Citation: | Qili Liao, Jie Yang, Shengfang Ge, Peiwei Chai, Jiayan Fan, Renbing Jia. Novel insights into histone lysine methyltransferases in cancer therapy: From epigenetic regulation to selective drugs[J]. Journal of Pharmaceutical Analysis, 2023, 13(2): 127-141. doi: 10.1016/j.jpha.2022.11.009 |
M.A. Dawson, T. Kouzarides, Cancer epigenetics: from mechanism to therapy, Cell 150 (2012) 12-27
|
T. Kouzarides, Chromatin modifications and their function, Cell 128 (2007) 693-705
|
M. Luo, Chemical and biochemical perspectives of protein lysine methylation, Chem. Rev. 118 (2018) 6656-6705
|
H. Umit Kaniskan, M.L. Martini, J. Jin, Inhibitors of protein methyltransferases and demethylases, Chem. Rev. 118 (2018) 989-1068
|
A.J. Bannister, T. Kouzarides, Regulation of chromatin by histone modifications, Cell Res. 21 (2011) 381-395
|
J. Murn, Y. Shi, The winding path of protein methylation research: milestones and new frontiers, Nat. Rev. Mol. Cell Biol. 18 (2017) 517-527
|
S. Rea, F. Eisenhaber, D. O'Carroll, et al., Regulation of chromatin structure by site-specific histone H3 methyltransferases, Nature 406 (2000) 593-599
|
C. Martin, Y. Zhang, The diverse functions of histone lysine methylation, Nat. Rev. Mol. Cell Biol. 6 (2005) 838-849
|
E.L. Greer, Y. Shi, Histone methylation: a dynamic mark in health, disease and inheritance, Nat. Rev. Genet. 13 (2012) 343-357
|
E.J. Worden, N.A. Hoffmann, C.W. Hicks, et al., Mechanism of cross-talk between H2B ubiquitination and H3 methylation by Dot1L, Cell 176 (2019) 1490-1501.e12
|
M.I. Valencia-Sanchez, P. de Ioannes, M. Wang, et al., Regulation of the Dot1 histone H3K79 methyltransferase by histone H4K16 acetylation, Science 371 (2021), eabc6663
|
R.K. McGinty, J. Kim, C. Chatterjee, et al., Chemically ubiquitylated histone H2B stimulates hDot1L-mediated intranucleosomal methylation, Nature 453 (2008) 812-816
|
S.M. Hoy, Tazemetostat: first approval, Drugs 80 (2020) 513-521
|
D. Morel, D. Jeffery, S. Aspeslagh, et al., Combining epigenetic drugs with other therapies for solid tumours -past lessons and future promise, Nat. Rev. Clin. Oncol. 17 (2020) 91-107
|
L. Villanueva, D. Alvarez-Errico, M. Esteller, The contribution of epigenetics to cancer immunotherapy, Trends Immunol. 41 (2020) 676-691
|
H. Dohner, A.H. Wei, B. Lowenberg, Towards precision medicine for AML, Nat. Rev. Clin. Oncol. 18 (2021) 577-590
|
J.A. Seier, J. Reinhardt, K. Saraf, et al., Druggable epigenetic suppression of interferon-induced chemokine expression linked to MYCN amplification in neuroblastoma, J. Immunother. Cancer 9 (2021), e001335
|
L. Jiao, X. Liu, Structural basis of histone H3K27 trimethylation by an active polycomb repressive complex 2, Science 350 (2015), aac4383
|
R. Duan, W. Du, W. Guo, EZH2: a novel target for cancer treatment, J. Hematol. Oncol. 13 (2020), 104
|
J. Kim, Y. Lee, X. Lu, et al., Polycomb-and methylation-independent roles of EZH2 as a transcription activator, Cell Rep. 25 (2018) 2808-2820.e4
|
J. Wang, X. Yu, W. Gong, et al., EZH2 noncanonically binds cMyc and p300 through a cryptic transactivation domain to mediate gene activation and promote oncogenesis, Nat. Cell Biol. 24 (2022) 384-399
|
S.T. Lee, Z. Li, Z. Wu, et al., Context-specific regulation of NF-κB target gene expression by EZH2 in breast cancers, Mol. Cell 43 (2011) 798-810
|
W. Beguelin, M. Teater, C. Meydan, et al., Mutant EZH2 induces a pre-malignant lymphoma niche by reprogramming the immune response, Cancer Cell 37 (2020) 655-673.e11
|
J. Geng, X. Li, Z. Zhou, et al., EZH2 promotes tumor progression via regulating VEGF-A/AKT signaling in non-small cell lung cancer, Cancer Lett. 359 (2015) 275-287
|
I. Gorodetska, V. Lukiyanchuk, C. Peitzsch, et al., BRCA1 and EZH2 cooperate in regulation of prostate cancer stem cell phenotype, Int. J. Cancer 145 (2019) 2974-2985
|
H.W. Smith, A. Hirukawa, V. Sanguin-Gendreau, et al., An ErbB2/c-Src axis links bioenergetics with PRC2 translation to drive epigenetic reprogramming and mammary tumorigenesis, Nat. Commun. 10 (2019), 2901
|
B. Moran, R. Silva, A.S. Perry, et al., Epigenetics of malignant melanoma, Semin. Cancer Biol. 51 (2018) 80-88
|
Y. Xu, H. Wang, F. Li, et al., Long non-coding RNA LINC-PINT suppresses cell proliferation and migration of melanoma via recruiting EZH2, Front. Cell Dev. Biol. 7 (2019), 350
|
M. Khan, L.L. Walters, Q. Li, et al., Characterization and pharmacologic targeting of EZH2, a fetal retinal protein and epigenetic regulator, in human retinoblastoma, Lab. Invest. 95 (2015) 1278-1290
|
R. Yang, M. Wang, G. Zhang, et al., E2F7-EZH2 axis regulates PTEN/AKT/mTOR signalling and glioblastoma progression, Br. J. Cancer 123 (2020) 1445-1455
|
C.J. Sneeringer, M.P. Scott, K.W. Kuntz, et al., Coordinated activities of wild-type plus mutant EZH2 drive tumor-associated hypertrimethylation of lysine 27 on histone H3 (H3K27) in human B-cell lymphomas, Proc. Natl. Acad. Sci. USA. 107 (2010) 20980-20985
|
B. Jin, P. Zhang, H. Zou, et al., Verification of EZH2 as a druggable target in metastatic uveal melanoma, Mol. Cancer 19 (2020), 52
|
F. Hoffmann, D. Niebel, P. Aymans, et al., H3K27me3 and EZH2 expression in melanoma: relevance for melanoma progression and response to immune checkpoint blockade, Clin. Epigenet. 12 (2020), 24
|
P. Chai, R. Jia, Y. Li, et al., Regulation of epigenetic homeostasis in uveal melanoma and retinoblastoma, Prog. Retin. Eye Res. 89 (2022), 101030
|
N.A. de Vries, D. Hulsman, W. Akhtar, et al., Prolonged Ezh2 depletion in glioblastoma causes a robust switch in cell fate resulting in tumor progression, Cell Rep. 10 (2015) 383-397
|
T. Shimizu, L. Kubovcakova, R. Nienhold, et al., Loss of Ezh2 synergizes with JAK2-V617F in initiating myeloproliferative neoplasms and promoting myelofibrosis, J. Exp. Med. 213 (2016) 1479-1496
|
Y. Wang, N. Hou, X. Cheng, et al., Ezh2 acts as a tumor suppressor in Kras-driven lung adenocarcinoma, Int. J. Biol. Sci. 13 (2017) 652-659
|
D. Wang, J. Quiros, K. Mahuron, et al., Targeting EZH2 reprograms intratumoral regulatory T cells to enhance cancer immunity, Cell Rep. 23 (2018) 3262-3274
|
H.J. Kim, H. Cantor, K. Cosmopoulos, Overcoming immune checkpoint blockade resistance via EZH2 inhibition, Trends Immunol. 41 (2020) 948-963
|
D. Zingg, N. Arenas-Ramirez, D. Sahin, et al., The histone methyltransferase Ezh2 controls mechanisms of adaptive resistance to tumor immunotherapy, Cell Rep. 20 (2017) 854-867
|
D. Peng, I. Kryczek, N. Nagarsheth, et al., Epigenetic silencing of TH1-type chemokines shapes tumour immunity and immunotherapy, Nature 527 (2015) 249-253
|
X. Liu, X. Lu, F. Zhen, et al., LINC00665 induces acquired resistance to gefitinib through recruiting EZH2 and activating PI3K/AKT pathway in NSCLC, Mol. Ther. Nucleic Acids 16 (2019) 155-161
|
C. Quan, Y. Chen, X. Wang, et al., Loss of histone lysine methyltransferase EZH2 confers resistance to tyrosine kinase inhibitors in non-small cell lung cancer, Cancer Lett. 495 (2020) 41-52
|
J. Sun, X. Cai, M.M. Yung, et al., miR-137 mediates the functional link between c-Myc and EZH2 that regulates cisplatin resistance in ovarian cancer, Oncogene 38 (2019) 564-580
|
K. Wood, M. Tellier, S. Murphy, DOT1L and H3K79 methylation in transcription and genomic stability, Biomolecules 8 (2018), 11
|
H. Kurani, S.F. Razavipour, K.B. Harikumar, et al., DOT1L is a novel cancer stem cell target for triple-negative breast cancer, Clin. Cancer Res. 28 (2022) 1948-1965
|
D. Sun, W. Wang, F. Guo, et al., DOT1L affects colorectal carcinogenesis via altering T cell subsets and oncogenic pathway, OncoImmunology 11 (2022), 2052640
|
S. Chava, S. Bugide, Y.J.K. Edwards, et al., Disruptor of telomeric silencing 1-like promotes ovarian cancer tumor growth by stimulating pro-tumorigenic metabolic pathways and blocking apoptosis, Oncogenesis 10 (2021), 48
|
W.F. Richter, R.N. Shah, A.J. Ruthenburg, Non-canonical H3K79me2-dependent pathways promote the survival of MLL-rearranged leukemia, Elife 10 (2021), e64960
|
A.V. Krivtsov, S.A. Armstrong, MLL translocations, histone modifications and leukaemia stem-cell development, Nat. Rev. Cancer 7 (2007) 823-833
|
Y. Okada, Q. Feng, Y. Lin, et al., hDOT1L links histone methylation to leukemogenesis, Cell 121 (2005) 167-178
|
A.J. Deshpande, A. Deshpande, A.U. Sinha, et al., AF10 regulates progressive H3K79 methylation and HOX gene expression in diverse AML subtypes, Cancer Cell 26 (2014) 896-908
|
C.J. Spangler, S.P. Yadav, D. Li, et al., DOT1L activity in leukemia cells requires interaction with ubiquitylated H2B that promotes productive nucleosome binding, Cell Rep. 38 (2022), 110369
|
G. Nassa, A. Salvati, R. Tarallo, et al., Inhibition of histone methyltransferase DOT1L silences ERα gene and blocks proliferation of antiestrogen-resistant breast cancer cells, Sci. Adv. 5 (2019), eaav5590
|
R. Vatapalli, V. Sagar, Y. Rodriguez, et al., Histone methyltransferase DOT1L coordinates AR and MYC stability in prostate cancer, Nat. Commun. 11 (2020), 4153
|
B. Zhu, S. Chen, H. Wang, et al., The protective role of DOT1L in UV-induced melanomagenesis, Nat. Commun. 9 (2018), 259
|
A. Barski, S. Cuddapah, K. Cui, et al., High-resolution profiling of histone methylations in the human genome, Cell 129 (2007) 823-837
|
G.M. Kelly, F. Al-Ejeh, R. McCuaig, et al., G9a inhibition enhances checkpoint inhibitor blockade response in melanoma, Clin. Cancer Res. 27 (2021) 2624-2635
|
K. Hua, M. Wang, M. Chen, et al., The H3K9 methyltransferase G9a is a marker of aggressive ovarian cancer that promotes peritoneal metastasis, Mol. Cancer 13 (2014), 189
|
C. Yin, X. Ke, R. Zhang, et al., G9a promotes cell proliferation and suppresses autophagy in gastric cancer by directly activating mTOR, Faseb. J. 33 (2019) 14036-14050
|
S.M. Hsiao, M. Chen, C. Chen, et al., The H3K9 methyltransferase G9a represses E-cadherin and is associated with myometrial invasion in endometrial cancer, Ann. Surg Oncol. 22 (2015) S1556-S1565
|
C. Dong, Y. Wu, J. Yao, et al., G9a interacts with Snail and is critical for Snail-mediated E-cadherin repression in human breast cancer, J. Clin. Invest. 122 (2012) 1469-1486
|
J. Fan, Y. Xing, X. Wen, et al., Long non-coding RNA ROR decoys gene-specific histone methylation to promote tumorigenesis, Genome Biol. 16 (2015), 139
|
M. Liu, S.L. Thomas, A.K. DeWitt, et al., Dual inhibition of DNA and histone methyltransferases increases viral mimicry in ovarian cancer cells, Cancer Res. 78 (2018) 5754-5766
|
X. Ke, R. Zhang, X. Zhong, et al., Deficiency of G9a inhibits cell proliferation and activates autophagy via transcriptionally regulating c-myc expression in glioblastoma, Front. Cell Dev. Biol. 8 (2020), 593964
|
D. Strepkos, M. Markouli, A. Klonou, et al., Histone methyltransferase SETDB1: a common denominator of tumorigenesis with therapeutic potential, Cancer Res. 81 (2021) 525-534
|
G.K. Griffin, J. Wu, A. Iracheta-Vellve, et al., Epigenetic silencing by SETDB1 suppresses tumour intrinsic immunogenicity, Nature 595 (2021) 309-314
|
Q. Xu, Y. Xiang, Q. Wang, et al., SETD2 regulates the maternal epigenome, genomic imprinting and embryonic development, Nat. Genet. 51 (2019) 844-856
|
J. Bu, A. Chen, X. Yan, et al., SETD2-mediated crosstalk between H3K36me3 and H3K79me2 in MLL-rearranged leukemia, Leukemia 32 (2018) 890-899
|
H. Yuan, Y. Han, X. Wang, et al., SETD2 restricts prostate cancer metastasis by integrating EZH2 and AMPK signaling pathways, Cancer Cell 38 (2020) 350-365.e7
|
C. Yang, K. Wang, Y. Zhou, et al., Histone lysine methyltransferase SET8 is a novel therapeutic target for cancer treatment, Drug Discov. Today 26 (2021) 2423-2430
|
X. Shi, I. Kachirskaia, H. Yamaguchi, et al., Modulation of p53 function by SET8-mediated methylation at lysine 382, Mol. Cell 27 (2007) 636-646
|
Wada, A. Kukita, K. Sone, et al., Epigenetic modifier SETD8 as a therapeutic target for high-grade serous ovarian cancer, Biomolecules 10 (2020), 1686
|
R. Huang, Y. Yu, X. Zong, et al., Monomethyltransferase SETD8 regulates breast cancer metabolism via stabilizing hypoxia-inducible factor 1α, Cancer Lett. 390 (2017) 1-10
|
Z. Li, F. Nie, S. Wang, et al., Histone H4 Lys 20 monomethylation by histone methylase SET8 mediates Wnt target gene activation, Proc. Natl. Acad. Sci. USA. 108 (2011) 3116-3123
|
A. Italiano, J.C. Soria, M. Toulmonde, et al., Tazemetostat, an EZH2 inhibitor, in relapsed or refractory B-cell non-Hodgkin lymphoma and advanced solid tumours: a first-in-human, open-label, phase 1 study, Lancet Oncol. 19 (2018) 649-659
|
M. Gounder, P. Schoffski, R.L. Jones, et al., Tazemetostat in advanced epithelioid sarcoma with loss of INI1/SMARCB1: an international, open-label, phase 2 basket study, Lancet Oncol. 21 (2020) 1423-1432
|
F. Morschhauser, H. Tilly, A. Chaidos, et al., Tazemetostat for patients with relapsed or refractory follicular lymphoma: an open-label, single-arm, multicentre, phase 2 trial, Lancet Oncol. 21 (2020) 1433-1442
|
M.G. Zauderer, P.W. Szlosarek, S. le Moulec, et al., EZH2 inhibitor tazemetostat in patients with relapsed or refractory, BAP1-inactivated malignant pleural mesothelioma: a multicentre, open-label, phase 2 study, Lancet Oncol. 23 (2022) 758-767
|
K. Izutsu, K. Ando, M. Nishikori, et al., Phase II study of tazemetostat for relapsed or refractory B-cell non-Hodgkin lymphoma with EZH2 mutation in Japan, Cancer Sci. 112 (2021) 3627-3635
|
R.G. Vaswani, V.S. Gehling, L.A. Dakin, et al., Identification of (R)-N-((4-Methoxy-6-methyl-2-oxo-1,2-dihydropyridin-3-yl)methyl)-2-methyl-1-(1-(1-(2,2,2-trifluoroethyl)piperidin-4-yl)ethyl)-1H-indole-3-carboxamide (CPI-1205), a potent and selective inhibitor of histone methyltransferase EZH2, suitable for phase I clinical trials for B-Cell lymphomas, J. Med. Chem. 59 (2016) 9928-9941
|
P.P. Kung, P. Bingham, A. Brooun, et al., Optimization of orally bioavailable enhancer of Zeste Homolog 2 (EZH2) inhibitors using ligand and property-based design strategies: identification of development candidate (R)-5,8-Dichloro-7-(methoxy(oxetan-3-yl)methyl)-2-((4-methoxy-6-methyl-2-oxo-1,2-dihydropyridin-3-yl)methyl)-3,4-dihydroisoquinolin-1(2H)-one (PF-06821497), J. Med. Chem. 61 (2018) 650-665
|
X. Wang, D. Wang, N. Ding, et al., The synergistic anti-tumor activity of EZH2 inhibitor SHR2554 and HDAC inhibitor chidamide through ORC1 reduction of DNA replication process in diffuse large B cell lymphoma, Cancers 13 (2021), 4249
|
M. Yamagishi, M. Hori, D. Fujikawa, et al., Targeting excessive EZH1 and EZH2 activities for abnormal histone methylation and transcription network in malignant lymphomas, Cell Rep. 29 (2019) 2321-2337.e7
|
Y. Huang, M. Sendzik, J. Zhang, et al., Discovery of the clinical candidate MAK683: an EED-directed, allosteric, and selective PRC2 inhibitor for the treatment of advanced malignancies, J. Med. Chem. 65 (2022) 5317-5333
|
K. Xu, Z.J. Wu, A.C. Groner, et al., EZH2 oncogenic activity in castration-resistant prostate cancer cells is Polycomb-independent, Science 338 (2012) 1465-1469
|
Y. Zhao, L. Ding, D. Wang, et al., EZH2 cooperates with gain-of-function p53 mutants to promote cancer growth and metastasis, EMBO J. 38 (2019), e99599
|
A. Feoli, M. Viviano, A. Cipriano, et al., Lysine methyltransferase inhibitors: where we are now, RSC. Chem. Biol. 3 (2021) 359-406
|
B. Dale, M. Cheng, K.S. Park, et al., Advancing targeted protein degradation for cancer therapy, Nat. Rev. Cancer 21 (2021) 638-654
|
W. Yu, E.J. Chory, A.K. Wernimont, et al., Catalytic site remodelling of the DOT1L methyltransferase by selective inhibitors, Nat. Commun. 3 (2012), 1288
|
S.R. Daigle, E.J. Olhava, C.A. Therkelsen, et al., Selective killing of mixed lineage leukemia cells by a potent small-molecule DOT1L inhibitor, Cancer Cell 20 (2011) 53-65
|
S.R. Daigle, E.J. Olhava, C.A. Therkelsen, et al., Potent inhibition of DOT1L as treatment of MLL-fusion leukemia, Blood 122 (2013) 1017-1025
|
E.M. Stein, G. Garcia-Manero, D.A. Rizzieri, et al., The DOT1L inhibitor pinometostat reduces H3K79 methylation and has modest clinical activity in adult acute leukemia, Blood 131 (2018) 2661-2669
|
F. Wu, S. Nie, Y. Yao, et al., Small-molecule inhibitor of AF9/ENL-DOT1L/AF4/AFF4 interactions suppresses malignant gene expression and tumor growth, Theranostics 11 (2021) 8172-8184
|
K. Cao, M. Ugarenko, P.A. Ozark, et al., DOT1L-controlled cell-fate determination and transcription elongation are independent of H3K79 methylation, Proc. Natl. Acad. Sci. USA. 117 (2020) 27365-27373
|
Y. Yi, S. Ge, Targeting the histone H3 lysine 79 methyltransferase DOT1L in MLL-rearranged leukemias, J. Hematol. Oncol. 15 (2022), 35
|
X. Li, Y. Song, Structure, function and inhibition of critical protein-protein interactions involving mixed lineage leukemia 1 and its fusion oncoproteins, J. Hematol. Oncol. 14 (2021), 56
|
S. Kubicek, R.J. O'Sullivan, E.M. August, et al., Reversal of H3K9me2 by a small-molecule inhibitor for the G9a histone methyltransferase, Mol. Cell 25 (2007) 473-481
|
M. Vedadi, D. Barsyte-Lovejoy, F. Liu, et al., A chemical probe selectively inhibits G9a and GLP methyltransferase activity in cells, Nat. Chem. Biol. 7 (2011) 566-574
|
F. Liu, D. Barsyte-Lovejoy, F. Li, et al., Discovery of an in vivo chemical probe of the lysine methyltransferases G9a and GLP, J. Med. Chem. 56 (2013) 8931-8942
|
H. Cao, L. Li, D. Yang, et al., Recent progress in histone methyltransferase (G9a) inhibitors as anticancer agents, Eur. J. Med. Chem. 179 (2019) 537-546
|
Y. Kim, H.M. Lee, Y. Xiong, et al., Targeting the histone methyltransferase G9a activates imprinted genes and improves survival of a mouse model of Prader-Willi syndrome, Nat. Med. 23 (2017) 213-222
|
E.S. Jose-Eneriz, X. Agirre, O. Rabal, et al., Discovery of first-in-class reversible dual small molecule inhibitors against G9a and DNMTs in hematological malignancies, Nat. Commun. 8 (2017), 15424
|
F. Casciello, G.M. Kelly, P. Ramarao-Milne, et al., Combined inhibition of G9a and EZH2 suppresses tumor growth via synergistic induction of IL24-mediated apoptosis, Cancer Res. 82 (2022) 1208-1221
|
P. Spiliopoulou, S. Spear, H. Mirza, et al., Dual G9A/EZH2 inhibition stimulates antitumor immune response in ovarian high-grade serous carcinoma, Mol. Cancer Therapeut. 21 (2022) 522-534
|
J.K. Lee, K.C. Kim, DZNep, inhibitor of S-adenosylhomocysteine hydrolase, down-regulates expression of SETDB1 H3K9me3 HMTase in human lung cancer cells, Biochem. Biophys. Res. Commun. 438 (2013) 647-652
|
C.M. Wong, L. Wei, C.T. Law, et al., Up-regulation of histone methyltransferase SETDB1 by multiple mechanisms in hepatocellular carcinoma promotes cancer metastasis, Hepatology 63 (2016) 474-487
|
V. Veschi, Z. Liu, T.C. Voss, et al., Epigenetic siRNA and chemical screens identify SETD8 inhibition as a therapeutic strategy for p53 activation in high-risk neuroblastoma, Cancer Cell 31 (2017) 50-63
|
L. Herviou, S. Ovejero, F. Izard, et al., Targeting the methyltransferase SETD8 impairs tumor cell survival and overcomes drug resistance independently of p53 status in multiple myeloma, Clin. Epigenet. 13 (2021), 174
|
K.P. Bhat, H. Umit Kaniskan, J. Jin, et al., Epigenetics and beyond: targeting writers of protein lysine methylation to treat disease, Nat. Rev. Drug Discov. 20 (2021) 265-286
|
X. Tan, Z. Zhang, P. Liu, et al., Inhibition of EZH2 enhances the therapeutic effect of 5-FU via PUMA upregulation in colorectal cancer, Cell Death Dis. 11 (2020), 1061
|
S. Ramakrishnan, V. Granger, M. Rak, et al., Inhibition of EZH2 induces NK cell-mediated differentiation and death in muscle-invasive bladder cancer, Cell Death Differ. 26 (2019) 2100-2114
|
Q. Yang, S. Zhao, Z. Shi, et al., Chemotherapy-elicited exosomal miR-378a-3p and miR-378d promote breast cancer stemness and chemoresistance via the activation of EZH2/STAT3 signaling, J. Exp. Clin. Cancer Res. 40 (2021), 120
|
Y. Li, Y. Gan, J. Liu, et al., Downregulation of MEIS1 mediated by ELFN1-AS1/EZH2/DNMT3a axis promotes tumorigenesis and oxaliplatin resistance in colorectal cancer, Signal Transduct. Targeted Ther. 7 (2022), 87
|
C.R. Klaus, D. Iwanowicz, D. Johnston, et al., DOT1L inhibitor EPZ-5676 displays synergistic antiproliferative activity in combination with standard of care drugs and hypomethylating agents inMLL-rearranged leukemia cells, J. Pharmacol. Exp. Therapeut. 350 (2014) 646-656
|
Y. Mao, Y. Sun, Z. Wu, et al., Targeting of histone methyltransferase DOT1L plays a dual role in chemosensitization of retinoblastoma cells and enhances the efficacy of chemotherapy, Cell Death Dis. 12 (2021), 1141
|
C.W. Liu, K. Hua, K. Li, et al., Histone methyltransferase G9a drives chemotherapy resistance by regulating the glutamate-cysteine ligase catalytic subunit in head and neck squamous cell carcinoma, Mol. Cancer Therapeut. 16 (2017) 1421-1434
|
G. Wu, H. Peng, M. Tang, et al., ZNF711 down-regulation promotes CISPLATIN resistance in epithelial ovarian cancer via interacting with JHDM2A and suppressing SLC31A1 expression, EBioMedicine 71 (2021), 103558
|
A.K. Nanayakkara, H.W. Boucher, V.G. Fowler Jr, et al., Antibiotic resistance in the patient with cancer: escalating challenges and paths forward, CA Cancer J. Clin. 71 (2021) 488-504
|
B.S. Moon, M. Cai, G. Lee, et al., Epigenetic modulator inhibition overcomes temozolomide chemoresistance and antagonizes tumor recurrence of glioblastoma, J. Clin. Invest. 130 (2020) 5782-5799
|
C. Zhang, C. Xu, X. Gao, et al., Platinum-based drugs for cancer therapy and anti-tumor strategies, Theranostics 12 (2022) 2115-2132
|
S. Vodenkova, T. Buchler, K. Cervena, et al., 5-fluorouracil and other fluoropyrimidines in colorectal cancer: past, present and future, Pharmacol. Ther. 206 (2020), 107447
|
S. Lee, C. Lee, C.Y. Hwang, et al., Network inference analysis identifies SETDB1 as a key regulator for reverting colorectal cancer cells into differentiated normal-like cells, Mol. Cancer Res. 18 (2020) 118-129
|
C. Sarkozy, F. Morschhauser, S. Dubois, et al., A LYSA phase ib study of tazemetostat (EPZ-6438) plus R-CHOP in patients with newly diagnosed diffuse large B-cell lymphoma (DLBCL) with poor prognosis features, Clin. Cancer Res. 26 (2020) 3145-3153
|
A. Hirukawa, S. Singh, J. Wang, et al., Reduction of global H3K27me3 enhances HER2/ErbB2 targeted therapy, Cell Rep. 29 (2019) 249-257.e8
|
H. Fu, L. Cheng, R. Sa, et al., Combined tazemetostat and MAPKi enhances differentiation of papillary thyroid cancer cells harbouring BRAFV600E by synergistically decreasing global trimethylation of H3K27, J. Cell Mol. Med. 24 (2020) 3336-3345
|
X. Huang, J. Yan, M. Zhang, et al., Targeting epigenetic crosstalk as a therapeutic strategy for EZH2-aberrant solid tumors, Cell 175 (2018) 186-199.e19
|
R. Adelaiye-Ogala, J. Budka, N.P. Damayanti, et al., EZH2 modifies sunitinib resistance in renal cell carcinoma by kinome reprogramming, Cancer Res. 77 (2017) 6651-6666
|
H. Gong, Y. Li, Y. Yuan, et al., EZH2 inhibitors reverse resistance to gefitinib in primary EGFR wild-type lung cancer cells, BMC Cancer 20 (2020), 1189
|
Y. Yang, F. Zhu, Q. Wang, et al., Inhibition of EZH2 and EGFR produces a synergistic effect on cell apoptosis by increasing autophagy in gastric cancer cells, OncoTargets Ther. 11 (2018) 8455-8463
|
B.W. Katona, Y. Liu, A. Ma, et al., EZH2 inhibition enhances the efficacy of an EGFR inhibitor in suppressing colon cancer cells, Cancer Biol. Ther. 15 (2014) 1677-1687
|
L. Wang, X. Dong, Y. Ren, et al., Targeting EHMT2 reverses EGFR-TKI resistance in NSCLC by epigenetically regulating the PTEN/AKT signaling pathway, Cell Death Dis. 9 (2018), 129
|
V. Fresquet, M.J. Garcia-Barchino, M. Larrayoz, et al., Endogenous retroelement activation by epigenetic therapy reverses the Warburg effect and elicits mitochondrial-mediated cancer cell death, Cancer Discov. 11 (2021) 1268-1285
|
C. Chen, R.P. Koche, A.U. Sinha, et al., DOT1L inhibits SIRT1-mediated epigenetic silencing to maintain leukemic gene expression in MLL-rearranged leukemia, Nat. Med. 21 (2015) 335-343
|
Z. Feng, Y. Yao, C. Zhou, et al., Pharmacological inhibition of LSD1 for the treatment of MLL-rearranged leukemia, J. Hematol. Oncol. 9 (2016), 24
|
C. Dafflon, V.J. Craig, H. Mereau, et al., Complementary activities of DOT1L and menin inhibitors in MLL-rearranged leukemia, Leukemia 31 (2017) 1269-1277
|
Z. Liu, Y. Liu, L. Qian, et al., A proteomic and phosphoproteomic landscape of KRAS mutant cancers identifies combination therapies, Mol. Cell 81 (2021) 4076-4090.e8
|
J.S. de Bono, N. Mehra, G.V. Scagliotti, et al., Talazoparib monotherapy in metastatic castration-resistant prostate cancer with DNA repair alterations (TALAPRO-1): an open-label, phase 2 trial, Lancet Oncol. 22 (2021) 1250-1264
|
C. Robert, B. Karaszewska, J. Schachter, et al., Improved overall survival in melanoma with combined dabrafenib and trametinib, N. Engl. J. Med. 372 (2015) 30-39
|
M. Lunning, J. Vose, L. Nastoupil, et al., Ublituximab and umbralisib in relapsed/refractory B-cell non-Hodgkin lymphoma and chronic lymphocytic leukemia, Blood 134 (2019) 1811-1820
|
M. Maemondo, A. Inoue, K. Kobayashi, et al., Gefitinib or chemotherapy for non-small-cell lung cancer with mutated EGFR, N. Engl. J. Med. 362 (2010) 2380-2388
|
V.L. Keedy, S. Temin, M.R. Somerfield, et al., American Society of Clinical Oncology provisional clinical opinion: epidermal growth factor receptor (EGFR) Mutation testing for patients with advanced non-small-cell lung cancer considering first-line EGFR tyrosine kinase inhibitor therapy, J. Clin. Oncol. 29 (2011) 2121-2127
|
J.A. Engelman, P.A. Janne, Mechanisms of acquired resistance to epidermal growth factor receptor tyrosine kinase inhibitors in non-small cell lung cancer, Clin. Cancer Res. 14 (2008) 2895-2899
|
K.M. Bernt, N. Zhu, A.U. Sinha, et al., MLL-rearranged leukemia is dependent on aberrant H3K79 methylation by DOT1L, Cancer Cell 20 (2011) 66-78
|
L. Zhou, T. Mudianto, X. Ma, et al., Targeting EZH2 enhances antigen presentation, antitumor immunity, and circumvents anti-PD-1 resistance in head and neck cancer, Clin. Cancer Res. 26 (2020) 290-300
|
S. Goswami, I. Apostolou, J. Zhang, et al., Modulation of EZH2 expression in T cells improves efficacy of anti-CTLA-4 therapy, J. Clin. Invest. 128 (2018) 3813-3818
|
C. Segovia, E.S. Jose-Eneriz, E. Munera-Maravilla, et al., Inhibition of a G9a/DNMT network triggers immune-mediated bladder cancer regression, Nat. Med. 25 (2019) 1073-1081
|
S. Park, S.H. Jo, J.H. Kim, et al., Combination treatment with GSK126 and pomalidomide induces B-cell differentiation in EZH2 gain-of-function mutant diffuse large B-cell lymphoma, Cancers 12 (2020), 2541
|
D. Ennishi, K. Takata, W. Béguelin, et al., Molecular and genetic characterization of MHC deficiency identifies EZH2 as therapeutic target for enhancing immune recognition, Cancer Discov. 9 (2019) 546–563.
|
A. Sadagopan, T. Michelakos, G. Boyiadzis, et al., Human leukocyte antigen class I antigen-processing machinery upregulation by anticancer therapies in the era of checkpoint inhibitors: a review, JAMA Oncol. 8 (2022) 462-473
|
J. Bellmunt, R. de Wit, D.J. Vaughn, et al., Pembrolizumab as second-line therapy for advanced urothelial carcinoma, N. Engl. J. Med. 376 (2017) 1015-1026
|
A.V. Balar, M.D. Galsky, J.E. Rosenberg, et al., Atezolizumab as first-line treatment in cisplatin-ineligible patients with locally advanced and metastatic urothelial carcinoma: a single-arm, multicentre, phase 2 trial, Lancet 389 (2017) 67-76
|