Citation: | Weilin Zeng, Yingqiu Song, Runze Wang, Rong He, Tianlu Wang. Neutrophil elastase: From mechanisms to therapeutic potential[J]. Journal of Pharmaceutical Analysis, 2023, 13(4): 355-366. doi: 10.1016/j.jpha.2022.12.003 |
J.A. Voynow, M. Shinbashi, Neutrophil elastase and chronic lung disease, Biomolecules 11 (2021), 1065.
|
C. Cui, K. Chakraborty, X. Tang et al., Neutrophil elastase selectively kills cancer cells and attenuates tumorigenesis, Cell 184 (2021) 3163-3177.e21.
|
L. Sorokin, The impact of the extracellular matrix on inflammation, Nat. Rev. Immunol. 10 (2010) 712-723.
|
A. Sahebnasagh, F. Saghafi, M. Safdari, et al., Neutrophil elastase inhibitor (sivelestat) may be a promising therapeutic option for management of acute lung injury/acute respiratory distress syndrome or disseminated intravascular coagulation in COVID-19, J. Clin. Pharm. Ther. 45 (2020) 1515-1519.
|
T. Sun, H. Zhang, Chinese experts’ consensus on clinical application of Sivelestat Sodium, Chin. Res. Hosp. 9(2022) 9-13.
|
R. Medzhitov, The spectrum of inflammatory responses, Science 374 (2021) 1070-1075.
|
Y. Shao, J. Saredy, W.Y. Yang, et al., Vascular endothelial cells and innate immunity, Arterioscler. Thromb. Vasc. Biol. 40 (2020) e138-e152.
|
J.S. Pober, W.C. Sessa, Evolving functions of endothelial cells in inflammation, Nat. Rev. Immunol. 7 (2007) 803-815.
|
C. Schauer, C. Janko, L.E. Munoz, et al., Aggregated neutrophil extracellular traps limit inflammation by degrading cytokines and chemokines, Nat. Med. 20 (2014) 511-517.
|
P.X. Liew, P. Kubes, The neutrophil’s role during health and disease, Physiol. Rev. 99 (2019) 1223-1248.
|
S.J. Galli, N. Gaudenzio, M. Tsai, Mast cells in inflammation and disease: Recent progress and ongoing concerns, Annu. Rev. Immunol. 38 (2020) 49-77.
|
D. Wu, A. Cline-Smith, E. Shashkova, et al., T-cell mediated inflammation in postmenopausal osteoporosis, Front. Immunol. 12 (2021), 687551.
|
D.I. Gabrilovich, S. Nagaraj, Myeloid-derived suppressor cells as regulators of the immune system, Nat. Rev. Immunol. 9 (2009) 162-174.
|
C. Yao, S. Narumiya, Prostaglandin-cytokine crosstalk in chronic inflammation, Br. J. Pharmacol. 176 (2019) 337-354.
|
C.T. Robb, M. Goepp, A.G. Rossi, et al., Non-steroidal anti-inflammatory drugs, prostaglandins, and COVID-19, Br. J. Pharmacol. 177 (2020) 4899-4920.
|
J. Iype, M. Fux, Basophils orchestrating eosinophils' chemotaxis and function in allergic inflammation, Cells 10 (2021), 895.
|
G. Doring, The role of neutrophil elastase in chronic inflammation, Am. J. Respir. Crit. Care. Med. 150 (1994) S114-S117.
|
V. Papayannopoulos, Neutrophil extracellular traps in immunity and disease, Nat. Rev. Immunol. 18 (2018) 134-147.
|
C. Rosales, Neutrophils at the crossroads of innate and adaptive immunity, J. Leukoc. Biol. 108 (2020) 377-396.
|
A.B. Kummarapurugu, S. Zheng, J. Ma, et al., Neutrophil elastase triggers the release of macrophage extracellular traps: Relevance to cystic fibrosis, Am. J. Respir. Cell Mol. Biol. 66 (2022) 76-85.
|
S.J. Thulborn, V. Mistry, C.E. Brightling, et al., Neutrophil elastase as a biomarker for bacterial infection in COPD, Respir. Res. 20 (2019), 170.
|
A.J. Dicker, M.L. Crichton, E.G. Pumphrey, et al., Neutrophil extracellular traps are associated with disease severity and microbiota diversity in patients with chronic obstructive pulmonary disease, J. Allergy Clin. Immunol. 141 (2018) 117-127.
|
P. Strnad, N.G. McElvaney, D.A. Lomas, Alpha1-antitrypsin deficiency, N. Engl. J. Med. 382 (2020) 1443-1455.
|
B. Thebaud, K.N. Goss, M. Laughon, et al., Bronchopulmonary dysplasia, Nat. Rev. Dis. Primers 5 (2019), 78.
|
J.T. Benjamin, E.J. Plosa, J.M. Sucre, et al., Neutrophilic inflammation during lung development disrupts elastin assembly and predisposes adult mice to COPD, J. Clin. Invest. 131 (2021), e139481.
|
M.B. Hilscher, T. Sehrawat, J.P. Arab, et al., Mechanical stretch increases expression of CXCL1 in liver sinusoidal endothelial cells to recruit neutrophils, generate sinusoidal microthombi, and promote portal hypertension, Gastroenterology 157 (2019) 193-209.e9.
|
S. Rafii, J.M. Butler, B. Ding, Angiocrine functions of organ-specific endothelial cells, Nature 529 (2016) 316-325.
|
N.C. Gauthier, P. Roca-Cusachs, Mechanosensing at integrin-mediated cell-matrix adhesions: From molecular to integrated mechanisms, Curr. Opin. Cell Biol. 50 (2018) 20-26.
|
H. Cuervo, C.M. Nielsen, D.A. Simonetto, et al., Endothelial Notch signaling is essential to prevent hepatic vascular malformations in mice, Hepatology 64 (2016) 1302-1316.
|
A.L. Correia, J.C. Guimaraes, P.A. Auf der Maur, et al., Hepatic stellate cells suppress NK cell-sustained breast cancer dormancy, Nature 594 (2021) 566-571.
|
M. Vismara, C. Reduzzi, M.G. Daidone, et al., Circulating tumor cells (CTCs) heterogeneity in metastatic breast cancer: Different approaches for different needs, Adv. Exp. Med. Biol. 1220 (2020) 81-91.
|
A.R. Nobre, E. Risson, D.K. Singh, et al., Bone marrow NG2+/Nestin+ mesenchymal stem cells drive DTC dormancy via TGFβ2, Nat. Cancer 2 (2021) 327-339.
|
B.L. Pierce, R. Ballard-Barbash, L. Bernstein, et al., Elevated biomarkers of inflammation are associated with reduced survival among breast cancer patients, J. Clin. Oncol. 27 (2009) 3437-3444.
|
J.P. Pierce, R.E. Patterson, C.M. Senger, et al., Lifetime cigarette smoking and breast cancer prognosis in the after breast cancer pooling project, J. Natl. Cancer Inst. 106 (2014), djt359.
|
A.H. Wu, S.L. Gomez, C. Vigen, et al., The California Breast Cancer Survivorship Consortium (CBCSC): Prognostic factors associated with racial/ethnic differences in breast cancer survival, Cancer Causes Control 24 (2013) 1821-1836.
|
S. Murin, K.E. Pinkerton, N.E. Hubbard, et al., The effect of cigarette smoke exposure on pulmonary metastatic disease in a murine model of metastatic breast cancer, Chest 125 (2004) 1467-1471.
|
J.M. De Cock, T. Shibue, A. Dongre, et al., Inflammation triggers Zeb1-dependent escape from tumor latency, Cancer Res. 76 (2016) 6778-6784.
|
J. Cools-Lartigue, J. Spicer, B. McDonald, et al., Neutrophil extracellular traps sequester circulating tumor cells and promote metastasis, J. Clin. Invest. 123 (2013) 3446-3458.
|
S. Tohme, H.O. Yazdani, A.B. Al-Khafaji, et al., Neutrophil extracellular traps promote the development and progression of liver metastases after surgical stress, Cancer Res. 76 (2016) 1367-1380.
|
J. Albrengues, M.A. Shields, D. Ng, et al., Neutrophil extracellular traps produced during inflammation awaken dormant cancer cells in mice, Science 361 (2018), eaao4227.
|
I. del Barco Barrantes, C. Stephan-Otto Attolini, K. Slobodnyuk, et al., Regulation of mammary luminal cell fate and tumorigenesis by p38α, Stem Cell Rep. 10 (2018) 257-271.
|
E.F. Wagner, A.R. Nebreda, Signal integration by JNK and p38 MAPK pathways in cancer development, Nat. Rev. Cancer 9 (2009) 537-549.
|
T. Zarubin, J. Han, Activation and signaling of the p38 MAP kinase pathway, Cell Res. 15 (2005) 11-18.
|
M. Matsushita, T. Nakamura, H. Moriizumi, et al., Stress-responsive MTK1 SAPKKK serves as a redox sensor that mediates delayed and sustained activation of SAPKs by oxidative stress, Sci. Adv. 6 (2020), eaay9778.
|
C. Gomez-Aleza, B. Nguyen, G. Yoldi, et al., Inhibition of RANK signaling in breast cancer induces an anti-tumor immune response orchestrated by CD8+ T cells, Nat. Commun. 11 (2020), 6335.
|
N. Singh, D. Baby, J.P. Rajguru, et al., Inflammation and cancer, Ann. Afr. Med. 18 (2019) 121-126.
|
M.A. Giese, L.E. Hind, A. Huttenlocher, Neutrophil plasticity in the tumor microenvironment, Blood 133 (2019) 2159-2167.
|
H. Huang, H. Zhang, A.E. Onuma, et al., Neutrophil elastase and neutrophil extracellular traps in the tumor microenvironment, Adv. Exp. Med. Biol. 1263 (2020) 13-23.
|
K.H. Susek, M. Karvouni, E. Alici, et al., The role of CXC chemokine receptors 1-4 on immune cells in the tumor microenvironment, Front. Immunol. 9 (2018), 2159.
|
S. Jaillon, A. Ponzetta, D. di Mitri, et al., Neutrophil diversity and plasticity in tumour progression and therapy, Nat. Rev. Cancer 20 (2020) 485-503.
|
K. Rawat, S. Syeda, A. Shrivastava, Neutrophil-derived Granule cargoes: Paving the way for tumor growth and progression, Cancer Metastasis Rev. 40 (2021) 221-244.
|
A.M. Houghton, D.M. Rzymkiewicz, H. Ji, et al., Neutrophil elastase-mediated degradation of IRS-1 accelerates lung tumor growth, Nat. Med. 16 (2010) 219-223.
|
H. Munir, J.O. Jones, T. Janowitz, et al., Stromal-driven and Amyloid β-dependent induction of neutrophil extracellular traps modulates tumor growth, Nat. Commun. 12 (2021), 683.
|
Y. Suhail, M.P. Cain, K. Vanaja, et al., Systems biology of cancer metastasis, Cell Syst. 9 (2019) 109-127.
|
C.E. Martin, K. List, Cell surface-anchored serine proteases in cancer progression and metastasis, Cancer Metastasis Rev. 38 (2019) 357-387.
|
C. Kerros, S.C. Tripathi, D. Zha, et al., Neuropilin-1 mediates neutrophil elastase uptake and cross-presentation in breast cancer cells, J. Biol. Chem. 292 (2017) 10295-10305.
|
A. Gobel, S. Dell'Endice, N. Jaschke, et al., The role of inflammation in breast and prostate cancer metastasis to bone, Int. J. Mol. Sci. 22 (2021), 5078.
|
T. Sato, S. Takahashi, T. Mizumoto, et al., Neutrophil elastase and cancer, Surg. Oncol. 15 (2006) 217-222.
|
I. Lerman, S.R. Hammes, Neutrophil elastase in the tumor microenvironment, Steroids 133 (2018) 96-101.
|
I. Lerman, M.L. Garcia-Hernandez, J. Rangel-Moreno, et al., Infiltrating myeloid cells exert protumorigenic actions via neutrophil elastase, Mol. Cancer Res. 15 (2017) 1138-1152.
|
J.A. Caruso, S. Akli, L. Pageon, et al., The serine protease inhibitor elafin maintains normal growth control by opposing the mitogenic effects of neutrophil elastase, Oncogene 34 (2015) 3556-3567.
|
Y. Wada, K. Yoshida, J. Hihara, et al., Sivelestat, a specific neutrophil elastase inhibitor, suppresses the growth of gastric carcinoma cells by preventing the release of transforming growth factor-alpha, Cancer Sci. 97 (2006) 1037-1043.
|
U. Meyer-Hoffert, J. Wingertszahn, O. Wiedow, Human leukocyte elastase induces keratinocyte proliferation by epidermal growth factor receptor activation, J. Invest. Dermatol. 123 (2004) 338-345.
|
Y. Wada, K. Yoshida, Y. Tsutani, et al., Neutrophil elastase induces cell proliferation and migration by the release of TGF-alpha, PDGF and VEGF in esophageal cell lines, Oncol. Rep. 17 (2007) 161-167.
|
C. Rogalski, U. Meyer-Hoffert, E. Proksch, et al., Human leukocyte elastase induces keratinocyte proliferation in vitro and in vivo, J. Invest. Dermatol. 118 (2002) 49-54.
|
S. Fan, Y. Xu, X. Li, et al., Opposite angiogenic outcome of curcumin against ischemia and Lewis lung cancer models: In silico, in vitro and in vivo studies, Biochim. Biophys. Acta BBA Mol. Basis Dis. 1842 (2014) 1742-1754.
|
Y. Xiaokaiti, H. Wu, Y. Chen, et al., EGCG reverses human neutrophil elastase-induced migration in A549 cells by directly binding to HNE and by regulating α1-AT, Sci. Rep. 5 (2015), 11494.
|
L. Aldabbous, V. Abdul-Salam, T. McKinnon, et al., Neutrophil extracellular traps promote angiogenesis: Evidence from vascular pathology in pulmonary hypertension, Arterioscler. Thromb. Vasc. Biol. 36 (2016) 2078-2087.
|
L. Gong, A.M. Cumpian, M.S. Caetano, et al., Promoting effect of neutrophils on lung tumorigenesis is mediated by CXCR2 and neutrophil elastase, Mol. Cancer 12 (2013), 154.
|
E.M. Bekes, B. Schweighofer, T.A. Kupriyanova, et al., Tumor-recruited neutrophils and neutrophil TIMP-free MMP-9 regulate coordinately the levels of tumor angiogenesis and efficiency of malignant cell intravasation, Am. J. Pathol. 179 (2011) 1455-1470.
|
E.I. Deryugina, E. Zajac, A. Juncker-Jensen, et al., Tissue-infiltrating neutrophils constitute the major in vivo source of angiogenesis-inducing MMP-9 in the tumor microenvironment, Neoplasia 16 (2014) 771-788.
|
B. Hurt, R. Schulick, B. Edil, et al., Cancer-promoting mechanisms of tumor-associated neutrophils, Am. J. Surg. 214 (2017) 938-944.
|
S. Ai, X. Cheng, A. Inoue, et al., Angiogenic activity of bFGF and VEGF suppressed by proteolytic cleavage by neutrophil elastase, Biochem. Biophys. Res. Commun. 364 (2007) 395-401.
|
Y. Huang, W. Zhang, F. Yu, et al., The cellular and molecular mechanism of radiation-induced lung injury, Med. Sci. Monit. 23 (2017) 3446-3450.
|
E. Blais, B. Pichon, A. Mampuya, et al., Lung dose constraints for normo-fractionated radiotherapy and for stereotactic body radiation therapy, Cancer Radiother. 21 (2017) 584-596.
|
V. Jain, A.T. Berman, Radiation pneumonitis: Old problem, new tricks, Cancers 10 (2018), 222.
|
L. Kasmann, A. Dietrich, C.A. Staab-Weijnitz, et al., Radiation-induced lung toxicity - cellular and molecular mechanisms of pathogenesis, management, and literature review, Radiat. Oncol. 15 (2020), 214.
|
S. Hashimoto, Y. Okayama, N. Shime, et al., Neutrophil elastase activity in acute lung injury and respiratory distress syndrome, Respirology 13 (2008) 581-584.
|
S.E. Williams, T.I. Brown, A. Roghanian, et al., SLPI and elafin: One glove, many fingers, Clin. Sci. (Lond) 110 (2006) 21-35.
|
P.A. Henriksen, The potential of neutrophil elastase inhibitors as anti-inflammatory therapies, Curr. Opin. Hematol. 21 (2014) 23-28.
|
T.S. Wilkinson, A. Conway Morris, K. Kefala, et al., Ventilator-associated pneumonia is characterized by excessive release of neutrophil proteases in the lung, Chest 142 (2012) 1425-1432.
|
N. Yoshikawa, T. Inomata, Y. Okada, et al., Sivelestat sodium hydrate reduces radiation-induced lung injury in mice by inhibiting neutrophil elastase, Mol. Med. Rep. 7 (2013) 1091-1095.
|
S. Bagchi, R. Yuan, E.G. Engleman, Immune checkpoint inhibitors for the treatment of cancer: Clinical impact and mechanisms of response and resistance, Annu. Rev. Pathol. 16 (2021) 223-249.
|
S.C. Wei, C.R. Duffy, J.P. Allison, Fundamental mechanisms of immune checkpoint blockade therapy, Cancer Discov. 8 (2018) 1069-1086.
|
D.Y. Wang, J.E. Salem, J.V. Cohen, et al., Fatal toxic effects associated with immune checkpoint inhibitors: A systematic review and meta-analysis, JAMA Oncol. 4 (2018) 1721-1728.
|
M. Nishino, A. Giobbie-Hurder, H. Hatabu, et al., Incidence of programmed cell death 1 inhibitor-related pneumonitis in patients with advanced cancer: A systematic review and meta-analysis, JAMA Oncol. 2 (2016) 1607-1616.
|
X. Zhai, J. Zhang, Y. Tian, et al., The mechanism and risk factors for immune checkpoint inhibitor pneumonitis in non-small cell lung cancer patients, Cancer Biol. Med. 17 (2020) 599-611.
|
S. McComb, A. Thiriot, B. Akache, et al., Introduction to the immune system, Methods Mol. Biol. 2024 (2019) 1-24.
|
J. Sagiv, J. Michaeli, S. Assi, et al., Phenotypic diversity and plasticity in circulating neutrophil subpopulations in cancer, Cell Rep. 10 (2015) 562-573.
|
J. Yan, G. Kloecker, C. Fleming, et al., Human polymorphonuclear neutrophils specifically recognize and kill cancerous cells, OncoImmunology 3 (2014), e950163.
|
S.B. Coffelt, M.D. Wellenstein, K.E. de Visser, Neutrophils in cancer: Neutral no more, Nat. Rev. Cancer 16 (2016) 431-446.
|
E.B. Eruslanov, S. Singhal, S.M. Albelda, Mouse versus human neutrophils in cancer: A major knowledge gap, Trends Cancer 3 (2017) 149-160.
|
P. Kruger, M. Saffarzadeh, A.N. Weber, et al., Neutrophils: Between host defence, immune modulation, and tissue injury, PLoS Pathog. 11 (2015), e1004651.
|
S. Xiong, L. Dong, L. Cheng, Neutrophils in cancer carcinogenesis and metastasis, J. Hematol. Oncol. 14 (2021), 173.
|
L. Chen, S.M. Park, A.V. Tumanov, et al., CD95 promotes tumour growth, Nature 465 (2010) 492-496.
|
H. Ji, R. Zhao, S. Matalon, et al., Elevated plasmin(ogen) as a common risk factor for COVID-19 susceptibility, Physiol. Rev. 100 (2020) 1065-1075.
|
R. Zhang, X. Wang, L. Ni, et al., COVID-19: Melatonin as a potential adjuvant treatment, Life Sci. 250 (2020), 117583.
|
Q. Ye, B. Wang, J. Mao, The pathogenesis and treatment of the “Cytokine storm” in COVID-19, J. Infect. 80 (2020) 607-613.
|
R.E. Kast, Dapsone as treatment adjunct in ARDS, Exp. Lung Res. 46 (2020) 157-161.
|
B. Shanmugaraj, K. Siriwattananon, K. Wangkanont, et al., Perspectives on monoclonal antibody therapy as potential therapeutic intervention for Coronavirus disease-19 (COVID-19), Asian Pac. J. Allergy Immunol. 38 (2020) 10-18.
|
S. Belouzard, I. Madu, G.R. Whittaker, Elastase-mediated activation of the severe acute respiratory syndrome coronavirus spike protein at discrete sites within the S2 domain, J. Biol. Chem. 285 (2010) 22758-22763.
|
F. Graham, Daily briefing: A protein on the surface of the coronavirus might explain why it is so contagious, Nature, 2020. https://www.nature.com/articles/d41586-020-00705-1.
|
Z. Xu, L. Shi, Y. Wang, et al., Pathological findings of COVID-19 associated with acute respiratory distress syndrome, Lancet Respir. Med. 8 (2020) 420-422.
|
M.M.A. Mohamed, I.A. El-Shimy, M.A. Hadi, Neutrophil Elastase Inhibitors: A potential prophylactic treatment option for SARS-CoV-2-induced respiratory complications? Crit. Care 24 (2020), 311.
|
M. Hayakawa, K. Katabami, T. Wada, et al., Sivelestat (selective neutrophil elastase inhibitor) improves the mortality rate of sepsis associated with both acute respiratory distress syndrome and disseminated intravascular coagulation patients, Shock 33 (2010) 14-18.
|
T. Kido, K. Muramatsu, K. Yatera, et al., Efficacy of early sivelestat administration on acute lung injury and acute respiratory distress syndrome, Respirology 22 (2017) 708-713.
|
F.J. Martinez, H.R. Collard, A. Pardo, et al., Idiopathic pulmonary fibrosis, Nat. Rev. Dis. Primers 3 (2017), 17074.
|
W.D. Travis, U. Costabel, D.M. Hansell, et al., An official American Thoracic Society/European Respiratory Society statement: Update of the international multidisciplinary classification of the idiopathic interstitial pneumonias, Am. J. Respir. Crit. Care. Med. 188 (2013) 733-748.
|
T.E. King, A. Pardo, M. Selman, Idiopathic pulmonary fibrosis, Lancet 378 (2011) 1949-1961.
|
A. Takemasa, Y. Ishii, T. Fukuda, A neutrophil elastase inhibitor prevents bleomycin-induced pulmonary fibrosis in mice, Eur. Respir. J. 40 (2012) 1475-1482.
|
C. Brightling, N. Greening, Airway inflammation in COPD: Progress to precision medicine, Eur. Respir. J. 54 (2019), 1900651.
|
S.D. Lucas, E. Costa, R.C. Guedes, et al., Targeting COPD: Advances on low-molecular-weight inhibitors of human neutrophil elastase, Med. Res. Rev. 33 (2013) E73-E101.
|
M.A. Cuesta, N. van der Wielen, J. Straatman, et al., Video-assisted thoracoscopic esophagectomy: Keynote lecture, Gen. Thorac. Cardiovasc. Surg. 64 (2016) 380-385.
|
T. Iba, A. Kidokoro, M. Fukunaga, et al., Pretreatment of sivelestat sodium hydrate improves the lung microcirculation and alveolar damage in lipopolysaccharide-induced acute lung inflammation in hamsters, Shock 26 (2006) 95-98.
|
Y. Kawahara, I. Ninomiya, T. Fujimura, et al., Prospective randomized controlled study on the effects of perioperative administration of a neutrophil elastase inhibitor to patients undergoing video-assisted thoracoscopic surgery for thoracic esophageal cancer, Dis. Esophagus 23 (2010) 329-339.
|
K. Matsuzaki, Y. Hiramatsu, S. Homma, et al., Sivelestat reduces inflammatory mediators and preserves neutrophil deformability during simulated extracorporeal circulation, Ann. Thorac. Surg. 80 (2005) 611-617.
|
S. Tsujii, T. Okabayashi, S. Mai, et al., The effect of the neutrophil elastase inhibitor sivelestat on early injury after liver resection, World J. Surg. 36 (2012) 1122-1127.
|
G. Valabrega, F. Montemurro, M. Aglietta, Trastuzumab: Mechanism of action, resistance and future perspectives in HER2-overexpressing breast cancer, Ann. Oncol. 18 (2007) 977-984.
|
J. Padayachee, A. Daniels, A. Balgobind, et al., HER-2/neu and MYC gene silencing in breast cancer: Therapeutic potential and advancement in nonviral nanocarrier systems, Nanomedicine (Lond) 15 (2020) 1437-1452.
|
M. Nawa, S. Osada, K. Morimitsu, et al., Growth effect of neutrophil elastase on breast cancer: Favorable action of sivelestat and application to anti-HER2 therapy, Anticancer Res. 32 (2012) 13-19.
|
S. Saitoh, A. Kosugi, S. Noda, et al., Modulation of TCR-mediated signaling pathway by thymic shared antigen-1 (TSA-1)/stem cell antigen-2 (Sca-2), J. Immunol. 155 (1995) 5574-5581.
|
S. Pfaender, K.B. Mar, E. Michailidis, et al., LY6E impairs coronavirus fusion and confers immune control of viral disease, Nat. Microbiol. 5 (2020) 1330-1339.
|
S. Nandi, H. Roy, A. Gummadi, et al., Exploring spike protein as potential target of novel coronavirus and to inhibit the viability utilizing natural agents, Curr. Drug Targets 22 (2021) 2006-2020.
|
R. Dey, A. Samadder, S. Nandi, Selected phytochemicals to combat lungs injury: Natural care, Comb. Chem. High Throughput Screen. 25 (2022) 2398-2412.
|