Citation: | Junyun Cheng, Jie Chen, Jie Liao, Tianhao Wang, Xin Shao, Jinbo Long, Penghui Yang, Anyao Li, Zheng Wang, Xiaoyan Lu, Xiaohui Fan. High-throughput transcriptional profiling of perturbations by Panax ginseng saponins and Panax notoginseng saponins using TCM-seq[J]. Journal of Pharmaceutical Analysis, 2023, 13(4): 376-387. doi: 10.1016/j.jpha.2023.02.009 |
J.-H. Heo, S.-T. Lee, K. Chu, et al., Heat-processed ginseng enhances the cognitive function in patients with moderately severe Alzheimer's disease, Nutr. Neurosci. 15 (2012) 278-282.
|
J.-L. Huang, Z.-H. Xu, S.-M. Yang, et al., Identification of differentially expressed profiles of alzheimer's disease associated circular RNAs in a panax notoginseng saponins-treated alzheimer's disease mouse model, Comput. Struct. Biotechnol. J. 16 (2018) 523-531.
|
H. Zhou, S.Z. Hou, P. Luo, et al., Ginseng protects rodent hearts from acute myocardial ischemia-reperfusion injury through GR/ER-activated RISK pathway in an endothelial NOS-dependent mechanism, J. Ethnopharmacol. 135 (2011) 287-298.
|
D. Wang, L. Lv, Y. Xu, et al., Cardioprotection of Panax Notoginseng saponins against acute myocardial infarction and heart failure through inducing autophagy, Biomed. Pharmacother. 136 (2021), 111287.
|
L. Jiao, X. Zhang, B. Li, et al., Anti-tumour and immunomodulatory activities of oligosaccharides isolated from Panax ginseng C.A. Meyer, Int. J. Biol. Macromol. 65 (2014) 229-233.
|
Y.J. Hong, N. Kim, K. Lee, et al., Korean red ginseng (Panax ginseng) ameliorates type 1 diabetes and restores immune cell compartments, J. Ethnopharmacol. 144 (2012) 225-233.
|
W.J. Jeon, J.S. Oh, M.S. Park, et al., Anti-hyperglycemic effect of fermented ginseng in type 2 diabetes mellitus mouse model, Phytother Res. 27 (2013) 166-172.
|
J.J. Y. Kim, H. Xiao, Y. Tan, et al., The effects and mechanism of saponins of Panax notoginseng on glucose metabolism in 3T3-L1 cells, Am. J. Chin. Med. 37 (2009) 1179-1189.
|
H. Liu, X. Lu, Y. Hu, et al., Chemical constituents of Panax ginseng and Panax notoginseng explain why they differ in therapeutic efficacy, Pharmacol. Res. 161 (2020), 105263.
|
J. Yuan, W. Guo, B. Yang, et al., 116 cases of coronary angina pectoris treated with powder composed of radix ginseng, radix notoginseng and succinum, J. Tradit. Chin. Med. 17 (1997) 14-17.
|
G. Liu, B. Wang, J. Zhang, et al., Total panax notoginsenosides prevent atherosclerosis in apolipoprotein E-knockout mice: role of downregulation of CD40 and MMP-9 expression, J. Ethnopharmacol. 126 (2009) 350-354.
|
L. Dou, Y. Lu, T. Shen, et al., Panax notogingseng saponins suppress RAGE/MAPK signaling and NF-kappaB activation in apolipoprotein-E-deficient atherosclerosis-prone mice, Cell. Physiol. Biochem. 29 (2012) 875-882.
|
K. Ohtani, K. Mizutani, S. Hatono, et al., A reticuloendothelial system activating arabinogalactan from sanchi-ginseng (roots of Panax notoginseng), Planta Med. 53 (1987) 166-169.
|
G. Dong, T. Chen, X. Ren, et al., Rg1 prevents myocardial hypoxia/reoxygenation injury by regulating mitochondrial dynamics imbalance via modulation of glutamate dehydrogenase and mitofusin 2, Mitochondrion. 26 (2016) 7-18.
|
L. Li, C.-S. Pan, L. Yan, et al., Ginsenoside Rg1 ameliorates rat myocardial ischemia-reperfusion injury by modulating energy metabolism pathways, Front. Physiol. 9 (2018), 78.
|
C. Lv, X. Wu, X. Wang, et al., The gene expression profiles in response to 102 traditional Chinese medicine (TCM) components: a general template for research on TCMs, Sci. Rep. 7 (2017), 352.
|
M. Yoo, J. Shin, H. Kim, et al., Exploring the molecular mechanisms of Traditional Chinese Medicine components using gene expression signatures and connectivity map, Comput. Methods Programs Biomed. 174 (2019) 33-40.
|
B.-Y. Kim, K.H. Song, C.-Y. Lim, et al., Therapeutic properties of Scutellaria baicalensis in db/db mice evaluated using Connectivity Map and network pharmacology, Sci. Rep. 7 (2017), 41711.
|
J. Zhang, W. Li, Q. Yuan, et al., Transcriptome analyses of the anti-proliferative effects of 20(S)-Ginsenoside Rh2 on HepG2 cells, Front. Pharmacol. 10 (2019), 1331.
|
D. Gu, H. Yi, K. Jiang, et al., Transcriptome analysis reveals the efficacy of ginsenoside-Rg1 in the treatment of nonalcoholic fatty liver disease, Life Sci. 267 (2021), 118986.
|
S. Zhang, H. Wang, J. Wang, et al., Ginsenoside Rf inhibits human tau proteotoxicity and causes specific LncRNA, miRNA and mRNA expression changes in Caenorhabditis elegans model of tauopathy, Eur. J. Pharmacol. 922 (2022), 174887.
|
G. Cao, C. Xiang, R. Zhou, et al., Notoginsenoside R1 facilitated wound healing in high-fat diet/streptozotocin-induced diabetic rats, Oxid. Med. Cell. Longev. 2022 (2022), 2476493.
|
J. Cheng, J. Liao, X. Shao, et al., Multiplexing methods for simultaneous large-scale transcriptomic profiling of samples at single-cell resolution, Adv. Sci. 8 (2021), e2101229.
|
C. Ye, D.J. Ho, M. Neri, et al., DRUG-seq for miniaturized high-throughput transcriptome profiling in drug discovery, Nat. Commun. 9 (2018), 4307.
|
Y. Li, H. Yang, H. Zhang, et al., Decode-seq: a practical approach to improve differential gene expression analysis, Genome Biol. 21 (2020), 66.
|
A. Janjic, L.E. Wange, J. W. Bagnoli, et al., Prime-seq, efficient and powerful bulk RNA sequencing, Genome Biol. 23 (2022), 88.
|
L. Mathur, B. Szalai, N.H. Du, et al., Combi-seq for multiplexed transcriptome-based profiling of drug combinations using deterministic barcoding in single-cell droplets, Nat. Commun. 13 (2022), 4450.
|
H. Li, B. Handsaker, A. Wysoker, et al., The sequence alignment/map format and SAMtools, Bioinformatics. 25 (2009) 2078-2079.
|
Y. Liao, G.K. Smyth, W. Shi, The Subread aligner: fast, accurate and scalable read mapping by seed-and-vote, Nucleic Acids Res. 41 (2013), e108.
|
M.I. Love, W. Huber, S. Anders, Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2, Genome Biol. 15 (2014), 550.
|
A. Butler, P. Hoffman, P. Smibert, et al., Integrating single-cell transcriptomic data across different conditions, technologies, and species, Nat. Biotechnol. 36 (2018) 411-420.
|
G. Yu, L.-G. Wang, Y. Han, et al., clusterProfiler: an R package for comparing biological themes among gene clusters, OMICS. 16 (2012) 284-287.
|
P. Langfelder, S. Horvath, WGCNA: an R package for weighted correlation network analysis, BMC Bioinf. 9 (2008), 559.
|
R. Wang, X. Fan, W. Yuan, et al., Simultaneous determination of nine ginsenosides in Shenmai Injection by HPLC, Chin. Tradit. Pat. Med. 41 (2019) 987-990.
|
J. Lamb, E.D. Crawford, D. Peck, et al., The Connectivity Map: using gene-expression signatures to connect small molecules, genes, and disease, Science. 313 (2006) 1929-1935.
|
A. Subramanian, R. Narayan, S.M. Corsello, et al., A next generation connectivity map: L1000 platform and the first 1,000,000 profiles, Cell. 171 (2017) 1437-1452.e17.
|
J.K. Kim, K.K. Shin, H. Kim, et al., Korean Red Ginseng exerts anti-inflammatory and autophagy-promoting activities in aged mice, J. Ginseng Res. 45 (2021) 717-725.
|
B. Ren, J. Feng, N. Yang, et al., Ginsenoside Rg3 attenuates angiotensin-induced myocardial hypertrophy through repressing NLRP3 inflammasome and oxidative stress via modulating SIRT1/NF-κB pathway, Int. Immunopharm. 98 (2021), 107841.
|
T.-H. Kim, J.-Y. Kim, J. Bae, et al., Korean Red ginseng prevents endothelial senescence by downregulating the HO-1/NF-κB/miRNA-155-5p/eNOS pathway, J. Ginseng Res. 45 (2021) 344-353.
|
B. Zhang, X. Hu, H. Wang, et al., Effects of a dammarane-type saponin, ginsenoside Rd, in nicotine-induced vascular endothelial injury, Phytomedicine. 79 (2020), 153325.
|
S. Lee, S.-O. Lee, G.-L. Kim, et al., Estrogen receptor-β of microglia underlies sexual differentiation of neuronal protection via ginsenosides in mice brain, CNS Neurosci. Ther. 24 (2018) 930-939.
|
D. Lu, L.-H. Zhu, X.-M. Shu, et al., Ginsenoside Rg1 relieves tert-Butyl hydroperoxide-induced cell impairment in mouse microglial BV2 cells, J. Asian Nat. Prod. Res. 17 (2015) 930-945
|