Citation: | Xinyu Li, Qianjie Ma, Xiangtai Zheng, Qin Chen, Xiaodong Sun. Recent applications and chiral separation development based on stationary phases in open tubular capillary electrochromatography (2019-2022)[J]. Journal of Pharmaceutical Analysis, 2023, 13(4): 323-339. doi: 10.1016/j.jpha.2023.01.003 |
L.A. Colon, T.D. Maloney, A.M. Fermier, Packing columns for capillary electrochromatography, J. Chromatogr. A 887 (2000) 43-53.
|
Z. Mao, Z. Chen, Advances in capillary electro-chromatography, J. Pharm. Anal. 9 (2019) 227-237.
|
L. Zhao, W. Lv, X. Niu, et al., An azine-linked covalent organic framework as stationary phase for separation of environmental endocrine disruptors by open-tubular capillary electrochromatography, J. Chromatogr. A 1615 (2020), 460722.
|
J. Zhang, S. Xie, M. Zi, et al., Recent advances of application of porous molecular cages for enantioselective recognition and separation, J. Separ. Sci. 43 (2020) 134-149.
|
Z. Li, Z. Mao, Z. Chen, In-situ growth of a metal organic framework composed of zinc(II), adeninate and biphenyldicarboxylate as a stationary phase for open-tubular capillary electrochromatography, Microchim. Acta 186 (2019), 53.
|
W. Zhou, W. Sun, Y. Liu, et al., Ionic liquid-copolymerized monolith based porous layer open tubular column for CEC-MS analysis, Talanta 209 (2020), 120556.
|
X. Yang, X. Sun, Z. Feng, et al., Open-tubular capillary electrochromatography with β-cyclodextrin-functionalized magnetic nanoparticles as stationary phase for enantioseparation of dansylated amino acids, Microchim. Acta 186 (2019), 244.
|
X. Sun, C. Chen, X. Li, et al., Gold nanoparticles coated with a tetramethylammonium lactobionate ionic liquid for enhanced chiral differentiation in open tubular capillary electrochromatography: application to enantioseparation of β-blockers, Microchim. Acta 187 (2020), 170.
|
Z. Jiang, J. Qu, X. Tian, et al., Sol-gel technique for the preparation of β-cyclodextrin gold nanoparticles as chiral stationary phase in open-tubular capillary electrochromatography, J. Separ. Sci. 42 (2019) 1948-1954.
|
L. Zhou, J. Lun, Y. Liu, et al., In situ immobilization of sulfated-β-cyclodextrin as stationary phase for capillary electrochromatography enantioseparation, Talanta 200 (2019) 1-8.
|
H. Zhang, Q. Fu, G. Zheng, et al., Modulation of electroosmotic flow in open tubular capillary electrochromatography by chitosan-assisted titanium oxide nanoparticles liquid phase deposition, Chromatographia 82 (2019) 1383-1393.
|
X. Sun, J. Guo, T. Yu, et al., A novel coating method for CE capillary using carboxymethyl-β-cyclodextrin-modified magnetic microparticles as stationary for electrochromatography enantioseparation, Anal. Bioanal. Chem. 411 (2019) 1193-1202.
|
X. Zhao, L. Liu, N. Li, et al., Zeolite silica nanoparticles-supported open-tubular columns for isomer and chiral separation using capillary electrochromatography coupled with amperometric detection, New J. Chem. 44 (2020) 1028-1035.
|
Q. Bai, C. Zhang, Y. Zhao, et al., Evaluation of chiral separation based on bovine serum albumin-conjugated carbon nanotubes as stationary phase in capillary electrochromatography, Electrophoresis 41 (2020) 1253-1260.
|
M. Ma, Y. Xi, Y. Du, et al., Maltodextrin-modified graphene oxide for improved enantiomeric separation of six basic chiral drugs by open-tubular capillary electrochromatography, Microchim. Acta 187 (2020), 55.
|
X. Sun, Y. Ding, B. Niu, et al., Evaluation of a composite nanomaterial consist of gold nanoparticles and graphene-carbon nitride as capillary electrochromatography stationary phase for enantioseparation, Microchem. J. 169 (2021), 106613.
|
Y. Liu, J. Li, Y. Wang, et al., Open-tubular capillary electrochromatography with Janus structured Au-Fe3O4 nanoparticles coating as stationary phase, Anal. Sci. 36 (2020) 413-418.
|
X. Sun, Y. Du, S. Zhao, et al., Enantioseparation of propranolol, amlodipine and metoprolol by electrochromatography using an open tubular capillary modified with β-cyclodextrin and poly(glycidyl methacrylate) nanoparticles, Microchim. Acta 186 (2019), 128.
|
L. Gao, X. Hu, S. Qin, et al., L-Cysteine modified metal-organic framework as a chiral stationary phase for enantioseparation by capillary electrochromatography, RSC Adv. 12 (2022) 6063-6075.
|
X. Sun, Y. Tao, Y. Du, et al., Metal organic framework HKUST-1 modified with carboxymethyl-β-cyclodextrin for use in improved open tubular capillary electrochromatographic enantioseparation of five basic drugs, Microchim. Acta 186 (2019), 462.
|
Z. Li, Z. Mao, W. Zhou, et al., γ-Cyclodextrin metal-organic framework supported by polydopamine as stationary phases for electrochromatographic enantioseparation, Talanta 218 (2020), 121160.
|
W. Ding, M. Ma, Y. Du, et al., Metal organic framework ZIF-90 modified with lactobionic acid for use in improved open tubular capillary electrochromatographic enantioseparation of five basic drugs, Microchim. Acta 187 (2020), 651.
|
Q. Li, Z. Li, Y. Fu, et al., Room-temperature growth of covalent organic frameworks as the stationary phase for open-tubular capillary electrochromatography, Analyst 146 (2021) 6643-6649.
|
Y. Li, X. Lin, S. Qin, et al., β-Cyclodextrin-modified covalent organic framework as chiral stationary phase for the separation of amino acids and β-blockers by capillary electrochromatography, Chirality 32 (2020) 1008-1019.
|
G. Wang, Y. Chen, W. Lv, et al., Enantioseparation in capillary eletrochromatography by covalent organic framework coating prepared in situ, J. Chromatogr. A 1670 (2022), 462943.
|
X. Wang, X. Hu, Y. Shao, et al., Ambient temperature fabrication of a covalent organic framework from 1,3,5-triformylphloroglucinol and 1,4-phenylenediamine as a coating for use in open-tubular capillary electrochromatography of drugs and amino acids, Microchim. Acta 186 (2019), 650.
|
L. Gao, X. Zhao, S. Qin, et al., A covalent organic framework for chiral capillary electrochromatography using a cyclodextrin mobile phase additive, Chirality 34 (2022) 537-549.
|
X. Niu, W. Lv, Y. Sun, et al., In situ fabrication of 3D COF-300 in a capillary for separation of aromatic compounds by open-tubular capillary electrochromatography, Microchim. Acta 187 (2020), 233.
|
Y. Wang, S. Zhuo, J. Hou, et al., Construction of β-cyclodextrin covalent organic framework-modified chiral stationary phase for chiral separation, ACS Appl. Mater. Interfaces 11 (2019) 48363-48369.
|
R. Zong, X. Wang, H. Yin, et al., Capillary coated with three-dimensional covalent organic frameworks for separation of fluoroquinolones by open-tubular capillary electrochromatography, J. Chromatogr. A 1656 (2021), 462549.
|
Y. Sun, C. Li, X. Niu, et al., Rapid and mild fabrication of protein membrane coated capillary based on supramolecular assemble for chiral separation in capillary electrochromatography, Talanta 195 (2019) 190-196.
|
Z. Li, Q. Li, Y. Fu, et al., A lipase-based chiral stationary phase for direct chiral separation in capillary electrochromatography, Talanta 233 (2021), 122488.
|
M. Ma, C. Chen, X. Zhu, et al., A porous layer open-tubular capillary column supported with pepsin and zeolitic imidazolate framework for enantioseparation of four basic drugs in capillary electrochromatography, J.Chromatogr. A 1637 (2021), 461866.
|
C. Wang, D. Zhu, J. Zhang, et al., Homochiral iron-based γ-cyclodextrin metal-organic framework for stereoisomer separation in the open tubular capillary electrochromatography, J. Pharm. Biomed. Anal. 215 (2022), 114777.
|
C. Wang, C. Chen, M. Ma, et al., In-situ grown metal organic framework synergistic system for the enantioseparation of three drugs in open tubular capillary electrochromatography, J. Separ. Sci. 45 (2022) 2708-2716.
|
C. Zhang, J. Qu, X. Lv, et al., A novel open-tubular capillary electrochromatography using carboxymethyl-β-cyclodextrin functionalized gold nanoparticles as chiral stationary phase, J. Separ. Sci. 43 (2020) 946-953.
|
L. Zhou, Y. Lu, G. Sun, Open tubular capillary column immobilized with sulfobutylether-β-cyclodextrin for chiral separation in capillary electrochromatography, J. Separ. Sci. 44 (2021) 2037-2045.
|
L. Fang, Y. Zhao, C. Wang, et al., Preparation of a thiols β-cyclodextrin/gold nanoparticles-coated open tubular column for capillary electrochromatography enantioseparations, J. Separ. Sci. 43 (2020) 2209-2216.
|
Y. Li, Y. Tang, S. Qin, et al., Preparation and characterization of a new open-tubular capillary column for enantioseparation by capillary electrochromatography, Chirality 31 (2019) 283-292.
|
X. Li, Y. Li, S. Qin, et al., Preparation and enantioseparation application of urea amino-beta-cyclodextrin derivative open-tubular column, Chem. Res. Appl. 34 (2022) 1099-1103.
|
J. Xing, F. Wang, H. Cong, et al., Analysis of proteins and chiral drugs based on vancomycin covalent capillary electrophoretic coating, Analyst 146 (2021) 1320-1325.
|
L. Li, X. Xue, H. Zhang, et al., In-situ and one-step preparation of protein film in capillary column for open tubular capillary electrochromatography enantioseparation, Chin. Chem. Lett. 32 (2021) 2139-2142.
|
L. He, M. Tang, G. Qin, et al., Separation of enantiomers by open-tubular capillary electrochromatography using (R)-1,1’-bi-2-naphthol derivatives as chiral stationary phases, Sep. Sci. Plus 5 (2022) 314-321.
|
L. Zhao, J. Qiao, H. Zhang, et al., Open tubular capillary electrochromatography with block co-polymer coating for separation of β-lactam antibiotics, Chin. Chem. Lett. 30 (2019) 349-352.
|
G. Sun, W. Tang, Y. Lu, et al., Growth of two-layer copolymer as the stationary phase with very high separation efficiency for separating peptides in capillary electrochromatography, Electrophoresis 42 (2021) 2087-2093.
|
G. Yi, J. He, B. Ji, et al., Solvothermal-assisted in situ rapid growth of octadecylamine functionalized polydopamine-based permanent coating as stationary phase for open-tubular capillary electrochromatography, J. Chromatogr. A 1628 (2020), 461436.
|
Y. Huang, G. Yi, B. Ji, et al., In situ one-pot synthesis of polydopamine/octadecylamine co-deposited coating in capillary for open-tubular capillary electrochromatography, J. Chromatogr. A 1610 (2020), 460559.
|
L. Liu, J. Qiao, H. Zhang, et al., Separation of antipyretic analgesics by open tubular capillary electrochromatography with homopolymer coatings, J. Separ. Sci. 42 (2019) 3016-3022.
|
F. Wang, Y. Zhang, G. Wang, et al., Synthesis of a covalent organic framework with hydrazine linkages and its application in open-tubular capillary electrochromatography, J. Chromatogr. A 1661 (2022), 462681.
|
Z. Cai, X. Hu, R. Zong, et al., A graphene oxide-molybdenum disulfide composite used as stationary phase for determination of sulfonamides in open-tubular capillary electrochromatography, J. Chromatogr. A 1629 (2020), 461487.
|
C. Liu, X. Zhang, H. Jing, et al., Using open-tubular capillary electrochromatography with part-coating column for binding constants determination of β2-adrenergic receptor with seven drugs, Electrophoresis 40 (2019) 289-295.
|
Z. Li, Z. Mao, Z. Chen, Polydopamine-assisted immobilization of a zinc(II)-derived metal-organic cage as a stationary phase for open-tubular capillary electrochromatography, Microchim. Acta 186 (2019), 449.
|
P. Chen, J. Wu, L. Zhou, et al., In situ controllable synthesis of Schiff base networks porous polymer coatings for open-tubular capillary electrochromatography, Microchim. Acta 188 (2021), 82.
|
Z. Cai, X. Wang, J. An, et al., Determination of trace sulfonamides in environmental water and milk through capillary electrochromatography using PEG-MoS2 as stationary phase, Food Anal. Methods 13 (2020) 551-559.
|
W. Zhou, X. Yu, Y. Liu, et al., Porous layer open-tubular column with styrene and itaconic acid-copolymerized polymer as stationary phase for capillary electrochromatography-mass spectrometry, Electrophoresis 42 (2021) 2664-2671.
|
W. Sun, Y. Liu, W. Zhou, et al., In-situ growth of a spherical vinyl-functionalized covalent organic framework as stationary phase for capillary electrochromatography-mass spectrometry analysis, Talanta 230 (2021), 122330.
|
L. Zhao, W. Lu, X. Niu, et al., Preparation of a two-dimensional azine-linked covalent organic framework-coated capillary and its application to the separation of nitrophenol environmental endocrine disruptors by open-tubular capillary electrochromatography, Se Pu 38 (2020) 1095-1101.
|
P.W. Stege, G.L. Forlin, J.A. Gasquez, et al., Open-tubular capillary electrochromatography for the simultaneous determination of cadmium and copper in plants, J. Separ. Sci. 42 (2019) 1459-1467.
|
A. Wang, K. Liu, M. Tian, et al., Open tubular capillary electrochromatography-mass spectrometry for analysis of underivatized amino acid enantiomers with a porous layer-gold nanoparticle-modified chiral column, Anal. Chem. 94 (2022) 9252-9260.
|
T. Wang, L. Yang, Y. Cheng, et al., Evaluation of homochiral zeolitic imidazolate framework-8 supported open-tubular column by miniaturized capillary electrochromatography with amperometric detection, Microchim. Acta 188 (2021), 375.
|
M. Wang, Y. Liu, Y. Liu, et al., MOFs and PDA-supported immobilization of BSA in open tubular affinity capillary electrochromatography: Prediction and study on drug-protein interactions, Talanta 237 (2022), 122959.
|
L. Gao, X. Hu, S. Qin, et al., One-pot synthesis of a novel chiral Zr-based metal-organic framework for capillary electrochromatographic enantioseparation, Electrophoresis 43 (2022) 1161-1173.
|
L. Gu, J. Guan, Z. Huang, et al., β-Cyclodextrin covalent organic framework supported by polydopamine as stationary phases for electrochromatographic enantioseparation, Electrophoresis 43 (2022) 1446-1454.
|
G. Wang, W. Lv, C. Pan, et al., Synthesis of a novel chiral DA-TD covalent organic framework for open-tubular capillary electrochromatography enantioseparation, Chem. Commun. 58 (2022) 403-406.
|
X. Sui, J. Guan, X. Li, et al., Preparation of a polydopamine/β-cyclodextrin coated open tubular capillary electrochromatography column and application for enantioseparation of five proton pump inhibitors, J. Separ. Sci. 44 (2021) 3295-3304.
|
J. Flieger, J. Feder-Kubis, M. Tatarczak-Michalewska, Chiral ionic liquids: structural diversity, properties and applications in selected separation techniques, Int. J. Mol. Sci. 21 (2020), 4253.
|
Q. Zhang, S. Xue, A. Li, et al., Functional materials in chiral capillary electrophoresis, Coord. Chem. Rev. 445 (2021), 214108.
|
I.J. Stavrou, L. Moore Jr, V.E. Fernand, et al., Facile preparation of polysaccharide-coated capillaries using a room temperature ionic liquid for chiral separations, Electrophoresis 34 (2013) 1334-1338.
|
R. Liu, S. Cheddah, S. Liu, et al., A porous layer open-tubular capillary column with immobilized pH gradient (PLOT-IPG) for isoelectric focusing of amino acids and proteins, Anal. Chim. Acta 1048 (2019) 204-211.
|
S.F. Sandra, C. Natalia, C.P. Maria, et al., Use of choline chloride-D-sorbitol deep eutectic solvent as additive in cyclodextrin-electrokinetic chromatography for the enantiomeric separation of lacosamide, Microchem. J. 160 (2021) 105669.
|
V. Adam, M. Vaculovicova, CE and nanomaterials - part II: nanomaterials in CE, Electrophoresis 38 (2017) 2405-2430.
|
J.E. Blume, W.C. Manning, G. Troiano, et al., Rapid, deep and precise profiling of the plasma proteome with multi-nanoparticle protein corona, Nat. Commun. 11 (2020), 3662.
|
Y. Zhang, W. Wang, X. Ma, et al., Polydopamine assisted fabrication of titanium oxide nanoparticles modified column for proteins separation by capillary electrochromatography, Anal. Biochem. 512 (2016) 103-109.
|
C. Pan, W. Wang, X. Chen, In situ rapid preparation of homochiral metal-organic framework coated column for open tubular capillary electrochromatography, J. Chromatogr. A 1427 (2016) 125-133.
|
L. Zhou, B. Zhang, S. Li, et al., Enantioselective open-tubular capillary electrochromatography using a β-cyclodextrin-gold nanoparticles-polydopamine coating as a stationary phase, New J. Chem. 42 (2018) 17250-17258.
|
D. Wang, X. Song, Y. Duan, et al., Preparation and characterization of a polystyrene/bovine serum albumin nanoparticle-coated capillary for chiral separation using open-tubular capillary electrochromatography, Electrophoresis 34 (2013) 1339-1342.
|
M. Li, X. Liu, F. Jiang, et al., Enantioselective open-tubular capillary electrochromatography using cyclodextrin-modified gold nanoparticles as stationary phase, J. Chromatogr. A 1218 (2011) 3725-3729.
|
P. Rezanka, K. Navratilova, P. Zvatora, et al., Cyclodextrin modified gold nanoparticles-based open-tubular capillary electrochromatographic separations of polyaromatic hydrocarbons, J. Nanoparticle Res. 13 (2011) 5947-5957.
|
W. Wang, X. Xiao, J. Chen, et al., Carboxyl modified magnetic nanoparticles coated open tubular column for capillary electrochromatographic separation of biomolecules, J. Chromatogr. A 1411 (2015) 92-100.
|
B. Lin, T. Li, Y. Zhao, et al., Preparation of a TiO2 nanoparticle-deposited capillary column by liquid phase deposition and its application in phosphopeptide analysis, J. Chromatogr. A 1192 (2008) 95-102.
|
Q. Qu, Y. Liu, W. Shi, et al., Tunable thick porous silica coating fabricated by multilayer-by-multilayer bonding of silica nanoparticles for open-tubular capillary chromatographic separation, J. Chromatogr. A 1399 (2015) 25-31.
|
Y. Zhao, S. Zhao, J. Huang, et al., Quantum dot-enhanced chemiluminescence detection for simultaneous determination of dopamine and epinephrine by capillary electrophoresis, Talanta 85 (2011) 2650-2654.
|
J.M. Jimenez-Soto, Y. Moliner-Martinez, S. Cardenas, et al., Evaluation of the performance of single-walled carbon nanohorns in capillary electrophoresis, Electrophoresis 31 (2010) 1681-1688.
|
J. Chen, T. Lu, Y. Lin, Multi-walled carbon nanotube composites with polyacrylate prepared for open-tubular capillary electrochromatography, Electrophoresis 31 (2010) 3217-3226.
|
J. Chen, K.H. Hsieh, Polyacrylamide grafted on multi-walled carbon nanotubes for open-tubular capillary electrochromatography: comparison with silica hydride and polyacrylate phase matrices, Electrophoresis 31 (2010) 3937-3948.
|
X. Liu, X. Liu, X. Liu, et al., Graphene oxide and reduced graphene oxide as novel stationary phases via electrostatic assembly for open-tubular capillary electrochromatography, Electrophoresis 34 (2013) 1869-1876.
|
N. Ye, J. Li, Determination of dopamine, epinephrine, and norepinephrine by open-tubular capillary electrochromatography using graphene oxide molecularly imprinted polymers as the stationary phase, J. Separ. Sci. 37 (2014) 2239-2247.
|
R. Liang, X. Meng, C. Liu, et al., Enantiomeric separation by open-tubular capillary electrochromatography using bovine-serum-albumin-conjugated graphene oxide-magnetic nanocomposites as stationary phase, Microfluid. Nanofluidics 16 (2014) 195-206.
|
R. Liang, C. Liu, X. Meng, et al., A novel open-tubular capillary electrochromatography using β-cyclodextrin functionalized graphene oxide-magnetic nanocomposites as tunable stationary phase, J. Chromatogr. A 1266 (2012) 95-102.
|
J. Dong, Y. Liu, Y. Cui, Artificial metal-peptide assemblies: bioinspired assembly of peptides and metals through space and across length scales, J. Am. Chem. Soc. 143 (2021) 17316-17336.
|
X. Yu, W. Zhou, Z. Chen, In situ immobilization of layered double hydroxides as stationary phase for capillary electrochromatography, J. Chromatogr. A 1530 (2017) 219-225.
|
Y. Inomata, T. Sawada, M. Fujita, Metal-peptide torus knots from flexible short peptides, Chem 6 (2020) 294-303.
|
T. Sawada, A. Matsumoto, M. Fujita, Coordination-driven folding and assembly of a short peptide into a protein-like two-nanometer-sized channel, Angewandte Chemie Int. Ed. 53 (2014) 7228-7232.
|
T. Bao, P. Tang, D. Kong, et al., Polydopamine-supported immobilization of covalent-organic framework-5 in capillary as stationary phase for electrochromatographic separation, J. Chromatogr. A 1445 (2016) 140-148.
|
S. Zhang, Y. Zheng, H. An, et al., Covalent organic frameworks with chirality enriched by biomolecules for efficient chiral separation, Angewandte Chemie Int. Ed. 57 (2018) 16754-16759.
|
J. Zhang, P. Zhu, S. Xie, et al., Homochiral porous organic cage used as stationary phase for open tubular capillary electrochromatography, Anal. Chim. Acta 999 (2018) 169-175.
|
A. Waheed, N. Baig, N. Ullah, et al., Removal of hazardous dyes, toxic metal ions and organic pollutants from wastewater by using porous hyper-cross-linked polymeric materials: a review of recent advances, J. Environ. Manag. 287 (2021), 112360.
|
H. Liu, X. Li, L. Huang, et al., An open tubular capillary electrochromatography column with porous inner surface for protein separation, Anal. Biochem. 442 (2013) 186-188.
|
V.E. Potolitsyna, L.A. Kartsova, E.A. Bessonova, Synthesis and study of the properties of PLOT columns based on new dendritic polymers for the separation of proteins by capillary electrochromatography, J. Anal. Chem. 68 (2013) 981-985.
|
R.B. Yu, J.P. Quirino, Chiral separation using cyclodextrins as mobile phase additives in open-tubular liquid chromatography with a pseudophase coating, J. Separ. Sci. 45 (2022) 1195-1201.
|
J. Hu, L. Yin, L. Jia, Chitosan-silica hybrid-coated open tubular column for hydrophilic interaction capillary electrochromatography, J. Separ. Sci. 34 (2011) 565-573.
|
J. Chen, K.H. Hsieh, Nanochitosan crosslinked with polyacrylamide as the chiral stationary phase for open-tubular capillary electrochromatography, Electrophoresis 32 (2011) 398-407.
|
S. Dong, Y. Sun, X. Zhang, et al., Nanocellulose crystals derivative-silica hybrid Sol open tubular capillary column for enantioseparation, Carbohydr. Polym. 165 (2017) 359-367.
|
Q. Fu, K. Zhang, D. Gao, et al., Escherichia coli adhesive coating as a chiral stationary phase for open tubular capillary electrochromatography enantioseparation, Anal. Chim. Acta 969 (2017) 63-71.
|
H. Matsunaga, Y. Sadakane, J. Haginaka, Separation of basic drug enantiomers by capillary electrophoresis using chicken α1-acid glycoprotein: insight into chiral recognition mechanism, Electrophoresis 24 (2003) 2442-2447.
|
S.A. Zaidi, S.M. Lee, W.J. Cheong, Open tubular capillary columns with basic templates made by the generalized preparation protocol in capillary electrochromatography chiral separation and template structural effects on chiral separation capability, J. Chromatogr. A 1218 (2011) 1291-1299.
|
A. Lobato, E.A. Pereira, L.M. Goncalves, Combining capillary electromigration with molecular imprinting techniques towards an optimal separation and determination, Talanta 221 (2021), 121546.
|
Q. Zhao, J. Zhou, L. Zhang, et al., Coatings of molecularly imprinted polymers based on polyhedral oligomeric silsesquioxane for open tubular capillary electrochromatography, Talanta 152 (2016) 277-282.
|
L. Cheng, K. Huang, H. Cui, et al., Coiled molecularly imprinted polymer layer open-tubular capillary tube for detection of parabens in personal care and cosmetic products, Sci. Total Environ. 706 (2020), 135961.
|
F. Ali, W.J. Cheong, Open tubular capillary electrochromatography with an N-phenylacrylamide-styrene copolymer-based stationary phase for the separation of anomers of glucose and structural isomers of maltotriose, J. Separ. Sci. 38 (2015) 1763-1770.
|
Y.L. Hsieh, T.H. Chen, C.Y. Liu, Capillary electrochromatographic separation of proteins on a column coated with titanium dioxide nanoparticles, Electrophoresis 27 (2006) 4288-4294.
|
M. Hamer, A. Yone, I. Rezzano, Gold nanoparticle-coated capillaries for protein and peptide analysis on open-tubular capillary electrochromatography, Electrophoresis 33 (2012) 334-339.
|
C.Y. Liu, T.H. Chen, T.K. Misra, A macrocyclic polyamine as an anion receptor in the capillary electrochromatographic separation of carbohydrates, J. Chromatogr. A 1154 (2007) 407-415.
|
R. Liang, X. Wang, C. Liu, et al., Facile preparation of protein stationary phase based on polydopamine/graphene oxide platform for chip-based open tubular capillary electrochromatography enantioseparation, J. Chromatogr. A 1323 (2014) 135-142.
|
F. Wang, Q. Zhang, C. Li, et al., Evaluation of affinity interaction between small molecules and platelets by open tubular affinity capillary electrochromatography, Electrophoresis 37 (2016) 736-743.
|
J. Svobodova, I. Miksik, Open-tubular capillary electrochromatographic application of a Sol-gel matrix with chilli peppers, garlic, or synthetic additives, J. Separ. Sci. 43 (2020) 3691-3701.
|
K. Fukushima, S. Harada, A. Takeuchi, et al., Association between dyslipidemia and plasma levels of branched-chain amino acids in the Japanese population without diabetes mellitus, J. Clin. Lipidol. 13 (2019) 932-939.e2.
|
F.P. Gomes, J.R. Yates III, Recent trends of capillary electrophoresis-mass spectrometry in proteomics research, Mass Spectrom. Rev. 38 (2019) 445-460.
|
W. Zhang, R. Ramautar, CE-MS for metabolomics: developments and applications in the period 2018-2020, Electrophoresis 42 (2021) 381-401.
|
K.D. Duncan, I. Lanekoff, Spatially defined surface sampling capillary electrophoresis mass spectrometry, Anal. Chem. 91 (2019) 7819-7827.
|
L. Ying, D. Wang, H. Yang, et al., Synthesis of boronate-decorated polyethyleneimine-grafted porous layer open tubular capillaries for enrichment of polyphenols in fruit juices, J. Chromatogr. A 1544 (2018) 23-32.
|
M.T. Matyska, J.J. Pesek, L. Yang, Screening method for determining the presence of N-nitrosodiethanolamine in cosmetics by open-tubular capillary electrochromatography, J. Chromatogr. A 887 (2000) 497-503.
|
L. D’Ulivo, Y. Feng, A novel open tubular capillary electrochromatographic method for differentiating the DNA interaction affinity of environmental contaminants, PLoS One 11 (2016), e0153081.
|
Y. Liu, J. Hu, Y. Li, et al., Microwave assisted synthesis of metal-organic framework MIL-101 nanocrystals as sorbent and pseudostationary phase in capillary electrophoresis for the separation of anthraquinones in environmental water samples, Electrophoresis 38 (2017) 2521-2529.
|
W. Zhou, W. Zhang, Y. Liu, et al., Polydopamine-functionalized poly(ether ether ketone) tube for capillary electrophoresis-mass spectrometry, Anal. Chim. Acta 987 (2017) 64-71.
|
T. Kawai, N. Ota, K. Okada, et al., Ultrasensitive single cell metabolomics by capillary electrophoresis-mass spectrometry with a thin-walled tapered emitter and large-volume dual sample preconcentration, Anal. Chem. 91 (2019) 10564-10572.
|
A. Maruyama, K. Kami, K. Sasaki, et al., Extraction of aqueous metabolites from cultured adherent cells for metabolomic analysis by capillary electrophoresis-mass spectrometry, J. Vis. Exp. (2019), e59551.
|
R. Ramautar, G.W. Somsen, G.J. de Jong, CE-MS for metabolomics: developments and applications in the period 2016-2018, Electrophoresis 40 (2019) 165-179.
|
L. Nyssen, M. Fillet, E. Cavalier, et al., Highly sensitive and selective separation of intact parathyroid hormone and variants by sheathless CE-ESI-MS/MS, Electrophoresis 40 (2019) 1550-1557.
|
W. Zhang, K. Segers, D. Mangelings, et al., Assessing the suitability of capillary electrophoresis-mass spectrometry for biomarker discovery in plasma-based metabolomics, Electrophoresis 40 (2019) 2309-2320.
|
J. Sastre Torano, R. Ramautar, G. de Jong, Advances in capillary electrophoresis for the life sciences, J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 1118-1119 (2019) 116-136.
|
A. Latosinska, J. Siwy, H. Mischak, et al., Peptidomics and proteomics based on CE-MS as a robust tool in clinical application: the past, the present, and the future, Electrophoresis 40 (2019) 2294-2308.
|
S. Lee, S.J. Kim, E. Bang, et al., Chiral separation of intact amino acids by capillary electrophoresis-mass spectrometry employing a partial filling technique with a crown ether carboxylic acid, J. Chromatogr. A 1586 (2019) 128-138.
|
M. Shanmuganathan, P. Britz-McKibbin, New advances for newborn screening of inborn errors of metabolism by capillary electrophoresis-mass spectrometry (CE-MS), Methods Mol. Biol. 1972 (2019) 139-163.
|
Y. Yu, S. Zhu, F. Yuan, et al., Ultrasensitive and simultaneous determination of RNA modified nucleotides by sheathless interfaced capillary electrophoresis-tandem mass spectrometry, Chem. Commun. 55 (2019) 7595-7598.
|
H.Y. Huang, C. Lin, S.H. Jiang, et al., Capillary electrochromatography-mass spectrometry determination of melamine and related triazine by-products using poly(divinyl benzene-alkene-vinylbenzyl trimethylammonium chloride) monolithic stationary phases, Anal. Chim. Acta 719 (2012) 96-103.
|
L. Pont, G. Marin, M. Vergara-Barberan, et al., Polymeric monolithic microcartridges with gold nanoparticles for the analysis of protein biomarkers by on-line solid-phase extraction capillary electrophoresis-mass spectrometry, J. Chromatogr. A 1622 (2020), 461097.
|
J.K. Wu, C.S. Yang, Y.S. Wu, et al., Continuous affinity-gradient nano-stationary phase served as a column for reversed-phase electrochromatography and matrix carrier in time-of-flight mass spectrometry for protein analysis, Anal. Chim. Acta 889 (2015) 166-171.
|
Z. Chen, B. Boggess, H.C. Chang, Open-tubular capillary electrochromatography-mass spectrometry with sheathless nanoflow electrospray ionization for analysis of amino acids and peptides, J. Mass Spectrom. 42 (2007) 244-253.
|
C. Gstottner, S. Nicolardi, M. Haberger, et al., Intact and subunit-specific analysis of bispecific antibodies by sheathless CE-MS, Anal. Chim. Acta 1134 (2020) 18-27.
|
J.J. Pesek, M.T. Matyska, V. Salgotra, Retention of proteins and metalloproteins in open tubular capillary electrochromatography with etched chemically modified columns, Electrophoresis 29 (2008) 3842-3849.
|
M. Meixner, M. Pattky, C. Huhn, Novel approach for the synthesis of a neutral and covalently bound capillary coating for capillary electrophoresis-mass spectrometry made from highly polar and pH-persistent N-acryloylamido ethoxyethanol, Anal. Bioanal. Chem. 412 (2020) 561-575.
|
J. Cheng, G.B. Morin, D.D.Y. Chen, Bottom-up proteomics of envelope proteins extracted from spinach chloroplast via high organic content CE-MS, Electrophoresis 41 (2020) 370-378.
|
A. Beutner, T. Herl, F.M. Matysik, Selectivity enhancement in capillary electrophoresis by means of two-dimensional separation or dual detection concepts, Anal. Chim. Acta 1057 (2019) 18-35.
|
S. Neuberger, K. Jooss, C. Ressel, et al., Quantification of ascorbic acid and acetylsalicylic acid in effervescent tablets by CZE-UV and identification of related degradation products by heart-cut CZE-CZE-MS, Anal. Bioanal. Chem. 408 (2016) 8701-8712.
|
H. Feng, M. Su, F.N. Rifai, et al., Parallel analysis and orthogonal identification of N-glycans with different capillary electrophoresis mechanisms, Anal. Chim. Acta 953 (2017) 79-86.
|
P. Tang, Z. Chen, Capillary electrochromatography using knitted aromatic polymer as the stationary phase for the separation of small biomolecules and drugs, Talanta 178 (2018) 650-655.
|
C. Aydogan, A. Denizli, Chiral separation-based ligand exchange by open-tubular capillary electrochromatography, Anal. Biochem. 447 (2014) 55-57.
|
Z. Wei, L. Mu, Y. Huang, et al., Low crosslinking imprinted coatings based on liquid crystal for capillary electrochromatography, J. Chromatogr. A 1237 (2012) 115-121.
|
L. Qi, J. Qiao, Advances in stimuli-responsive polymeric coatings for open-tubular capillary electrochromatography, J. Chromatogr. A 1670 (2022), 462957.
|
D. Kong, Z. Chen, Open-tubular capillary electrochromatography using carboxylatopillar[5]arene as stationary phase, Electrophoresis 39 (2018) 363-369.
|
H. Guo, Y. Sun, X. Niu, et al., The preparation of poly-levodopa coated capillary column for capillary electrochromatography enantioseparation, J. Chromatogr. A 1578 (2018) 91-98.
|
K. Faserl, A.J. Chetwynd, I. Lynch, et al., Corona isolation method matters: capillary electrophoresis mass spectrometry based comparison of protein Corona compositions following on-particle versus In-solution or in-gel digestion, Nanomaterials 9 (2019), 898.
|
C. Pontillo, S. Filip, D.M. Borras, et al., CE-MS-based proteomics in biomarker discovery and clinical application, Proteonomics Clin. Appl. 9 (2015) 322-334.
|