beltran-Alvarez, A. Espejo, R. Schmauder, et al., Protein arginine methyl transferases-3 and-5 increase cell surface expression of cardiac sodium channel, FEBS Lett. 587 (2013) 3159-3165.
    H.U. Kaniskan, J. Jin, Recent progress in developing selective inhibitors of protein methyltransferases, Curr. Opin. Chem. Biol. 39 (2017), 100-108.
    H. Hu, K. Qian, M.C. Ho, et al., Small molecule inhibitors of protein arginine methyltransferases, Expert Opin. Investig. Drugs 25 (2016) 335-358.
    R. Mao, J. Shao, K. Zhu, et al., Potent, selective, and cell active protein arginine methyltransferase 5 (PRMT5) inhibitor developed by structure-based virtual screening and hit optimization, J. Med. Chem. 60 (2017) 6289-6304.
    E. Chan-Penebre, K.G. Kuplast, C.R. Majer, et al., A selective inhibitor of PRMT5 with in vivo and in vitro potency in MCL models, Nat. Chem. Biol. 11 (2015) 432-437.
    K.W. Duncan, N. Rioux, P.A. Boriack-Sjodin, et al., Structure and property guided design in the identification of PRMT5 tool compound EPZ015666, ACS Med. Chem. Lett. 7 (2016) 162-166.
    Z.Q. Bonday, G.S. Cortez, M.J. Grogan, et al., LLY-283, a potent and selective inhibitor of arginine methyltransferase 5, PRMT5, with antitumor activity, ACS Med. Chem. Lett. 9 (2018) 612-617.
    Y. Tsujimoto, S. Shimizu, Role of the mitochondrial membrane permeability transition in cell death, Apoptosis 12 (2007) 835-840.
    M. Huttemann, S. Helling, T.H. Sanderson, et al., Regulation of mitochondrial respiration and apoptosis through cell signaling: Cytochrome c oxidase and cytochrome c in ischemia/reperfusion injury and inflammation, Biochim Biophys Acta. 1817 (2012) 598-609.
    C. Diao, Z. Chen, T. Qiu, et al., Inhibition of PRMT5 attenuates oxidative stress-induced pyroptosis via activation of the Nrf2/HO-1 signal pathway in a mouse model of renal ischemia-reperfusion injury, Oxid. Med. Cell. Longev. 2019 (2019) 1-18.
    B.D. Manning, A. Toker, AKT/PKB signaling: Navigating the network, Cell 169 (2017) 381-405.
    S. Yin, L. Liu, C. Brobbey, et al., PRMT5-mediated arginine methylation activates AKT kinase to govern tumorigenesis, Nat. Commun. 12 (2021), 3444.
    L. Huang, J. Liu, X.O. Zhang, et al., Inhibition of protein arginine methyltransferase 5 enhances hepatic mitochondrial biogenesis, J. Biol. Chem. 293 (2018) 10884-10894.
    X.J. Xu, S. Hoang, M.W. Mayo, et al., Application of machine learning methods to histone methylation ChIP-Seq data reveals H4R3me2 globally represses gene expression, Bmc Bioinformatics. 11 (2010).
    S. Pal, R.A. Baiocchi, J.C. Byrd, et al., Low levels of miR-92b/96 induce PRMT5 translation and H3R8/H4R3 methylation in mantle cell lymphoma, EMBO J. 26 (2007) 3558-3569.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (308) PDF downloads(21) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return