Volume 13 Issue 4
Apr.  2023
Turn off MathJax
Article Contents
Xiangtai Zheng, Qi Zhang, Qianjie Ma, Xinyu Li, Liang Zhao, Xiaodong Sun. A chiral metal-organic framework {(HQA)(ZnCl2)(2.5H2O)}n for the enantioseparation of chiral amino acids and drugs[J]. Journal of Pharmaceutical Analysis, 2023, 13(4): 421-429. doi: 10.1016/j.jpha.2023.03.003
Citation: Xiangtai Zheng, Qi Zhang, Qianjie Ma, Xinyu Li, Liang Zhao, Xiaodong Sun. A chiral metal-organic framework {(HQA)(ZnCl2)(2.5H2O)}n for the enantioseparation of chiral amino acids and drugs[J]. Journal of Pharmaceutical Analysis, 2023, 13(4): 421-429. doi: 10.1016/j.jpha.2023.03.003

A chiral metal-organic framework {(HQA)(ZnCl2)(2.5H2O)}n for the enantioseparation of chiral amino acids and drugs

doi: 10.1016/j.jpha.2023.03.003
Funds:

This study was funded by the National Natural Science Foundation of China (Grant No.: 82003705) and the Shanghai Science and Technology Innovation Foundation (Grant Nos.: 23010500200 and 23ZR1422700).

  • Received Date: Nov. 23, 2022
  • Accepted Date: Mar. 10, 2023
  • Rev Recd Date: Mar. 03, 2023
  • Publish Date: Mar. 22, 2023
  • Chiral metal-organic frameworks (CMOFs) with enantiomeric subunits have been employed in chiral chemistry. In this study, a CMOF formed from 6-methoxyl-(8S,9R)-cinchonan-9-ol-3-carboxylic acid (HQA) and ZnCl2, {(HQA)(ZnCl2)(2.5H2O)}n, was constructed as a chiral stationary phase (CSP) via an in situ fabrication approach and used for chiral amino acid and drug analyses for the first time. The {(HQA)(ZnCl2)(2.5H2O)}n nanocrystal and the corresponding chiral stationary phase were systematically characterised using a series of analytical techniques including scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, circular dichroism, X-ray photoelectron spectroscopy, thermogravimetric analysis, and Brunauer-Emmett-Teller surface area measurements. In open-tubular capillary electrochromatography (CEC), the novel chiral column exhibited strong and broad enantioselectivity toward a variety of chiral analytes, including 19 racemic dansyl amino acids and several model chiral drugs (both acidic and basic). The chiral CEC conditions were optimised, and the enantioseparation mechanisms are discussed. This study not only introduces a new high-efficiency member of the MOF-type CSP family but also demonstrates the potential of improving the enantioselectivities of traditional chiral recognition reagents by fully using the inherent characteristics of porous organic frameworks.
  • loading
  • L. Li, X. Xue, H. Zhang, et al., In-situ and one-step preparation of protein film in capillary column for open tubular capillary electrochromatography enantioseparation, Chin. Chem. Lett. 32 (2021) 2139-2142.
    S. Zhuo, X. Wang, L. Li, et al., Chiral carboxyl-functionalized covalent organic framework for enantioselective adsorption of amino acids, ACS Appl. Mater. Interfaces 13 (2021) 31059-31065.
    Y. Liu, A. Tian, X. Wang, et al., Fabrication of chiral amino acid ionic liquid modified magnetic multifunctional nanospheres for centrifugal chiral chromatography separation of racemates, J. Chromatogr. A 1400 (2015) 40-46.
    X. Qiu, J. Ke, W. Chen, et al., β-cyclodextrin-ionic liquid functionalized chiral composite membrane for enantioseparation of drugs and molecular simulation, J. Membr. Sci. 660 (2022), 120870.
    D. Jonckheere, J.A. Steele, B. Claes, et al., Adsorption and separation of aromatic amino acids from aqueous solutions using metal-organic frameworks, ACS Appl. Mater. Interfaces 9 (2017) 30064-30073.
    Y.-W. Zhao, Y. Wang, X.-M. Zhang, Homochiral MOF as circular dichroism sensor for enantioselective recognition on nature and chirality of unmodified amino acids, ACS Appl. Mater. Interfaces 9 (2017) 20991-20999.
    U. Woiwode, R.J. Reischl, S. Buckenmaier, et al., Imaging peptide and protein chirality via amino acid analysis by chiral x chiral two-dimensional correlation liquid chromatography, Anal. Chem. 90 (2018) 7963-7971.
    A. Wang, K. Liu, M. Tian, et al., Open tubular capillary electrochromatography-mass spectrometry for analysis of underivatized amino acid enantiomers with a porous layer-gold nanoparticle-modified chiral column, Anal. Chem. 94 (2022) 9252-9260.
    C. Motta, A. Matos, A. Soares, et al., Amino acid profile of foods from the Portuguese Total Diet Pilot Study, J. Food Compos. Anal. 92 (2020) 103545.
    L. Gao, P. Xu, J. Ren, A sensitive and economical method for simultaneous determination of d/l-amino acids profile in foods by HPLC-UV: Application in fermented and unfermented foods discrimination, Food Chem. 410 (2023), 135382.
    M. Holecek, Branched-chain amino acids in health and disease: Metabolism, alterations in blood plasma, and as supplements, Nutr. Metab. (Lond) 15 (2018), 33.
    J.D. Sharer, I. De Biase, D. Matern, et al., Laboratory analysis of amino acids, 2018 revision: A technical standard of the American College of Medical Genetics and Genomics (ACMG), Genet. Med. 20 (2018) 1499-1507.
    C. Lu, Y.-W. Feng, Y. He, et al., Foods for aromatic amino acid metabolism disorder: A review of current status, challenges and opportunities, Food Rev. Int. 2022. https://doi.org/10.1080/87559129.2022.2122993.
    G. Genchi, An overview on D-amino acids, Amino Acids 49 (2017) 1521-1533.
    H. Wolosker, E. Dumin, L. Balan, et al., D-amino acids in the brain: D-serine in neurotransmission and neurodegeneration, FEBS J. 275 (2008) 3514-3526.
    H. Mirzaei, J.A. Suarez, V.D. Longo, Protein and amino acid restriction, aging and disease: From yeast to humans, Trends Endocrinol. Metab. 25 (2014) 558-566.
    S. Du, Y. Wang, N. Alatrash, et al., Altered profiles and metabolism of L- and D-amino acids in cultured human breast cancer cells vs. non-tumorigenic human breast epithelial cells, J. Pharm. Biomed. Anal. 164 (2019) 421-429.
    B. Li, H.-M. Wen, W. Zhou, et al., Porous metal-organic frameworks for gas storage and separation: What, how, and why? J. Phys. Chem. Lett. 5 (2014) 3468-3479.
    X. Yang, Q. Xu, Bimetallic metal-organic frameworks for gas storage and separation, Cryst. Growth Des. 17 (2017) 1450-1455.
    D. Farrusseng, S. Aguado, C. Pinel, Metal-organic frameworks: Opportunities for catalysis, Angew. Chem. Int. Ed. Engl. 48 (2009) 7502-7213.
    M. Zhao, S. Ou, C.-D. Wu, Porous metal-organic frameworks for heterogeneous biomimetic catalysis, Acc. Chem. Res. 47 (2014) 1199-1207.
    J. Della Rocca, D. Liu, W. Lin, Nanoscale metal-organic frameworks for biomedical imaging and drug delivery, Acc. Chem. Res. 44 (2011) 957-968.
    S. Rojas, P.S. Wheatley, E. Quartapelle-Procopio, et al., Metal-organic frameworks as potential multi-carriers of drugs, CrystEngComm 15 (2013) 9364-9367.
    C. Wang, D. Zhu, J. Zhang, et al., Homochiral iron-based γ-cyclodextrin metal-organic framework for stereoisomer separation in the open tubular capillary electrochromatography, J. Pharm. Biomed. Anal. 215 (2022), 114777.
    X. Sun, B. Niu, Q. Zhang, et al., MIL-53-based homochiral metal-organic framework as a stationary phase for open-tubular capillary electrochromatography, J. Pharm. Anal. 12 (2022) 509-516.
    Z.-X. Fei, M. Zhang, J.-H. Zhang, et al., Chiral metal-organic framework used as stationary phases for capillary electrochromatography, Anal. Chim. Acta 830 (2014) 49-55.
    R.-G. Xiong, X.-Z. You, B.F. Abrahams, et al., Enantioseparation of racemic organic molecules by a zeolite analogue, Angew. Chem. Int. Ed. Engl. 40 (2001) 4422-4425.
    Y.-Z. Tang, X.-F. Huang, Y.-M. Song, et al., Homochiral 1D zinc-quitenine coordination polymer with a high dielectric constant, Inorg. Chem. 45 (2006) 4868-4870.
    R. Rebane, M.-L. Oldekop, K. Herodes, Comparison of amino acid derivatization reagents for LC-ESI-MS analysis. Introducing a novel phosphazene-based derivatization reagent, J. Chromatogr. B. Analyt. Technol. Biomed. Life Sci. 904 (2012) 99-106.
    X. Sun, Y. Ding, B. Niu, et al., Evaluation of a composite nanomaterial consist of gold nanoparticles and graphene-carbon nitride as capillary electrochromatography stationary phase for enantioseparation, Microchem. J. 169 (2021), 106613.
    K. Sun, L. Li, X. Yu, et al., Functionalization of mixed ligand metal-organic frameworks as the transport vehicles for drugs, J. Colloid Interface Sci. 486 (2017) 128-135.
    A. Jabbari-Gargari, J. Moghaddas, H. Hamishehkar, et al., Carboxylic acid decorated silica aerogel nanostructure as drug delivery carrier, Microporous Mesoporous Mater. 323 (2021), 111220.
    M.N. Nimbalkar, B.R. Bhat, Simultaneous adsorption of methylene blue and heavy metals from water using Zr-MOF having free carboxylic group, J. Environ. Chem. Eng. 9 (2021) 106216.
    A. Chinthamreddy, S. Koppula, S. Kuruva, et al., Biopolymer-PAA and surfactant-CTAB assistant solvothermal synthesis of Zn-based MOFs: Design, characterization for removal of toxic dyes, copper and their biological activities, Inorg. Chem. Commun. 133 (2021), 108928.
    M. Lammerhofer, W. Lindner, Quinine and quinidine derivatives as chiral selectors I. Brush type chiral stationary phases for high-performance liquid chromatography based on cinchonan carbamates and their application as chiral anion exchangers, J. Chromatogr. A. 741 (1996) 33-48.
    X. Lu, M. Chen, J. Yang, et al., Surface-up construction of quinine bridged functional cyclodextrin for single-column versatile enantioseparation, J. Chromatogr. A. 1664 (2022), 462786.
    G. Yi, B. Ji, J. Du, et al., Enhanced enantioseparation performance in cyclodextrin-electrokinetic chromatography using quinine modified polydopamine coated capillary column, Microchem. J. 167 (2021), 106315.
    J. Horak, M. Lammerhofer, Stereoselective separation of underivatized and 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate derivatized amino acids using zwitterionic quinine and quinidine type stationary phases by liquid chromatography-high resolution mass spectrometry, J. Chromatogr. A 1596 (2019) 69-78.
    X. Xiong, W.R. Baeyens, H.Y. Aboul-Enein, et al., Impact of amines as co-modifiers on the enantioseparation of various amino acid derivatives on a tert-butyl carbamoylated quinine-based chiral stationary phase, Talanta 71 (2007) 573-581.
    L. Fang, Y. Zhao, C. Wang, et al., Preparation of a thiols β-cyclodextrin/gold nanoparticles-coated open tubular column for capillary electrochromatography enantioseparations, J. Sep. Sci. 43 (2020) 2209-2216.
    X. Yang, X. Sun, Z. Feng, et al., Open-tubular capillary electrochromatography with β-cyclodextrin-functionalized magnetic nanoparticles as stationary phase for enantioseparation of dansylated amino acids, Mikrochim. Acta 186 (2019), 244.
    X. Gao, R. Mo, Y. Ji, Preparation and characterization of tentacle-type polymer stationary phase modified with graphene oxide for open-tubular capillary electrochromatography, J. Chromatogr. A. 1400 (2015) 19-26.
    J.-H. Zhang, P.-J. Zhu, S.-M. Xie, et al., Homochiral porous organic cage used as stationary phase for open tubular capillary electrochromatography, Anal. Chim. Acta. 999 (2018) 169-175.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (393) PDF downloads(25) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return