Citation: | Shuwen Ma, Jiaqi Li, Lixia Pei, Nianping Feng, Yongtai Zhang. Microneedle-based interstitial fluid extraction for drug analysis: Advances, challenges, and prospects[J]. Journal of Pharmaceutical Analysis, 2023, 13(2): 111-126. doi: 10.1016/j.jpha.2022.12.004 |
A.H. Gershlick, Y.D. Syndercombe Court, A.J. Murday, et al., Adverse effects of high dose aspirin on platelet adhesion to experimental autogenous vein grafts, Cardiovasc. Res. 19 (1985) 770-776
|
H. Carlsson, K. Hjorton, S. Abujrais, et al., Measurement of hydroxychloroquine in blood from SLE patients using LC-HRMS-evaluation of whole blood, plasma, and serum as sample matrices, Arthritis Res. Ther. 22 (2020), 125
|
A. Siddiqi, D.A. Khan, F.A. Khan, et al., Therapeutic drug monitoring of amikacin in preterm and term infants, Singapore Med. J. 50 (2009) 486-489
|
C. Domes, R. Domes, J. Popp, et al., Ultrasensitive Detection of Antiseptic Antibiotics in Aqueous Media and Human Urine Using Deep UV Resonance Raman Spectroscopy, Anal. Chem. 89 (2017) 9997-10003
|
V. Franco, G. Gatti, I. Mazzucchelli, et al., Relationship between saliva and plasma rufinamide concentrations in patients with epilepsy, Epilepsia. 61 (2020) e79-e84
|
M. Nakajima, S. Sato, S. Yamato, et al., Assessment of tear concentrations on therapeutic drug monitoring. III. Determination of theophylline in tears by gas chromatography/mass spectrometry with electron ionization mode, Drug Metab. Pharmacokinet. 18 (2003) 139-145
|
Rebrin K, Steil GM, Can interstitial glucose assessment replace blood glucose measurements, Diabetes Technol. Ther. 2 (2000) 461-472
|
T. Altendorfer-Kroath, D. Schimek, A. Eberl, et al., Comparison of cerebral Open Flow Microperfusion and Microdialysis when sampling small lipophilic and small hydrophilic substances, J. Neurosci. Methods. 311 (2019) 394-401
|
J.D. Ulrich, J.M. Burchett, J.L. Restivo, et al., In vivo measurement of apolipoprotein E from the brain interstitial fluid using microdialysis, Mol. Neurodegener. 8 (2013), 13
|
J. Wen, X. Chen, Y. Yang, et al., Acupuncture Medical Therapy and its Underlying Mechanisms: A Systematic Review, Am. J. Chin. Med. 49 (2021) 1-23
|
X. Wang, Y. Han, J. Jin, et al., Plum-blossom needle assisted photodynamic therapy for the treatment of oral potentially malignant disorder in the elderly, Photodiagnosis Photodyn. Ther. 25 (2019) 296-299
|
K. Cheung, D.B. Das, Microneedles for drug delivery: trends and progress, Drug Deliv. 23 (2016) 2338-2354
|
S. Henry, D.V. McAllister, M.G. Allen, et al., Microfabricated microneedles: a novel approach to transdermal drug delivery, J. Pharm. Sci. 87 (1998) 922-925
|
S.A.N. Gowers, D.M.E. Freeman, T.M. Rawson, et al., Development of a Minimally Invasive Microneedle-Based Sensor for Continuous Monitoring of β-Lactam Antibiotic Concentrations in Vivo, ACS Sens. 4 (2019) 1072-1080
|
S. Samavat, J. Lloyd, L. O'Dea, et al., Uniform sensing layer of immiscible enzyme-mediator compounds developed via a spray aerosol mixing technique towards low cost minimally invasive microneedle continuous glucose monitoring devices, Biosens. Bioelectron. 118 (2018) 224-230
|
J. Gupta, S.S. Park, B. Bondy, et al., Infusion pressure and pain during microneedle injection into skin of human subjects, Biomaterials. 32 (2011) 6823-6831
|
M. Li, L.K. Vora, K. Peng, et al., Trilayer microneedle array assisted transdermal and intradermal delivery of dexamethasone, Int. J. Pharm. 612 (2022),121295
|
Z. Wang, J. Luan, A. Seth, et al., Microneedle patch for the ultrasensitive quantification of protein biomarkers in interstitial fluid, Nat. Biomed. Eng. 5 (2021) 64-76
|
P.M. Wang, M. Cornwell, M.R. Prausnitz, Minimally invasive extraction of dermal interstitial fluid for glucose monitoring using microneedles, Diabetes Technol. Ther. 7 (2005) 131-141
|
L. Bao, J. Park, B. Qin, et al., Anti-SARS-CoV-2 IgM/IgG antibodies detection using a patch sensor containing porous microneedles and a paper-based immunoassay, Sci. Rep. 12 (2022), 10693
|
Y. Zheng, R. Omar, R. Zhang, et al., A Wearable Microneedle-Based Extended Gate Transistor for Real-Time Detection of Sodium in Interstitial Fluids, Adv. Mater. 34 (2022), e2108607
|
H. Teymourian, C. Moonla, F. Tehrani, et al., Microneedle-Based Detection of Ketone Bodies along with Glucose and Lactate: Toward Real-Time Continuous Interstitial Fluid Monitoring of Diabetic Ketosis and Ketoacidosis, Anal. Chem. 92 (2020) 2291-2300
|
P. Joshi, P.R. Riley, R. Mishra, et al., Transdermal Polymeric Microneedle Sensing Platform for Fentanyl Detection in Biofluid, Biosensors (Basel). 12 (2022), 198
|
D.D. Zhu, L.W. Zheng, P.K. Duong, et al., Colorimetric microneedle patches for multiplexed transdermal detection of metabolites, Biosens. Bioelectron. 212 (2022), 114412
|
T. Wu, X. You, Z. Chen, Hollow Microneedles on a Paper Fabricated by Standard Photolithography for the Screening Test of Prediabetes, Sensors (Basel). 22 (2022), 4253
|
Y.J. Chen, Y.P. Hsu, Y.L. Tain, et al., Microneedle patches integrated with lateral flow cassettes for blood-free chronic kidney disease point-of-care testing during a pandemic, Biosens. Bioelectron. 208 (2022), 114234
|
X. Hu, J. Yu, C. Qian, et al., H2O2-Responsive Vesicles Integrated with Transcutaneous Patches for Glucose-Mediated Insulin Delivery, ACS Nano. 11 (2017) 613-620
|
H. Teymourian, M. Parrilla, J.R. Sempionatto, et al., Wearable Electrochemical Sensors for the Monitoring and Screening of Drugs, ACS Sens. 5 (2020) 2679-2700
|
R. Paul, A.C. Saville, J.C. Hansel, et al., Extraction of Plant DNA by Microneedle Patch for Rapid Detection of Plant Diseases, ACS Nano. 13 (2019) 6540-6549
|
R. Paul, E. Ostermann, Y. Chen, et al., Integrated microneedle-smartphone nucleic acid amplification platform for in-field diagnosis of plant diseases, Biosens. Bioelectron. 187 (2021), 113312
|
H. Bae, M. Paludan, J. Knoblauch, et al., Neural networks and robotic microneedles enable autonomous extraction of plant metabolites, Plant Physiol. 186 (2021) 1435-1441
|
M. Guo, Y. Wang, B. Gao, et al., Shark Tooth-Inspired Microneedle Dressing for Intelligent Wound Management, ACS Nano. 15 (2021) 15316-15327
|
B. Szeto, A. Aksit, C. Valentini, et al., Novel 3D-printed hollow microneedles facilitate safe, reliable, and informative sampling of perilymph from guinea pigs, Hearing Res. 400 (2021), 108141
|
U. Detamornrat, E. McAlister, A.R.J. Hutton, et al., The Role of 3D Printing Technology in Microengineering of Microneedles, Small. 18 (2022), e2106392
|
S. Choo, S. Jin, J. Jung, Fabricating High-Resolution and High-Dimensional Microneedle Mold through the Resolution Improvement of Stereolithography 3D Printing, Pharmaceutics. 14 (2022), 766
|
C.J.W. Bolton, O. Howells, G.J. Blayney, et al., Hollow silicon microneedle fabrication using advanced plasma etch technologies for applications in transdermal drug delivery, Lab Chip. 20 (2020) 2788-2795
|
E.M. Cahill, S. Keaveney, V. Stuettgen, et al., Metallic microneedles with interconnected porosity: A scalable platform for biosensing and drug delivery, Acta Biomater. 80 (2018) 401-411
|
G. Du, P. He, J. Zhao, et al., Polymeric microneedle-mediated transdermal delivery of melittin for rheumatoid arthritis treatment, J. Control. Release. 336 (2021) 537-548
|
P. Liu, H. Du, Z. Wu, et al., Hydrophilic and anti-adhesive modification of porous polymer microneedles for rapid dermal interstitial fluid extraction, J. Mater. Chem. B. 9 (2021) 5476-5483
|
J. Wang, Y. Ye, J. Yu, et al., Core-Shell Microneedle Gel for Self-Regulated Insulin Delivery, ACS Nano. 12 (2018) 2466-2473
|
T. Sato, S. Okada, K. Hagino, et al., Measurement of glucose area under the curve using minimally invasive interstitial fluid extraction technology: evaluation of glucose monitoring concepts without blood sampling, Diabetes Technol. Ther. 13 (2011) 1194-1200
|
P.R. Miller, R.M. Taylor, B.Q. Tran, et al., Extraction and biomolecular analysis of dermal interstitial fluid collected with hollow microneedles, Commun. Biol. 1 (2018), 173
|
Y. Chen, B.Z. Chen, Q.L. Wang, et al., Fabrication of coated polymer microneedles for transdermal drug delivery, J. Control. Release. 265 (2017) 14-21
|
E. Caffarel-Salvador, A.J. Brady, E. Eltayib, et al., Hydrogel-Forming Microneedle Arrays Allow Detection of Drugs and Glucose In Vivo: Potential for Use in Diagnosis and Therapeutic Drug Monitoring, PLoS One. 10 (2015), e0145644
|
Z. Li, Y. He, L. Deng, et al., A fast-dissolving microneedle array loaded with chitosan nanoparticles to evoke systemic immune responses in mice, J. Mater. Chem. B. 8 (2020) 216-225
|
W. Zhu, S. Li, C. Wang, et al., Enhanced Immune Responses Conferring Cross-Protection by Skin Vaccination With a Tri-Component Influenza Vaccine Using a Microneedle Patch, Front. Immunol. 9 (2018), 1705
|
C. Caudill, J.L. Perry, K. Iliadis, et al., Transdermal vaccination via 3D-printed microneedles induces potent humoral and cellular immunity, Proc. Natl. Acad. Sci. U. S. A. 118 (2021), e2102595118
|
J. Yu, C. Kuwentrai, H.R. Gong, et al., Intradermal delivery of mRNA using cryomicroneedles, Acta Biomater. 148 (2022) 133-141
|
Y. Hu, Y. Mo, J. Wei, et al., Programmable and monitorable intradermal vaccine delivery using ultrasound perforation array, Int. J. Pharm. 617 (2022), 121595
|
Y. Lee, T. Kang, H.R. Cho, et al., Localized Delivery of Theranostic Nanoparticles and High-Energy Photons using Microneedles-on-Bioelectronics, Adv. Mater. 33 (2021), e2100425
|
H. Chang, S.W.T. Chew, M. Zheng, et al., Cryomicroneedles for transdermal cell delivery, Nat. Biomed. Eng. 5 (2021) 1008-1018
|
A. Abramson, E. Caffarel-Salvador, V. Soares, et al., A luminal unfolding microneedle injector for oral delivery of macromolecules, Nat. Med. 25 (2019) 1512-1518
|
J. Tang, J. Wang, K. Huang, et al., Cardiac cell-integrated microneedle patch for treating myocardial infarction, Sci. Adv. 4 (2018), eaat9365
|
E. Caffarel-Salvador, S. Kim, V. Soares, et al., A microneedle platform for buccal macromolecule delivery, Sci. Adv. 7 (2021), eabe2620
|
M. Cui, M. Zheng, C. Wiraja, et al., Ocular Delivery of Predatory Bacteria with Cryomicroneedles Against Eye Infection, Adv. Sci (Weinh). 8 (2021), e2102327
|
J.J. Chae, J.H. Jung, W. Zhu, et al., Drug-Free, Nonsurgical Reduction of Intraocular Pressure for Four Months after Suprachoroidal Injection of Hyaluronic Acid Hydrogel, Adv. Sci (Weinh). 8 (2021), 2001908
|
H. Shi, J. Zhou, Y. Wang, et al., A Rapid Corneal Healing Microneedle for Efficient Ocular Drug Delivery, Small. 18 (2022), e2104657
|
G. Roy, P. Garg, V.V.K. Venuganti, Microneedle scleral patch for minimally invasive delivery of triamcinolone to the posterior segment of eye, Int. J. Pharm. 612 (2022), 121305
|
J. Lee, D.-H. Kim, K.J. Lee, et al., Transfer-molded wrappable microneedle meshes for perivascular drug delivery, J. Control. Release. 268 (2017) 237-246
|
Y. Liu, L. Long, F. Zhang, et al., Microneedle-mediated vascular endothelial growth factor delivery promotes angiogenesis and functional recovery after stroke, J. Control. Release. 338 (2021) 610-622
|
Z. Wang, Z. Yang, J. Jiang, et al., Silk Microneedle Patch Capable of On-Demand Multidrug Delivery to the Brain for Glioblastoma Treatment, Adv. Mater. 34 (2022), e2106606
|
D. Jakka, A.V. Matadh, H.N. Shivakumar, et al., Polymer Coated Polymeric (PCP) microneedles for sampling of drugs and biomarkers from tissues, Eur. J. Pharm. Sci. 175 (2022), 106203
|
F. Liu, Z. Lin, Q. Jin, et al., Protection of Nanostructures-Integrated Microneedle Biosensor Using Dissolvable Polymer Coating, ACS Appl. Mater. Interfaces. 11 (2019) 4809-4819
|
Y. Ito, M. Taniguchi, A. Hayashi, et al., Application of dissolving microneedles to glucose monitoring through dermal interstitial fluid, Biol. Pharm. Bull. 37 (2014) 1776-1781
|
Y. Ito, Y. Inagaki, S. Kobuchi, et al., Therapeutic Drug Monitoring of Vancomycin in Dermal Interstitial Fluid Using Dissolving Microneedles, Int. J. Med. Sci. 13 (2016) 271-276
|
R. He, Y. Niu, Z. Li, et al., A Hydrogel Microneedle Patch for Point-of-Care Testing Based on Skin Interstitial Fluid, Adv. Healthc. Mater. 9 (2020), e1901201
|
A.M. Tsimberidou, E. Fountzilas, M. Nikanjam, et al., Review of precision cancer medicine: Evolution of the treatment paradigm, Cancer Treat. Rev. 86 (2020), 102019
|
S. Dhaese, S. Van Vooren, J. Boelens, et al., Therapeutic drug monitoring of β-lactam antibiotics in the ICU, Expert Rev. Anti. Infect. Ther. 18 (2020) 1155-1164
|
I. Aicua-Rapun, P. Andre, A.O. Rossetti, et al., Therapeutic Drug Monitoring of Newer Antiepileptic Drugs: A Randomized Trial for Dosage Adjustment, Ann. Neurol. 87 (2020) 22-29
|
S.W. Syversen, K.K. Joergensen, G.L. Goll, et al., Effect of Therapeutic Drug Monitoring vs Standard Therapy During Maintenance Infliximab Therapy on Disease Control in Patients With Immune-Mediated Inflammatory Diseases: A Randomized Clinical Trial, JAMA. 326 (2021) 2375-2384
|
K. Papamichael, A.S. Cheifetz, G.Y. Melmed, et al., Appropriate Therapeutic Drug Monitoring of Biologic Agents for Patients With Inflammatory Bowel Diseases, Clin. Gastroenterol. Hepatol. 17 (2019) 1655-1668.e3
|
R. Simeoli, T.P.C. Dorlo, L.M. Hanff, et al., Editorial: Therapeutic Drug Monitoring (TDM): A Useful Tool for Pediatric Pharmacology Applied to Routine Clinical Practice, Front. Pharmacol. 13 (2022), 931843
|
G. Ozalp Gerceker, D. Ayar, E.Z. Ozdemir, et al., Effects of virtual reality on pain, fear and anxiety during blood draw in children aged 5-12 years old: A randomised controlled study, J. Clin. Nursing. 29 (2020) 1151-1161
|
M. Hoelscher, G. Riedner, Y. Hemed, et al., Estimating the number of HIV transmissions through reused syringes and needles in the Mbeya Region, Tanzania, AIDS. 8 (1994) 1609-1615
|
J. Hauser, G. Lenk, J. Hansson, et al., High-Yield Passive Plasma Filtration from Human Finger Prick Blood, Anal. Chem. 90 (2018) 13393-13399
|
BLOOD-CLOTTING, Lancet. 1 (1953) 834-836
|
H. Hjelmgren, A. Nilsson, I.H. Myrberg, et al., Capillary blood sampling increases the risk of preanalytical errors in pediatric hospital care: Observational clinical study, J. Spec. Pediatr. Nurs. 26 (2021), e12337
|
Y. Kim, M.R. Prausnitz, Sensitive sensing of biomarkers in interstitial fluid, Nat. Biomed. Eng. 5 (2021) 3-5
|
Y. Nisimaru, The basis of angiology. A concept of body fluid circulation, Hiroshima. J. Med Sci, 24 (1975) 1-58
|
K.L. Skorecki, B.M. Brenner, Body fluid homeostasis in man. A contemporary overview, Am. J. Med, 70 (1981) 77-88
|
L.L. Hill, Body composition, normal electrolyte concentrations, and the maintenance of normal volume, tonicity, and acid-base metabolism, Pediatr. Clin. North Am. 37 (1990) 241-256
|
M.M. Niedzwiecki, P. Samant, D.I. Walker, et al., Human Suction Blister Fluid Composition Determined Using High-Resolution Metabolomics, Anal. Chem. 90 (2018) 3786-3792
|
N.K. Gibbs, M. Norval, Urocanic acid in the skin: a mixed blessing? J. Invest. Dermatol. 131 (2011) 14-17
|
N. Minois, Molecular basis of the 'anti-aging' effect of spermidine and other natural polyamines - a mini-review, Gerontology, 60 (2014) 319-326
|
S. Pajares, A. Arias, J. Garcia-Villoria, et al., Role of creatine as biomarker of mitochondrial diseases, Mol. Genet. Metab. 108 (2013) 119-124
|
G. Kugler, Myocardial release of lactate, inosine and hypoxanthine during atrial pacing and exercise-induced angina, Circulation, 59 (1979) 43-49
|
M.T. Grinde, N. Skrbo, S.A. Moestue, et al., Interplay of choline metabolites and genes in patient-derived breast cancer xenografts, Breast Cancer Res. 16 (2014), R5
|
T. Shibata, F. Nakashima, K. Honda, et al., Toll-like receptors as a target of food-derived anti-inflammatory compounds, J. Biol. Chem. 289 (2014) 32757-32772
|
T.K.L. Kiang, V. Schmitt, M.H.H. Ensom, et al., Therapeutic drug monitoring in interstitial fluid: a feasibility study using a comprehensive panel of drugs, J. Pharm. Sci. 101 (2012) 4642-4652
|
S. Ullah, F. Hamade, U. Bubniene, et al., In-vitro model for assessing glucose diffusion through skin, Biosens. Bioelectron. 110 (2018) 175-179
|
A.K. Nilsson, U. Sjobom, K. Christenson, et al., Lipid profiling of suction blister fluid: comparison of lipids in interstitial fluid and plasma, Lipids Health Dis. 18 (2019), 164
|
E. Fryk, J.P. Sundelin, L. Strindberg, et al., Microdialysis and proteomics of subcutaneous interstitial fluid reveals increased galectin-1 in type 2 diabetes patients, Metabolism. 65 (2016) 998-1006
|
S. Schroepf, D. Burau, H.-G. Muench, et al., Microdialysis sampling to monitor target-site vancomycin concentrations in septic infants: a feasible way to close the knowledge gap, Int. J. Antimicrob. Agents. 58 (2021), 106405
|
T.S. Anbar, N.H. Moftah, M.A.M. El-Khayyat, et al., Syringes versus Chinese cups in harvesting suction-induced blister graft: a randomized split-body study, Int. J. Dermatol. 57 (2018) 1249-1252
|
T.B. Rojahn, V. Vorstandlechner, T. Krausgruber, et al., Single-cell transcriptomics combined with interstitial fluid proteomics defines cell type-specific immune regulation in atopic dermatitis, J. Allergy Clin. Immunol. 146 (2020) 1056-1069
|
J. Kool, L. Reubsaet, F. Wesseldijk, et al., Suction blister fluid as potential body fluid for biomarker proteins, Proteomics. 7 (2007) 3638-3650
|
E. Larraneta, M.T.C. McCrudden, A.J. Courtenay, et al., Microneedles: A New Frontier in Nanomedicine Delivery, Pharm. Res. 33 (2016) 1055-1073
|
T. Lange, A. Thomas, K. Walpurgis, et al., Fully automated dried blood spot sample preparation enables the detection of lower molecular mass peptide and non-peptide doping agents by means of LC-HRMS, Anal. Bioanal. Chem. 412 (2020) 3765-3777
|
L.M. Strambini, A. Longo, S. Scarano, et al., Self-powered microneedle-based biosensors for pain-free high-accuracy measurement of glycaemia in interstitial fluid, Biosens. Bioelectron. 66 (2015) 162-168
|
M. Zheng, Z. Wang, H. Chang, et al., Osmosis-Powered Hydrogel Microneedles for Microliters of Skin Interstitial Fluid Extraction within Minutes, Adv. Healthc. Mater. 9 (2020), e1901683
|
A.H.B. Sabri, Q.K. Anjani, R.F. Donnelly, Synthesis and characterization of sorbitol laced hydrogel-forming microneedles for therapeutic drug monitoring, Int. J. Pharm. 607 (2021), 121049
|
P.P. Samant, M.M. Niedzwiecki, N. Raviele, et al., Sampling interstitial fluid from human skin using a microneedle patch, Sci. Transl. Med. 12 (2020), eaaw0285
|
H. Chang, M. Zheng, X. Yu, et al., A Swellable Microneedle Patch to Rapidly Extract Skin Interstitial Fluid for Timely Metabolic Analysis, Adv. Mater. 29 (2017), 37
|
J. Zhu, X. Zhou, H.J. Kim, et al., Gelatin Methacryloyl Microneedle Patches for Minimally Invasive Extraction of Skin Interstitial Fluid, Small. 16 (2020), e1905910
|
J. Chen, M. Wang, Y. Ye, et al., Fabrication of sponge-forming microneedle patch for rapidly sampling interstitial fluid for analysis, Biomed. Microdevices. 21 (2019), 63
|
D.F.S. Fonseca, P.C. Costa, I.F. Almeida, et al., Swellable Gelatin Methacryloyl Microneedles for Extraction of Interstitial Skin Fluid toward Minimally Invasive Monitoring of Urea, Macromol. Biosci. 20 (2020), e2000195
|
Y. Qiao, J. Du, R. Ge, et al., A Sample and Detection Microneedle Patch for Psoriasis MicroRNA Biomarker Analysis in Interstitial Fluid, Anal. Chem. 94 (2022) 5538-5545
|
Y. Cai, S. Huang, Z. Zhang, et al., Bioinspired Rotation Microneedles for Accurate Transdermal Positioning and Ultraminimal-Invasive Biomarker Detection with Mechanical Robustness, Research (Wash D C). 2022 (2022), 9869734
|
C. Kolluru, M. Williams, J.S. Yeh, et al., Monitoring drug pharmacokinetics and immunologic biomarkers in dermal interstitial fluid using a microneedle patch, Biomed. Microdevices. 21 (2019), 14
|
C. Kolluru, M. Williams, J. Chae, et al., Recruitment and Collection of Dermal Interstitial Fluid Using a Microneedle Patch, Adv. Healthc. Mater. 8 (2019), e1801262
|
B.Q. Tran, P.R. Miller, R.M. Taylor, et al., Proteomic Characterization of Dermal Interstitial Fluid Extracted Using a Novel Microneedle-Assisted Technique, J. Proteome Res. 17 (2018) 479-485
|
T.M. Rawson, S.A.N. Gowers, D.M.E. Freeman, et al., Microneedle biosensors for real-time, minimally invasive drug monitoring of phenoxymethylpenicillin: a first-in-human evaluation in healthy volunteers, Lancet Digit. Health. 1 (2019) e335-e343
|
C. Tortolini, A.E.G. Cass, R. Pofi, et al., Microneedle-based nanoporous gold electrochemical sensor for real-time catecholamine detection, Mikrochim. Acta. 189 (2022), 180
|
L. Fang, H. Ren, X. Mao, et al., Differential Amperometric Microneedle Biosensor for Wearable Levodopa Monitoring of Parkinson's Disease, Biosensors (Basel). 12 (2022), 102
|
R.K. Mishra, K.Y. Goud, Z. Li, et al., Continuous Opioid Monitoring along with Nerve Agents on a Wearable Microneedle Sensor Array, J. Am. Chem. Soc. 142 (2020) 5991-5995
|
J. Ju, C.M. Hsieh, Y. Tian, et al., Surface Enhanced Raman Spectroscopy Based Biosensor with a Microneedle Array for Minimally Invasive In Vivo Glucose Measurements, ACS Sens. 5 (2020) 1777-1785
|
M. Parrilla, U. Detamornrat, J. Dominguez-Robles, et al., Wearable hollow microneedle sensing patches for the transdermal electrochemical monitoring of glucose, Talanta. 249 (2022), 123695
|
H.J. Kil, S.R. Kim, J.W. Park, A Self-Charging Supercapacitor for a Patch-Type Glucose Sensor, ACS Appl. Mater. Interfaces. 14 (2022) 3838-3848
|
P. Bollella, S. Sharma, A.E.G. Cass, et al., Microneedle-based biosensor for minimally-invasive lactate detection, Biosens. Bioelectron. 123 (2019) 152-159
|
A.M.V. Mohan, J.R. Windmiller, R.K. Mishra, et al., Continuous minimally-invasive alcohol monitoring using microneedle sensor arrays, Biosens. Bioelectron. 91 (2017) 574-579
|
B. Yang, J. Kong, X. Fang, Programmable CRISPR-Cas9 microneedle patch for long-term capture and real-time monitoring of universal cell-free DNA, Nat. Commun. 13 (2022), 3999
|
M. Parrilla, M. Cuartero, S. Padrell Sanchez, et al., Wearable All-Solid-State Potentiometric Microneedle Patch for Intradermal Potassium Detection, Anal. Chem. 91 (2019) 1578-1586
|
Q. Li, R. Xu, H. Fan, et al., Smart Mushroom-Inspired Imprintable and Lightly Detachable (MILD) Microneedle Patterns for Effective COVID-19 Vaccination and Decentralized Information Storage, ACS Nano. 16 (2022) 7512-7524
|
D. Poirier, F. Renaud, V. Dewar, et al., Hepatitis B surface antigen incorporated in dissolvable microneedle array patch is antigenic and thermostable, Biomaterials. 145 (2017) 256-265
|
Y. Cheng, X. Gong, J. Yang, et al., A touch-actuated glucose sensor fully integrated with microneedle array and reverse iontophoresis for diabetes monitoring, Biosens. Bioelectron. 203 (2022), 114026
|
P. Zhang, X. Wu, H. Xue, et al., Wearable transdermal colorimetric microneedle patch for Uric acid monitoring based on peroxidase-like polypyrrole nanoparticles, Anal. Chim. Acta. 1212 (2022), 339911
|
J. Wang, J. Yu, Y. Zhang, et al., Charge-switchable polymeric complex for glucose-responsive insulin delivery in mice and pigs, Sci. Adv. 5 (2019), eaaw4357
|
J. Yu, J. Wang, Y. Zhang, et al., Glucose-responsive insulin patch for the regulation of blood glucose in mice and minipigs, Nat. Biomed. Eng. 4 (2020) 499-506
|
J. Li, H. Hu, J. Mao, et al., Defense of pyrethrum flowers: repelling herbivores and recruiting carnivores by producing aphid alarm pheromone, New Phytol. 223 (2019) 1607-1620
|
S. Xu, X. Zeng, H. Wu, et al., Characterizing volatile metabolites in raw Pu'er tea stored in wet-hot or dry-cold environments by performing metabolomic analysis and using the molecular sensory science approach, Food Chem. 350 (2021), 129186
|
G. Porras, F. Chassagne, J.T. Lyles, et al., Ethnobotany and the Role of Plant Natural Products in Antibiotic Drug Discovery, Chem Rev. 121 (2021) 3495-3560
|
T. Xin, Y. Zhang, X. Pu, et al., Trends in herbgenomics, Sci. China Life Sci. 62 (2019) 288-308
|
D. Li, E. Gaquerel, Next-Generation Mass Spectrometry Metabolomics Revives the Functional Analysis of Plant Metabolic Diversity, Annu. Rev. Plant Biol. 72 (2021) 867-891
|
M.E. Hergueta-Castillo, E. Lopez-Rodriguez, R. Lopez-Ruiz, et al., Targeted and untargeted analysis of triazole fungicides and their metabolites in fruits and vegetables by UHPLC-orbitrap-MS, Food Chem. 368 (2022), 130860
|
A. Viswan, A. Yamagishi, M. Hoshi, et al., Microneedle Array-Assisted, Direct Delivery of Genome-Editing Proteins Into Plant Tissue, Front. Plant Sci. 13 (2022), 878059
|
S. Ramos-Gomez, M.D. Busto, M. Perez-Mateos, et al., Development of a method to recovery and amplification DNA by real-time PCR from commercial vegetable oils, Food Chem. 158 (2014) 374-383
|
L. Chen, Z. Han, X. Fan, et al., An impedance-coupled microfluidic device for single-cell analysis of primary cell wall regeneration, Biosens. Bioelectron. 165 (2020), 112374
|
A. Bukhamsin, K. Moussi, R. Tao, et al., Robust, Long-Term, and Exceptionally Sensitive Microneedle-Based Bioimpedance Sensor for Precision Farming, Adv. Sci (Weinh). 8 (2021), e2101261
|
A. Bukhamsin, A. Ait Lahcen, J.O. Filho, et al., Minimally-invasive, real-time, non-destructive, species-independent phytohormone biosensor for precision farming, Biosens. Bioelectron. 214 (2022), 114515
|
C. Bai, J. Yang, B. Cao, et al., Growth years and post-harvest processing methods have critical roles on the contents of medicinal active ingredients of medicinal active ingredients of Scutellaria baicalensis. Ind. Crops Prod. 158 (2020), 112985
|
D.Q. Xu, S.Y. Cheng, J.Q. Zhang, et al., L. Leaves - Integration of Their Transcriptome and Metabolomics Dataset: Investigating Potential Genes Involved in Flavonoid Biosynthesis at Different Harvest Times, Front. Plant Sci. 12 (2021), 736332
|
Q. Yang, J. Pan, G. Shen, et al., Yellow ligaht promotes the growth and accumulation of bioactive flavonoids in Epimedium pseudowushanense, J. Photochem. Photobiol. B. 197 (2019), 111550
|
J. Geng, L. Xiao, C. Chen, et al., An integrated analytical approach based on enhanced fragment ions interrogation and modified Kendrick mass defect filter data mining for in-depth chemical profiling of glucosinolates by ultra-high-pressure liquid chromatography coupled with Orbitrap high resolution mass spectrometry, J. Chromatogr. A. 1639 (2021), 461903
|
X. He, S. Huang, M. Wu, et al., Simultaneous quantitative analysis of ten bioactive flavonoids in Citri Reticulatae Pericarpium Viride (Qing Pi) by ultrahigh-performance liquid chromatography and high-resolution mass spectrometry combined with chemometric methods, Phytochem. Anal. 32 (2021) 1152-1161
|
H. Roh, Y.J. Yoon, J.S. Park, et al., Fabrication of High-Density Out-of-Plane Microneedle Arrays with Various Heights and Diverse Cross-Sectional Shapes, Nanomicro. Lett. 14 (2021), 24
|
B. Creelman, C. Frivold, S. Jessup, et al., Manufacturing readiness assessment for evaluation of the microneedle array patch industry: an exploration of barriers to full-scale manufacturing, Drug Deliv. Transl. Res.12 (2022) 368-375
|