Citation: | Zhiwei Zheng, Benyu Nan, Chang Liu, Dongmei Tang, Wen Li, Liping Zhao, Guohui Nie, Yingzi He. Inhibition of histone methyltransferase PRMT5 attenuates cisplatin-induced hearing loss through the PI3K/Akt-mediated mitochondrial apoptotic pathway[J]. Journal of Pharmaceutical Analysis, 2023, 13(6): 590-602. doi: 10.1016/j.jpha.2023.04.014 |
Z.P. Stojanova, T. Kwan, N. Segil, Epigenetic regulation of Atoh1 guides hair cell development in the mammalian cochlea, Development 142 (2015) 3529-3536.
|
D. Roellig, M.E. Bronner, The epigenetic modifier DNMT3A is necessary for proper otic placode formation, Dev. Biol. 411 (2016) 294-300.
|
R.A. Uribe, A.L. Buzzi, M.E. Bronner, et al., Histone demethylase KDM4B regulates otic vesicle invagination via epigenetic control of Dlx3 expression, J. Cell Biol. 211 (2015) 815-827.
|
Y.Z. He, H.Q. Yu, S. Sun, et al., Trans-2-phenylcyclopropylamine regulates zebrafish lateral line neuromast development mediated by depression of LSD1 activity, Int. J. Dev. Biol. 57 (2013) 365-373.
|
Y.Z. He, Z.M. Wang, S.Y. Sun, et al., HDAC3 is required for posterior lateral line development in zebrafish, Mol. Neurobiol. 53 (2016) 5103-5117.
|
Y.Z. He, D.M. Tang, W.Y. Li, et al., Histone deacetylase 1 is required for the development of the zebrafish inner ear, Sci. Rep. 6 (2016), 16535.
|
Y. He, H. Mei, H. Yu, et al., Role of histone deacetylase activity in the developing lateral line neuromast of zebrafish larvae, Exp. Mol. Med. 46 (2014), e94.
|
Y.Z. He, H.Q. Yu, C.F. Cai, et al., Inhibition of H3K4me2 demethylation protects auditory hair cells from neomycin-induced apoptosis, Mol. Neurobiol. 52 (2015) 196-205.
|
K. Nimura, K. Ura, H. Shiratori, et al., A histone H3 lysine 36 trimethyltransferase links Nkx2-5 to Wolf-Hirschhorn syndrome, Nature 460 (2009) 287-291.
|
M. Ahmed, K. Ura, A. Streit, Auditory hair cell defects as potential cause for sensorineural deafness in Wolf-Hirschhorn syndrome, Dis. Models Mech. 8 (2015) 1027-1035.
|
T. Kouzarides, Chromatin modifications and their function, Cell 128 (2007) 693-705.
|
P.A. Jones, Functions of DNA methylation: Islands, start sites, gene bodies and beyond, Nat. Rev. Genet. 13 (2012) 484-492.
|
B.N. Zheng, C.H. Ding, S.J. Chen, et al., Targeting PRMT5 activity inhibits the malignancy of hepatocellular carcinoma by promoting the transcription of HNF4α, Theranostics 9 (2019) 2606-2617.
|
R.S. Blanc, S. Richard, Arginine methylation: The coming of age, Mol. Cell 65 (2017) 8-24.
|
Y.Z. He, W. Li, Z.W. Zheng, et al., Inhibition of Protein arginine methyltransferase 6 reduces reactive oxygen species production and attenuates aminoglycoside- and cisplatin-induced hair cell death, Theranostics 10 (2020) 133-150.
|
N. Stopa, J.E. Krebs, D. Shechter, The PRMT5 arginine methyltransferase: Many roles in development, cancer and beyond, Cell. Mol. Life Sci. 72 (2015) 2041-2059.
|
V. Karkhanis, Y.J. Hu, R.A. Baiocchi, et al., Versatility of PRMT5-induced methylation in growth control and development, Trends Biochem. Sci. 36 (2011) 633-641.
|
E.C. Cho, S.S. Zheng, S. Munro, et al., Arginine methylation controls growth regulation by E2F-1, EMBO J. 31 (2012) 1785-1797.
|
M. Kanda, D. Shimizu, T. Fujii, et al., Protein arginine methyltransferase 5 is associated with malignant phenotype and peritoneal metastasis in gastric cancer, Int. J. Oncol. 49 (2016) 1195-1202.
|
J.Q. Ren, Y.Q. Wang, Y.H. Liang, et al., Methylation of ribosomal protein S10 by protein-arginine methyltransferase 5 regulates ribosome biogenesis, J. Biol. Chem. 285 (2010) 12695-12705.
|
S.E. LeBlanc, Q. Wu, P. Lamba, et al., Promoter-enhancer looping at the PPARγ2 locus during adipogenic differentiation requires the Prmt5 methyltransferase, Nucleic Acids Res. 44 (2016) 5133-5147.
|
S. Majumder, L. Alinari, S. Roy, et al., Methylation of histone H3 and H4 by PRMT5 regulates ribosomal RNA gene transcription, J. Cell. Biochem. 109 (2010) 553-563.
|
E. Fabbrizio, S. El Messaoudi, J. Polanowska, et al., Negative regulation of transcription by the type II arginine methyltransferase PRMT5, EMBO Rep. 3 (2002) 641-645.
|
Y.L. Jin, J.F. Zhou, F. Xu, et al., Targeting methyltransferase PRMT5 eliminates leukemia stem cells in chronic myelogenous leukemia, J. Clin. Investig. 126 (2016) 3961-3980.
|
S. Huang, Y.Y. Chi, Y. Qin, et al., CAPG enhances breast cancer metastasis by competing with PRMT5 to modulate STC-1 transcription, Theranostics 8 (2018) 2549-2564.
|
J. Serio, J. Ropa, W. Chen, et al., The PAF complex regulation of Prmt5 facilitates the progression and maintenance of MLL fusion leukemia, Oncogene 37 (2018) 450-460.
|
A. Chittka, J. Nitarska, U. Grazini, et al., Transcription factor positive regulatory domain 4 (PRDM4) recruits protein arginine methyltransferase 5 (PRMT5) to mediate histone arginine methylation and control neural stem cell proliferation and differentiation, J. Biol. Chem. 287 (2012) 42995-43006.
|
W.W. Tee, M. Pardo, T.W. Theunissen, et al., Prmt5 is essential for early mouse development and acts in the cytoplasm to maintain ES cell pluripotency, Genes Dev. 24 (2010) 2772-2777.
|
F. Liu, G.Y. Cheng, P.J. Hamard, et al., Arginine methyltransferase PRMT5 is essential for sustaining normal adult hematopoiesis, J. Clin. Investig. 125 (2015) 3532-3544.
|
H. Tanaka, Y. Hoshikawa, T. Oh-hara, et al., PRMT5, a novel TRAIL receptor-binding protein, inhibits TRAIL-induced apoptosis via nuclear factor-κB activation, Mol. Cancer Res. 7 (2009) 557-569.
|
H. Wei, B. Wang, M. Miyagi, et al., PRMT5 dimethylates R30 of the p65 subunit to activate NF-κB, Proc. Natl. Acad. Sci. USA 110 (2013) 13516-13521.
|
S.K. Lim, Y.W. Jeong, D.I. Kim, et al., Activation of PRMT1 and PRMT5 mediates hypoxia- and ischemia-induced apoptosis in human lung epithelial cells and the lung of miniature pigs: The role of p38 and JNK mitogen-activated protein kinases, Biochem. Biophys. Res. Commun. 440 (2013) 707-713.
|
M.C. Braun, C.N. Kelly, A.E. Prada, et al., Human PRMT5 expression is enhanced during in vitro tubule formation and after in vivo ischemic injury in renal epithelial cells, Am. J. Nephrol. 24 (2004) 250-257.
|
H. Yu, Q. Lin, Y. Wang, et al., Inhibition of H3K9 methyltransferases G9a/GLP prevents ototoxicity and ongoing hair cell death, Cell Death Dis. 4 (2013), e506.
|
H.S. Kaya-Okur, S.J. Wu, C.A. Codomo, et al., CUT&Tag for efficient epigenomic profiling of small samples and single cells, Nat. Commun. 10 (2019), 1930.
|
H. Chen, B. Lorton, V. Gupta, et al., A TGFβ-PRMT5-MEP50 axis regulates cancer cell invasion through histone H3 and H4 arginine methylation coupled transcriptional activation and repression, Oncogene 36 (2017) 373-386.
|
M. Bezzi, S.X. Teo, J. Muller, et al., Regulation of constitutive and alternative splicing by
|
M. Jansson, S.T. Durant, E.C. Cho, et al., Arginine methylation regulates the p53 response, Nat. Cell Biol. 10 (2008) 1431-1439.
|
C.S. Dacwag, Y. Ohkawa, S. Pal, et al., The protein arginine methyltransferase Prmt5 is required for myogenesis because it facilitates ATP-dependent chromatin remodeling, Mol. Cell. Biol. 27 (2007) 384-394.
|
S. Gkountela, Z.W. Li, C.J. Chin, et al., PRMT5 is required for human embryonic stem cell proliferation but not pluripotency, Stem Cell Rev. Rep. 10 (2014) 230-239.
|
C.S. Dacwag, M.T. Bedford, S. Sif, et al., Distinct protein arginine methyltransferases promote ATP-dependent chromatin remodeling function at different stages of skeletal muscle differentiation, Mol. Cell. Biol. 29 (2009) 1909-1921.
|
C. Paul, C. Sardet, E. Fabbrizio, The histone- and PRMT5-associated protein COPR5 is required for myogenic differentiation, Cell Death Differ. 19 (2012) 900-908.
|
S.R. Kanade, R.L. Eckert, Protein arginine methyltransferase 5 (PRMT5) signaling suppresses protein kinase CΔ- and p38Δ-dependent signaling and keratinocyte differentiation, J. Biol. Chem. 287 (2012) 7313-7323.
|
P. Beltran-Alvarez, A. Espejo, R. Schmauder, et al., Protein arginine methyl transferases-3 and-5 increase cell surface expression of cardiac sodium channel, FEBS Lett. 587 (2013) 3159-3165.
|
H.U. Kaniskan, J. Jin, Recent progress in developing selective inhibitors of protein methyltransferases, Curr. Opin. Chem. Biol. 39 (2017), 100-108.
|
H. Hu, K. Qian, M.C. Ho, et al., Small molecule inhibitors of protein arginine methyltransferases, Expert Opin. Investig. Drugs 25 (2016) 335-358.
|
R. Mao, J. Shao, K. Zhu, et al., Potent, selective, and cell active protein arginine methyltransferase 5 (PRMT5) inhibitor developed by structure-based virtual screening and hit optimization, J. Med. Chem. 60 (2017) 6289-6304.
|
E. Chan-Penebre, K.G. Kuplast, C.R. Majer, et al., A selective inhibitor of PRMT5 with in vivo and in vitro potency in MCL models, Nat. Chem. Biol. 11 (2015) 432-437.
|
K.W. Duncan, N. Rioux, P.A. Boriack-Sjodin, et al., Structure and property guided design in the identification of PRMT5 tool compound EPZ015666, ACS Med. Chem. Lett. 7 (2016) 162-166.
|
Z.Q. Bonday, G.S. Cortez, M.J. Grogan, et al., LLY-283, a potent and selective inhibitor of arginine methyltransferase 5, PRMT5, with antitumor activity, ACS Med. Chem. Lett. 9 (2018) 612-617.
|
Y. Tsujimoto, S. Shimizu, Role of the mitochondrial membrane permeability transition in cell death, Apoptosis 12 (2007) 835-840.
|
M. Huttemann, S. Helling, T.H. Sanderson, et al., Regulation of mitochondrial respiration and apoptosis through cell signaling: Cytochrome c oxidase and cytochrome c in ischemia/reperfusion injury and inflammation, Biochim Biophys Acta. 1817 (2012) 598-609.
|
C. Diao, Z. Chen, T. Qiu, et al., Inhibition of PRMT5 attenuates oxidative stress-induced pyroptosis via activation of the Nrf2/HO-1 signal pathway in a mouse model of renal ischemia-reperfusion injury, Oxid. Med. Cell. Longev. 2019 (2019) 1-18.
|
B.D. Manning, A. Toker, AKT/PKB signaling: Navigating the network, Cell 169 (2017) 381-405.
|
S. Yin, L. Liu, C. Brobbey, et al., PRMT5-mediated arginine methylation activates AKT kinase to govern tumorigenesis, Nat. Commun. 12 (2021), 3444.
|
L. Huang, J. Liu, X.O. Zhang, et al., Inhibition of protein arginine methyltransferase 5 enhances hepatic mitochondrial biogenesis, J. Biol. Chem. 293 (2018) 10884-10894.
|
X.J. Xu, S. Hoang, M.W. Mayo, et al., Application of machine learning methods to histone methylation ChIP-Seq data reveals H4R3me2 globally represses gene expression, Bmc Bioinformatics. 11 (2010).
|
S. Pal, R.A. Baiocchi, J.C. Byrd, et al., Low levels of miR-92b/96 induce PRMT5 translation and H3R8/H4R3 methylation in mantle cell lymphoma, EMBO J. 26 (2007) 3558-3569.
|