Citation: | Duanping Sun, Ying Ma, Maoqiang Wu, Zuanguang Chen, Luyong Zhang, Jing Lu. Recent progress in aptamer-based microfluidics for the detection of circulating tumor cells and extracellular vesicles[J]. Journal of Pharmaceutical Analysis, 2023, 13(4): 340-354. doi: 10.1016/j.jpha.2023.03.001 |
F. Bray, J. Ferlay, I. Soerjomataram, et al., Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries, CA Cancer J. Clin. 68 (2018) 394-424.
|
Y. Sumida, A. Nakajima, Y. Itoh, Limitations of liver biopsy and non-invasive diagnostic tests for the diagnosis of nonalcoholic fatty liver disease/nonalcoholic steatohepatitis, World J. Gastroenterol. 20 (2014) 475-485.
|
W. Li, H. Wang, Z. Zhao, et al., Emerging nanotechnologies for liquid biopsy: The detection of circulating tumor cells and extracellular vesicles, Adv. Mater. 31 (2019), 1805344.
|
W.J. Frable, Fine-needle aspiration biopsy: A review, Hum. Pathol. 14 (1983) 9-28.
|
E. Munzone, F. Nole, A. Goldhirsch, et al., Changes of HER2 status in circulating tumor cells compared with the primary tumor during treatment for advanced breast cancer, Clin. Breast Cancer 10 (2010) 392-397.
|
V. Guarneri, S. Giovannelli, G. Ficarra, et al., Comparison of HER-2 and hormone receptor expression in primary breast cancers and asynchronous paired metastases: Impact on patient management, Oncologist 13 (2008) 838-844.
|
E. Crowley, F. Di Nicolantonio, F. Loupakis, et al., Liquid biopsy: Monitoring cancer-genetics in the blood, Nat. Rev. Clin. Oncol. 10 (2013) 472-484.
|
A. Di Meo, J. Bartlett, Y. Cheng, et al., Liquid biopsy: A step forward towards precision medicine in urologic malignancies, Mol. Cancer 16 (2017), 80.
|
L. Wu, Y. Wang, L. Zhu, et al., Aptamer-based liquid biopsy, ACS Appl. Bio Mater. 3 (2020) 2743-2764.
|
G. Chen, A.C. Huang, W. Zhang, et al., Exosomal PD-L1 contributes to immunosuppression and is associated with anti-PD-1 response, Nature 560 (2018) 382-386.
|
S. Nagrath, L.V. Sequist, S. Maheswaran, et al., Isolation of rare circulating tumor cells in cancer patients by microchip technology, Nature 450 (2007) 1235-1239.
|
F. Chemi, D.G. Rothwell, N. McGranahan, et al., Pulmonary venous circulating tumor cell dissemination before tumor resection and disease relapse, Nat. Med. 25 (2019) 1534-1539.
|
S. Maheswaran, L.V. Sequist, S. Nagrath, et al., Detection of mutations in EGFR in circulating lung-cancer cells, N. Engl. J. Med. 359 (2008) 366-377.
|
L.D. Mellby, A.P. Nyberg, J.S. Johansen, et al., Serum biomarker signature-based liquid biopsy for diagnosis of early-stage pancreatic cancer, J. Clin. Oncol. 36 (2018) 2887-2894.
|
W. Zhang, W. Xia, Z. Lv, et al., Liquid biopsy for cancer: Circulating tumor cells, circulating free DNA or exosomes? Cell. Physiol. Biochem. 41 (2017) 755-768.
|
L. Wu, Y. Wang, X. Xu, et al., Aptamer-based detection of circulating targets for precision medicine, Chem. Rev. 121 (2021) 12035-12105.
|
F. Tian, C. Liu, L. Lin, et al., Microfluidic analysis of circulating tumor cells and tumor-derived extracellular vesicles, Trends Analyt. Chem. 117 (2019) 128-145.
|
C. Alix-Panabieres, K. Pantel, Circulating tumor cells: Liquid biopsy of cancer, Clin. Chem. 59 (2013) 110-118.
|
I. Baccelli, A. Schneeweiss, S. Riethdorf, et al., Identification of a population of blood circulating tumor cells from breast cancer patients that initiates metastasis in a xenograft assay, Nat. Biotechnol. 31 (2013) 539-544.
|
K. Boriachek, M.N. Islam, A. Moller, et al., Biological functions and current advances in isolation and detection strategies for exosome nanovesicles, Small 14 (2018), 1702153.
|
W. Wang, J. Luo, S. Wang, Recent progress in isolation and detection of extracellular vesicles for cancer diagnostics, Adv. Healthcare Mater. 7 (2018), 1800484.
|
K.M. Kim, K. Abdelmohsen, M. Mustapic, et al., RNA in extracellular vesicles, Wiley Interdiscip. Rev. RNA 8 (2017), e1413.
|
A. Thind, C. Wilson, Exosomal miRNAs as cancer biomarkers and therapeutic targets, J. Extracell. Vesicles 5 (2016), 31292.
|
B. Lin, Y. Lei, J. Wang, et al., Microfluidic-based exosome analysis for liquid biopsy, Small Methods 5 (2021), 2001131.
|
H. Shao, J. Chung, L. Balaj, et al., Protein typing of circulating microvesicles allows real-time monitoring of glioblastoma therapy, Nat. Med. 18 (2012) 1835-1840.
|
R. Kalluri, The biology and function of exosomes in cancer, J. Clin. Invest. 126 (2016) 1208-1215.
|
C. Liu, J. Zhao, F. Tian, et al., Low-cost thermophoretic profiling of extracellular-vesicle surface proteins for the early detection and classification of cancers, Nat. Biomed. Eng. 3 (2019) 183-193.
|
R. Zhang, B. Le, W. Xu, et al., Magnetic squashing” of circulating tumor cells on plasmonic substrates for ultrasensitive NIR fluorescence detection, Small Methods 3 (2019), 1800474.
|
D. Sun, J. Lu, L. Zhang, et al., Aptamer-based electrochemical cytosensors for tumor cell detection in cancer diagnosis: A review, Anal. Chim. Acta 1082 (2019) 1-17.
|
C. Liu, Q. Feng, J. Sun, Lipid nanovesicles by microfluidics: Manipulation, synthesis, and drug delivery, Adv. Mater. 31 (2019), 1804788.
|
S. Lin, Z. Yu, D. Chen, et al., Progress in microfluidics-based exosome separation and detection technologies for diagnostic applications, Small 16 (2020), e1903916.
|
G. Li, W. Tang, F. Yang, Cancer liquid biopsy using integrated microfluidic exosome analysis platforms, Biotechnol. J. 15 (2020), 1900225.
|
J.M. Jackson, M.A. Witek, J.W. Kamande, et al., Materials and microfluidics: Enabling the efficient isolation and analysis of circulating tumour cells, Chem. Soc. Rev. 46 (2017) 4245-4280.
|
W. Qian, Y. Zhang, W. Chen, Capturing cancer: Emerging microfluidic technologies for the capture and characterization of circulating tumor cells, Small 11 (2015) 3850-3872.
|
J.H. Myung, S. Hong, Microfluidic devices to enrich and isolate circulating tumor cells, Lab Chip 15 (2015) 4500-4511.
|
Y. Zhao, D. Xu, W. Tan, Aptamer-functionalized nano/micro-materials for clinical diagnosis: Isolation, release and bioanalysis of circulating tumor cells, Integr. Biol. 9 (2017) 188-205.
|
Z.T.F. Yu, K.M. Aw Yong, J. Fu, Microfluidic blood cell sorting: Now and beyond, Small 10 (2014) 1687-1703.
|
N. Cheng, D. Du, X. Wang, et al., Recent advances in biosensors for detecting cancer-derived exosomes, Trends Biotechnol. 37 (2019) 1236-1254.
|
Y. Song, T. Tian, Y. Shi, et al., Enrichment and single-cell analysis of circulating tumor cells, Chem. Sci. 8 (2017) 1736-1751.
|
H. Ma, J. Liu, M.M. Ali, et al., Nucleic acid aptamers in cancer research, diagnosis and therapy, Chem. Soc. Rev. 44 (2015) 1240-1256.
|
X. Fang, W. Tan, Aptamers generated from cell-SELEX for molecular medicine: A chemical biology approach, Acc. Chem. Res. 43 (2010) 48-57.
|
C. Tuerk, L. Gold, Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase, Science 249 (1990) 505-510.
|
A.D. Ellington, J.W. Szostak, In vitro selection of RNA molecules that bind specific ligands, Nature 346 (1990) 818-822.
|
Z. Tang, D. Shangguan, K. Wang, et al., Selection of aptamers for molecular recognition and characterization of cancer cells, Anal. Chem. 79 (2007) 4900-4907.
|
P. Mallikaratchy, Z. Tang, S. Kwame, et al., Aptamer directly evolved from live cells recognizes membrane bound immunoglobin heavy mu chain in Burkitt’s lymphoma cells, Mol. Cell. Proteomics 6 (2007) 2230-2238.
|
D. Shangguan, Y. Li, Z. Tang, et al., Aptamers evolved from live cells as effective molecular probes for cancer study, Proc. Natl. Acad. Sci. U S A 103 (2006) 11838-11843.
|
M. Huang, J. Song, P. Huang, et al., Molecular crowding evolution for enabling discovery of enthalpy-driven aptamers for robust biomedical applications, Anal. Chem. 91 (2019) 10879-10886.
|
C. Shen, S. Liu, X. Li, et al., Electrochemical detection of circulating tumor cells based on DNA generated electrochemical current and rolling circle amplification, Anal. Chem. 91 (2019) 11614-11619.
|
W. Shen, K. Guo, G.B. Adkins, et al., A single extracellular vesicle (EV) flow cytometry approach to reveal EV heterogeneity, Angew. Chem. Int. Ed. Engl. 57 (2018) 15675-15680.
|
L. Wu, L. Zhu, M. Huang, et al., Aptamer-based microfluidics for isolation, release and analysis of circulating tumor cells, Trends Analyt. Chem. 117 (2019) 69-77.
|
D.D. Dickey, P.H. Giangrande, Oligonucleotide aptamers: A next-generation technology for the capture and detection of circulating tumor cells, Methods 97 (2016) 94-103.
|
E.M. Hassan, W.G. Willmore, M.C. DeRosa, Aptamers: Promising tools for the detection of circulating tumor cells, Nucleic Acid Ther. 26 (2016) 335-347.
|
Y. Duan, C. Zhang, Y. Wang, et al., Research progress of whole-cell-SELEX selection and the application of cell-targeting aptamer, Mol. Biol. Rep. 49 (2022) 7979-7993.
|
J. Yang, M.T. Bowser, Capillary electrophoresis-SELEX selection of catalytic DNA aptamers for a small-molecule porphyrin target, Anal. Chem. 85 (2013) 1525-1530.
|
Z. Luo, H. Zhou, H. Jiang, et al., Development of a fraction collection approach in capillary electrophoresis SELEX for aptamer selection, Analyst 140 (2015) 2664-2670.
|
K.-M. Song, E. Jeong, W. Jeon, et al., Aptasensor for ampicillin using gold nanoparticle based dual fluorescence-colorimetric methods, Anal. Bioanal. Chem. 402 (2012) 2153-2161.
|
J. Chen, J. Liu, J. Wang, et al., Fluorescent biosensor based on FRET and catalytic hairpin assembly for sensitive detection of polysialic acid by using a new screened DNA aptamer, Talanta 242 (2022), 123282.
|
L.Y. Hung, C.H. Wang, K.F. Hsu, et al., An on-chip Cell-SELEX process for automatic selection of high-affinity aptamers specific to different histologically classified ovarian cancer cells, Lab Chip 14 (2014) 4017-4028.
|
S. Hong, Y. Wan, M. Tang, et al., Multifunctional screening platform for the highly efficient discovery of aptamers with high affinity and specificity, Anal. Chem. 89 (2017) 6535-6542.
|
S. Ni, Z. Zhuo, Y. Pan, et al., Recent progress in aptamer discoveries and modifications for therapeutic applications, ACS Appl. Mater. Interfaces 13 (2021) 9500-9519.
|
O. Aminova, M.D. Disney, A microarray-based method to perform nucleic acid selections, Methods Mol. Biol. 669 (2010) 209-224.
|
Y. Zhu, P. Chandra, C. Ban, et al., Electrochemical evaluation of binding affinity for aptamer selection using the microarray chip, Electroanalysis 24 (2012) 1057-1064.
|
X. Liu, H. Li, W. Jia, et al., Selection of aptamers based on a protein microarray integrated with a microfluidic chip, Lab Chip 17 (2017) 178-185.
|
J. Glokler, T. Schutze, Z. Konthur, Automation in the high-throughput selection of random combinatorial libraries - Different approaches for select applications, Molecules 15 (2010) 2478-2490.
|
N. Ogawa, M.D. Biggin, High-throughput SELEX determination of DNA sequences bound by transcription factors in vitro, Methods Mol. Biol. 786 (2012) 51-63.
|
L.A. Fraser, A.B. Kinghorn, M.S.L. Tang, et al., Oligonucleotide functionalised microbeads: Indispensable tools for high-throughput aptamer selection, Molecules 20 (2015) 21298-21312.
|
M.R. Dunn, R.M. Jimenez, J.C. Chaput, Analysis of aptamer discovery and technology, Nat. Rev. Chem. 1 (2017), 0076.
|
J. Zhang, Y. Huang, M. Sun, et al., Recent advances in aptamer-based liquid biopsy, ACS Appl. Bio Mater. 5 (2022) 1954-1979.
|
M.R. Gotrik, T.A. Feagin, A.T. Csordas, et al., Advancements in aptamer discovery technologies, Acc. Chem. Res. 49 (2016) 1903-1910.
|
J.A. Ludwig, J.N. Weinstein, Biomarkers in cancer staging, prognosis and treatment selection, Nat. Rev. Cancer 5 (2005) 845-856.
|
M. Yu, S. Stott, M. Toner, et al., Circulating tumor cells: Approaches to isolation and characterization, J. Cell Biol. 192 (2011) 373-382.
|
C. Alix-Panabieres, K. Pantel, Clinical applications of circulating tumor cells and circulating tumor DNA as liquid biopsy, Cancer Discov. 6 (2016) 479-491.
|
J.E. Hardingham, P.J. Hewett, R.E. Sage, et al., Molecular detection of blood-borne epithelial cells in colorectal cancer patients and in patients with benign bowel disease, Int. J. Cancer 89 (2000) 8-13.
|
M. Cristofanilli, K.R. Broglio, V. Guarneri, et al., Circulating tumor cells in metastatic breast cancer: Biologic staging beyond tumor burden, Clin. Breast Cancer 7 (2007) 34-42.
|
R. Nadal, A. Fernandez, P. Sanchez-Rovira, et al., Biomarkers characterization of circulating tumour cells in breast cancer patients, Breast Cancer Res. 14 (2012), R71.
|
S.H. Kim, H. Ito, M. Kozuka, et al., Cancer marker-free enrichment and direct mutation detection in rare cancer cells by combining multi-property isolation and microfluidic concentration, Lab Chip 19 (2019) 757-766.
|
L. Zhang, L. Zou, Y. Ma, et al., Multifaceted modifications for a cell size-based circulating tumor cell scope technique hold the prospect for large-scale application in general populations, Cell Biol. Int. 45 (2021) 345-357.
|
Z. Dong, C. Tang, L. Zhao, et al., A microwell-assisted multiaptamer immunomagnetic platform for capture and genetic analysis of circulating tumor cells, Adv. Healthcare Mater. 7 (2018), 1801231.
|
N. Sun, J. Wang, L. Ji, et al., A cellular compatible chitosan nanoparticle surface for isolation and in situ culture of rare number CTCs, Small 11 (2015) 5444-5451.
|
B. Dou, L. Xu, B. Jiang, et al., Aptamer-functionalized and gold nanoparticle array-decorated magnetic graphene nanosheets enable multiplexed and sensitive electrochemical detection of rare circulating tumor cells in whole blood, Anal. Chem. 91 (2019) 10792-10799.
|
Y. Xiao, L. Lin, M. Shen, et al., Design of DNA aptamer-functionalized magnetic short nanofibers for efficient capture and release of circulating tumor cells, Bioconjugate Chem. 31 (2020) 130-138.
|
Y. Song, B. Lin, T. Tian, et al., Recent progress in microfluidics-based biosensing, Anal. Chem. 91 (2019) 388-404.
|
J.A. Phillips, Y. Xu, Z. Xia, et al., Enrichment of cancer cells using aptamers immobilized on a microfluidic channel, Anal. Chem. 81 (2009) 1033-1039.
|
Y. Xu, J.A. Phillips, J. Yan, et al., Aptamer-based microfluidic device for enrichment, sorting, and detection of multiple cancer cells, Anal. Chem. 81 (2009) 7436-7442.
|
W. Sheng, T. Chen, R. Kamath, et al., Aptamer-enabled efficient isolation of cancer cells from whole blood using a microfluidic device, Anal. Chem. 84 (2012) 4199-4206.
|
J. Zhu, J. Shang, Y. Jia, et al., Spatially selective release of aptamer-captured cells by temperature mediation, IET Nanobiotechnol. 8 (2014) 2-9.
|
N.V. Nguyen, C.-P. Jen, Selective detection of human lung adenocarcinoma cells based on the aptamer-conjugated self-assembled monolayer of gold nanoparticles, Micromachines (Basel) 10 (2019), 195.
|
F. Zhang, L. Wu, W. Nie, et al., Biomimetic microfluidic system for fast and specific detection of circulating tumor cells, Anal. Chem. 91 (2019) 15726-15731.
|
L. Cao, L. Cheng, Z. Zhang, et al., Visual and high-throughput detection of cancer cells using a graphene oxide-based FRET aptasensing microfluidic chip, Lab Chip 12 (2012) 4864-4869.
|
Y.-H. Chen, A.K. Pulikkathodi, Y.-D. Ma, et al., A microfluidic platform integrated with field-effect transistors for enumeration of circulating tumor cells, Lab Chip 19 (2019) 618-625.
|
M.F. Abate, S. Jia, M.G. Ahmed, et al., Visual quantitative detection of circulating tumor cells with single-cell sensitivity using a portable microfluidic device, Small 15 (2019), 1804890.
|
S.J. Reinholt, H.G. Craighead, Microfluidic device for aptamer-based cancer cell capture and genetic mutation detection, Anal. Chem. 90 (2018) 2601-2608.
|
C. Xu, M. Tang, J. Feng, et al., A liquid biopsy-guided drug release system for cancer theranostics: Integrating rapid circulating tumor cell detection and precision tumor therapy, Lab Chip 20 (2020) 1418-1425.
|
W. Sheng, T. Chen, W. Tan, et al., Multivalent DNA nanospheres for enhanced capture of cancer cells in microfluidic devices, ACS Nano 7 (2013) 7067-7076.
|
W. Zhao, C.H. Cui, S. Bose, et al., Bioinspired multivalent DNA network for capture and release of cells, Proc. Natl. Acad. Sci. U S A 109 (2012) 19626-19631.
|
Y. Song, Y. Shi, M. Huang, et al., Bioinspired engineering of a multivalent aptamer-functionalized nanointerface to enhance the capture and release of circulating tumor cells, Angew. Chem. Int. Ed. Engl. 58 (2019) 2236-2240.
|
J. Zhang, B. Lin, L. Wu, et al., DNA nanolithography enables a highly ordered recognition interface in a microfluidic chip for the efficient capture and release of circulating tumor cells, Angew. Chem. Int. Ed. Engl. 59 (2020) 14115-14119.
|
J. Peng, Y. Liu, R. Su, et al., DNA-programmed orientation-ordered multivalent microfluidic interface for liquid biopsy, Anal. Chem. 94 (2022) 8766-8773.
|
C. Wang, Y. Xu, S. Li, et al., Designer tetrahedral DNA framework-based microfluidic technology for multivalent capture and release of circulating tumor cells, Mater. Today Bio 16 (2022), 100346.
|
N.G. Maremanda, K. Roy, R.K. Kanwar, et al., Quick chip assay using locked nucleic acid modified epithelial cell adhesion molecule and nucleolin aptamers for the capture of circulating tumor cells, Biomicrofluidics 9 (2015), 054110.
|
L. Zhao, C. Tang, L. Xu, et al., Enhanced and differential capture of circulating tumor cells from lung cancer patients by microfluidic assays using aptamer cocktail, Small 12 (2016) 1072-1081.
|
Y. Zhang, Z. Wang, L. Wu, et al., Combining multiplex SERS nanovectors and multivariate analysis for in situ profiling of circulating tumor cell phenotype using a microfluidic chip, Small 14 (2018), 1704433.
|
R. Gao, C. Zhan, C. Wu, et al., Simultaneous single-cell phenotype analysis of hepatocellular carcinoma CTCs using a SERS-aptamer based microfluidic chip, Lab Chip 21 (2021) 3888-3898.
|
Z. Wu, Y. Pan, Z. Wang, et al., A PLGA nanofiber microfluidic device for highly efficient isolation and release of different phenotypic circulating tumor cells based on dual aptamers, J. Mater. Chem. B 9 (2021) 2212-2220.
|
X. Zhang, X. Wei, X. Men, et al., Dual-multivalent-aptamer-conjugated nanoprobes for superefficient discerning of single circulating tumor cells in a microfluidic chip with inductively coupled plasma mass spectrometry detection, ACS Appl. Mater. Interfaces 13 (2021) 43668-43675.
|
Y. Liu, Z. Lin, Z. Zheng, et al., Accurate isolation of circulating tumor cells via a heterovalent DNA framework recognition element-functionalized microfluidic chip, ACS Sens. 7 (2022) 666-673.
|
Z. Han, F. Wan, J. Deng, et al., Ultrasensitive detection of mRNA in extracellular vesicles using DNA tetrahedron-based thermophoretic assay, Nano Today 38 (2021), 101203.
|
F. Tian, C. Liu, J. Deng, et al., Microfluidic separation, detection, and engineering of extracellular vesicles for cancer diagnostics and drug delivery, Acc. Mater. Res. 3 (2022) 498-510.
|
C. Harding, J. Heuser, P. Stahl, Receptor-mediated endocytosis of transferrin and recycling of the transferrin receptor in rat reticulocytes, J. Cell Biol. 97 (1983) 329-339.
|
B.T. Pan, K. Teng, C. Wu, et al., Electron microscopic evidence for externalization of the transferrin receptor in vesicular form in sheep reticulocytes, J. Cell Biol. 101 (1985) 942-948.
|
Y. Belotti, C.T. Lim, Microfluidics for liquid biopsies: Recent advances, current challenges, and future directions, Anal. Chem. 93 (2021) 4727-4738.
|
A.A. Patil, W.J. Rhee, Exosomes: Biogenesis, composition, functions, and their role in pre-metastatic niche formation, Biotechnol. Bioprocess Eng. 24 (2019) 689-701.
|
M. Tschuschke, I. Kocherova, A. Bryja, et al., Inclusion biogenesis, methods of isolation and clinical application of human cellular exosomes, J. Clin. Med. 9 (2020), 436.
|
Y. Sato-Kuwabara, S.A. Melo, F.A. Soares, et al., The fusion of two worlds: Non-coding RNAs and extracellular vesicles - diagnostic and therapeutic implications (Review), Int. J. Oncol. 46 (2015) 17-27.
|
H. Xu, C. Liao, P. Zuo, et al., Magnetic-based microfluidic device for on-chip isolation and detection of tumor-derived exosomes, Anal. Chem. 90 (2018) 13451-13458.
|
C. Liu, J. Zhao, F. Tian, et al., λ-DNA- and aptamer-mediated sorting and analysis of extracellular vesicles, J. Am. Chem. Soc. 141 (2019) 3817-3821.
|
Q. Zhou, A. Rahimian, K. Son, et al., Development of an aptasensor for electrochemical detection of exosomes, Methods 97 (2016) 88-93.
|
L. Kashefi-Kheyrabadi, J. Kim, S. Chakravarty, et al., Detachable microfluidic device implemented with electrochemical aptasensor (DeMEA) for sequential analysis of cancerous exosomes, Biosens. Bioelectron. 169 (2020), 112622.
|
X. Dong, J. Chi, L. Zheng, et al., Efficient isolation and sensitive quantification of extracellular vesicles based on an integrated ExoID-Chip using photonic crystals, Lab Chip 19 (2019) 2897-2904.
|
Y. Ren, K. Ge, D. Sun, et al., Rapid enrichment and sensitive detection of extracellular vesicles through measuring the phospholipids and transmembrane protein in a microfluidic chip, Biosens. Bioelectron. 199 (2022), 113870.
|