Volume 13 Issue 2
Mar.  2023
Turn off MathJax
Article Contents
Qili Liao, Jie Yang, Shengfang Ge, Peiwei Chai, Jiayan Fan, Renbing Jia. Novel insights into histone lysine methyltransferases in cancer therapy: From epigenetic regulation to selective drugs[J]. Journal of Pharmaceutical Analysis, 2023, 13(2): 127-141. doi: 10.1016/j.jpha.2022.11.009
Citation: Qili Liao, Jie Yang, Shengfang Ge, Peiwei Chai, Jiayan Fan, Renbing Jia. Novel insights into histone lysine methyltransferases in cancer therapy: From epigenetic regulation to selective drugs[J]. Journal of Pharmaceutical Analysis, 2023, 13(2): 127-141. doi: 10.1016/j.jpha.2022.11.009

Novel insights into histone lysine methyltransferases in cancer therapy: From epigenetic regulation to selective drugs

doi: 10.1016/j.jpha.2022.11.009
Funds:

This work was supported by the Science and Technology Commission of Shanghai, China (Grant Nos.: 20DZ2270800 and 19JC1410200), Innovative Research Team of High-Level Local Universities in Shanghai, China (Grant No.: SHSMU-ZDCX20210900), and the National Natural Science Foundation of China (Grant No.: 82073889).

  • Received Date: Jul. 25, 2022
  • Accepted Date: Nov. 27, 2022
  • Rev Recd Date: Nov. 24, 2022
  • Publish Date: Mar. 07, 2023
  • The reversible and precise temporal and spatial regulation of histone lysine methyltransferases (KMTs) is essential for epigenome homeostasis. The dysregulation of KMTs is associated with tumor initiation, metastasis, chemoresistance, invasiveness, and the immune microenvironment. Therapeutically, their promising effects are being evaluated in diversified preclinical and clinical trials, demonstrating encouraging outcomes in multiple malignancies. In this review, we have updated recent understandings of KMTs' functions and the development of their targeted inhibitors. First, we provide an updated overview of the regulatory roles of several KMT activities in oncogenesis, tumor suppression, and immune regulation. In addition, we summarize the current targeting strategies in different cancer types and multiple ongoing clinical trials of combination therapies with KMT inhibitors. In summary, we endeavor to depict the regulation of KMT-mediated epigenetic landscape and provide potential epigenetic targets in the treatment of cancers.
  • loading
  • M.A. Dawson, T. Kouzarides, Cancer epigenetics: from mechanism to therapy, Cell 150 (2012) 12-27
    T. Kouzarides, Chromatin modifications and their function, Cell 128 (2007) 693-705
    M. Luo, Chemical and biochemical perspectives of protein lysine methylation, Chem. Rev. 118 (2018) 6656-6705
    H. Umit Kaniskan, M.L. Martini, J. Jin, Inhibitors of protein methyltransferases and demethylases, Chem. Rev. 118 (2018) 989-1068
    A.J. Bannister, T. Kouzarides, Regulation of chromatin by histone modifications, Cell Res. 21 (2011) 381-395
    J. Murn, Y. Shi, The winding path of protein methylation research: milestones and new frontiers, Nat. Rev. Mol. Cell Biol. 18 (2017) 517-527
    S. Rea, F. Eisenhaber, D. O'Carroll, et al., Regulation of chromatin structure by site-specific histone H3 methyltransferases, Nature 406 (2000) 593-599
    C. Martin, Y. Zhang, The diverse functions of histone lysine methylation, Nat. Rev. Mol. Cell Biol. 6 (2005) 838-849
    E.L. Greer, Y. Shi, Histone methylation: a dynamic mark in health, disease and inheritance, Nat. Rev. Genet. 13 (2012) 343-357
    E.J. Worden, N.A. Hoffmann, C.W. Hicks, et al., Mechanism of cross-talk between H2B ubiquitination and H3 methylation by Dot1L, Cell 176 (2019) 1490-1501.e12
    M.I. Valencia-Sanchez, P. de Ioannes, M. Wang, et al., Regulation of the Dot1 histone H3K79 methyltransferase by histone H4K16 acetylation, Science 371 (2021), eabc6663
    R.K. McGinty, J. Kim, C. Chatterjee, et al., Chemically ubiquitylated histone H2B stimulates hDot1L-mediated intranucleosomal methylation, Nature 453 (2008) 812-816
    S.M. Hoy, Tazemetostat: first approval, Drugs 80 (2020) 513-521
    D. Morel, D. Jeffery, S. Aspeslagh, et al., Combining epigenetic drugs with other therapies for solid tumours -past lessons and future promise, Nat. Rev. Clin. Oncol. 17 (2020) 91-107
    L. Villanueva, D. Alvarez-Errico, M. Esteller, The contribution of epigenetics to cancer immunotherapy, Trends Immunol. 41 (2020) 676-691
    H. Dohner, A.H. Wei, B. Lowenberg, Towards precision medicine for AML, Nat. Rev. Clin. Oncol. 18 (2021) 577-590
    J.A. Seier, J. Reinhardt, K. Saraf, et al., Druggable epigenetic suppression of interferon-induced chemokine expression linked to MYCN amplification in neuroblastoma, J. Immunother. Cancer 9 (2021), e001335
    L. Jiao, X. Liu, Structural basis of histone H3K27 trimethylation by an active polycomb repressive complex 2, Science 350 (2015), aac4383
    R. Duan, W. Du, W. Guo, EZH2: a novel target for cancer treatment, J. Hematol. Oncol. 13 (2020), 104
    J. Kim, Y. Lee, X. Lu, et al., Polycomb-and methylation-independent roles of EZH2 as a transcription activator, Cell Rep. 25 (2018) 2808-2820.e4
    J. Wang, X. Yu, W. Gong, et al., EZH2 noncanonically binds cMyc and p300 through a cryptic transactivation domain to mediate gene activation and promote oncogenesis, Nat. Cell Biol. 24 (2022) 384-399
    S.T. Lee, Z. Li, Z. Wu, et al., Context-specific regulation of NF-κB target gene expression by EZH2 in breast cancers, Mol. Cell 43 (2011) 798-810
    W. Beguelin, M. Teater, C. Meydan, et al., Mutant EZH2 induces a pre-malignant lymphoma niche by reprogramming the immune response, Cancer Cell 37 (2020) 655-673.e11
    J. Geng, X. Li, Z. Zhou, et al., EZH2 promotes tumor progression via regulating VEGF-A/AKT signaling in non-small cell lung cancer, Cancer Lett. 359 (2015) 275-287
    I. Gorodetska, V. Lukiyanchuk, C. Peitzsch, et al., BRCA1 and EZH2 cooperate in regulation of prostate cancer stem cell phenotype, Int. J. Cancer 145 (2019) 2974-2985
    H.W. Smith, A. Hirukawa, V. Sanguin-Gendreau, et al., An ErbB2/c-Src axis links bioenergetics with PRC2 translation to drive epigenetic reprogramming and mammary tumorigenesis, Nat. Commun. 10 (2019), 2901
    B. Moran, R. Silva, A.S. Perry, et al., Epigenetics of malignant melanoma, Semin. Cancer Biol. 51 (2018) 80-88
    Y. Xu, H. Wang, F. Li, et al., Long non-coding RNA LINC-PINT suppresses cell proliferation and migration of melanoma via recruiting EZH2, Front. Cell Dev. Biol. 7 (2019), 350
    M. Khan, L.L. Walters, Q. Li, et al., Characterization and pharmacologic targeting of EZH2, a fetal retinal protein and epigenetic regulator, in human retinoblastoma, Lab. Invest. 95 (2015) 1278-1290
    R. Yang, M. Wang, G. Zhang, et al., E2F7-EZH2 axis regulates PTEN/AKT/mTOR signalling and glioblastoma progression, Br. J. Cancer 123 (2020) 1445-1455
    C.J. Sneeringer, M.P. Scott, K.W. Kuntz, et al., Coordinated activities of wild-type plus mutant EZH2 drive tumor-associated hypertrimethylation of lysine 27 on histone H3 (H3K27) in human B-cell lymphomas, Proc. Natl. Acad. Sci. USA. 107 (2010) 20980-20985
    B. Jin, P. Zhang, H. Zou, et al., Verification of EZH2 as a druggable target in metastatic uveal melanoma, Mol. Cancer 19 (2020), 52
    F. Hoffmann, D. Niebel, P. Aymans, et al., H3K27me3 and EZH2 expression in melanoma: relevance for melanoma progression and response to immune checkpoint blockade, Clin. Epigenet. 12 (2020), 24
    P. Chai, R. Jia, Y. Li, et al., Regulation of epigenetic homeostasis in uveal melanoma and retinoblastoma, Prog. Retin. Eye Res. 89 (2022), 101030
    N.A. de Vries, D. Hulsman, W. Akhtar, et al., Prolonged Ezh2 depletion in glioblastoma causes a robust switch in cell fate resulting in tumor progression, Cell Rep. 10 (2015) 383-397
    T. Shimizu, L. Kubovcakova, R. Nienhold, et al., Loss of Ezh2 synergizes with JAK2-V617F in initiating myeloproliferative neoplasms and promoting myelofibrosis, J. Exp. Med. 213 (2016) 1479-1496
    Y. Wang, N. Hou, X. Cheng, et al., Ezh2 acts as a tumor suppressor in Kras-driven lung adenocarcinoma, Int. J. Biol. Sci. 13 (2017) 652-659
    D. Wang, J. Quiros, K. Mahuron, et al., Targeting EZH2 reprograms intratumoral regulatory T cells to enhance cancer immunity, Cell Rep. 23 (2018) 3262-3274
    H.J. Kim, H. Cantor, K. Cosmopoulos, Overcoming immune checkpoint blockade resistance via EZH2 inhibition, Trends Immunol. 41 (2020) 948-963
    D. Zingg, N. Arenas-Ramirez, D. Sahin, et al., The histone methyltransferase Ezh2 controls mechanisms of adaptive resistance to tumor immunotherapy, Cell Rep. 20 (2017) 854-867
    D. Peng, I. Kryczek, N. Nagarsheth, et al., Epigenetic silencing of TH1-type chemokines shapes tumour immunity and immunotherapy, Nature 527 (2015) 249-253
    X. Liu, X. Lu, F. Zhen, et al., LINC00665 induces acquired resistance to gefitinib through recruiting EZH2 and activating PI3K/AKT pathway in NSCLC, Mol. Ther. Nucleic Acids 16 (2019) 155-161
    C. Quan, Y. Chen, X. Wang, et al., Loss of histone lysine methyltransferase EZH2 confers resistance to tyrosine kinase inhibitors in non-small cell lung cancer, Cancer Lett. 495 (2020) 41-52
    J. Sun, X. Cai, M.M. Yung, et al., miR-137 mediates the functional link between c-Myc and EZH2 that regulates cisplatin resistance in ovarian cancer, Oncogene 38 (2019) 564-580
    K. Wood, M. Tellier, S. Murphy, DOT1L and H3K79 methylation in transcription and genomic stability, Biomolecules 8 (2018), 11
    H. Kurani, S.F. Razavipour, K.B. Harikumar, et al., DOT1L is a novel cancer stem cell target for triple-negative breast cancer, Clin. Cancer Res. 28 (2022) 1948-1965
    D. Sun, W. Wang, F. Guo, et al., DOT1L affects colorectal carcinogenesis via altering T cell subsets and oncogenic pathway, OncoImmunology 11 (2022), 2052640
    S. Chava, S. Bugide, Y.J.K. Edwards, et al., Disruptor of telomeric silencing 1-like promotes ovarian cancer tumor growth by stimulating pro-tumorigenic metabolic pathways and blocking apoptosis, Oncogenesis 10 (2021), 48
    W.F. Richter, R.N. Shah, A.J. Ruthenburg, Non-canonical H3K79me2-dependent pathways promote the survival of MLL-rearranged leukemia, Elife 10 (2021), e64960
    A.V. Krivtsov, S.A. Armstrong, MLL translocations, histone modifications and leukaemia stem-cell development, Nat. Rev. Cancer 7 (2007) 823-833
    Y. Okada, Q. Feng, Y. Lin, et al., hDOT1L links histone methylation to leukemogenesis, Cell 121 (2005) 167-178
    A.J. Deshpande, A. Deshpande, A.U. Sinha, et al., AF10 regulates progressive H3K79 methylation and HOX gene expression in diverse AML subtypes, Cancer Cell 26 (2014) 896-908
    C.J. Spangler, S.P. Yadav, D. Li, et al., DOT1L activity in leukemia cells requires interaction with ubiquitylated H2B that promotes productive nucleosome binding, Cell Rep. 38 (2022), 110369
    G. Nassa, A. Salvati, R. Tarallo, et al., Inhibition of histone methyltransferase DOT1L silences ERα gene and blocks proliferation of antiestrogen-resistant breast cancer cells, Sci. Adv. 5 (2019), eaav5590
    R. Vatapalli, V. Sagar, Y. Rodriguez, et al., Histone methyltransferase DOT1L coordinates AR and MYC stability in prostate cancer, Nat. Commun. 11 (2020), 4153
    B. Zhu, S. Chen, H. Wang, et al., The protective role of DOT1L in UV-induced melanomagenesis, Nat. Commun. 9 (2018), 259
    A. Barski, S. Cuddapah, K. Cui, et al., High-resolution profiling of histone methylations in the human genome, Cell 129 (2007) 823-837
    G.M. Kelly, F. Al-Ejeh, R. McCuaig, et al., G9a inhibition enhances checkpoint inhibitor blockade response in melanoma, Clin. Cancer Res. 27 (2021) 2624-2635
    K. Hua, M. Wang, M. Chen, et al., The H3K9 methyltransferase G9a is a marker of aggressive ovarian cancer that promotes peritoneal metastasis, Mol. Cancer 13 (2014), 189
    C. Yin, X. Ke, R. Zhang, et al., G9a promotes cell proliferation and suppresses autophagy in gastric cancer by directly activating mTOR, Faseb. J. 33 (2019) 14036-14050
    S.M. Hsiao, M. Chen, C. Chen, et al., The H3K9 methyltransferase G9a represses E-cadherin and is associated with myometrial invasion in endometrial cancer, Ann. Surg Oncol. 22 (2015) S1556-S1565
    C. Dong, Y. Wu, J. Yao, et al., G9a interacts with Snail and is critical for Snail-mediated E-cadherin repression in human breast cancer, J. Clin. Invest. 122 (2012) 1469-1486
    J. Fan, Y. Xing, X. Wen, et al., Long non-coding RNA ROR decoys gene-specific histone methylation to promote tumorigenesis, Genome Biol. 16 (2015), 139
    M. Liu, S.L. Thomas, A.K. DeWitt, et al., Dual inhibition of DNA and histone methyltransferases increases viral mimicry in ovarian cancer cells, Cancer Res. 78 (2018) 5754-5766
    X. Ke, R. Zhang, X. Zhong, et al., Deficiency of G9a inhibits cell proliferation and activates autophagy via transcriptionally regulating c-myc expression in glioblastoma, Front. Cell Dev. Biol. 8 (2020), 593964
    D. Strepkos, M. Markouli, A. Klonou, et al., Histone methyltransferase SETDB1: a common denominator of tumorigenesis with therapeutic potential, Cancer Res. 81 (2021) 525-534
    G.K. Griffin, J. Wu, A. Iracheta-Vellve, et al., Epigenetic silencing by SETDB1 suppresses tumour intrinsic immunogenicity, Nature 595 (2021) 309-314
    Q. Xu, Y. Xiang, Q. Wang, et al., SETD2 regulates the maternal epigenome, genomic imprinting and embryonic development, Nat. Genet. 51 (2019) 844-856
    J. Bu, A. Chen, X. Yan, et al., SETD2-mediated crosstalk between H3K36me3 and H3K79me2 in MLL-rearranged leukemia, Leukemia 32 (2018) 890-899
    H. Yuan, Y. Han, X. Wang, et al., SETD2 restricts prostate cancer metastasis by integrating EZH2 and AMPK signaling pathways, Cancer Cell 38 (2020) 350-365.e7
    C. Yang, K. Wang, Y. Zhou, et al., Histone lysine methyltransferase SET8 is a novel therapeutic target for cancer treatment, Drug Discov. Today 26 (2021) 2423-2430
    X. Shi, I. Kachirskaia, H. Yamaguchi, et al., Modulation of p53 function by SET8-mediated methylation at lysine 382, Mol. Cell 27 (2007) 636-646
    Wada, A. Kukita, K. Sone, et al., Epigenetic modifier SETD8 as a therapeutic target for high-grade serous ovarian cancer, Biomolecules 10 (2020), 1686
    R. Huang, Y. Yu, X. Zong, et al., Monomethyltransferase SETD8 regulates breast cancer metabolism via stabilizing hypoxia-inducible factor 1α, Cancer Lett. 390 (2017) 1-10
    Z. Li, F. Nie, S. Wang, et al., Histone H4 Lys 20 monomethylation by histone methylase SET8 mediates Wnt target gene activation, Proc. Natl. Acad. Sci. USA. 108 (2011) 3116-3123
    A. Italiano, J.C. Soria, M. Toulmonde, et al., Tazemetostat, an EZH2 inhibitor, in relapsed or refractory B-cell non-Hodgkin lymphoma and advanced solid tumours: a first-in-human, open-label, phase 1 study, Lancet Oncol. 19 (2018) 649-659
    M. Gounder, P. Schoffski, R.L. Jones, et al., Tazemetostat in advanced epithelioid sarcoma with loss of INI1/SMARCB1: an international, open-label, phase 2 basket study, Lancet Oncol. 21 (2020) 1423-1432
    F. Morschhauser, H. Tilly, A. Chaidos, et al., Tazemetostat for patients with relapsed or refractory follicular lymphoma: an open-label, single-arm, multicentre, phase 2 trial, Lancet Oncol. 21 (2020) 1433-1442
    M.G. Zauderer, P.W. Szlosarek, S. le Moulec, et al., EZH2 inhibitor tazemetostat in patients with relapsed or refractory, BAP1-inactivated malignant pleural mesothelioma: a multicentre, open-label, phase 2 study, Lancet Oncol. 23 (2022) 758-767
    K. Izutsu, K. Ando, M. Nishikori, et al., Phase II study of tazemetostat for relapsed or refractory B-cell non-Hodgkin lymphoma with EZH2 mutation in Japan, Cancer Sci. 112 (2021) 3627-3635
    R.G. Vaswani, V.S. Gehling, L.A. Dakin, et al., Identification of (R)-N-((4-Methoxy-6-methyl-2-oxo-1,2-dihydropyridin-3-yl)methyl)-2-methyl-1-(1-(1-(2,2,2-trifluoroethyl)piperidin-4-yl)ethyl)-1H-indole-3-carboxamide (CPI-1205), a potent and selective inhibitor of histone methyltransferase EZH2, suitable for phase I clinical trials for B-Cell lymphomas, J. Med. Chem. 59 (2016) 9928-9941
    P.P. Kung, P. Bingham, A. Brooun, et al., Optimization of orally bioavailable enhancer of Zeste Homolog 2 (EZH2) inhibitors using ligand and property-based design strategies: identification of development candidate (R)-5,8-Dichloro-7-(methoxy(oxetan-3-yl)methyl)-2-((4-methoxy-6-methyl-2-oxo-1,2-dihydropyridin-3-yl)methyl)-3,4-dihydroisoquinolin-1(2H)-one (PF-06821497), J. Med. Chem. 61 (2018) 650-665
    X. Wang, D. Wang, N. Ding, et al., The synergistic anti-tumor activity of EZH2 inhibitor SHR2554 and HDAC inhibitor chidamide through ORC1 reduction of DNA replication process in diffuse large B cell lymphoma, Cancers 13 (2021), 4249
    M. Yamagishi, M. Hori, D. Fujikawa, et al., Targeting excessive EZH1 and EZH2 activities for abnormal histone methylation and transcription network in malignant lymphomas, Cell Rep. 29 (2019) 2321-2337.e7
    Y. Huang, M. Sendzik, J. Zhang, et al., Discovery of the clinical candidate MAK683: an EED-directed, allosteric, and selective PRC2 inhibitor for the treatment of advanced malignancies, J. Med. Chem. 65 (2022) 5317-5333
    K. Xu, Z.J. Wu, A.C. Groner, et al., EZH2 oncogenic activity in castration-resistant prostate cancer cells is Polycomb-independent, Science 338 (2012) 1465-1469
    Y. Zhao, L. Ding, D. Wang, et al., EZH2 cooperates with gain-of-function p53 mutants to promote cancer growth and metastasis, EMBO J. 38 (2019), e99599
    A. Feoli, M. Viviano, A. Cipriano, et al., Lysine methyltransferase inhibitors: where we are now, RSC. Chem. Biol. 3 (2021) 359-406
    B. Dale, M. Cheng, K.S. Park, et al., Advancing targeted protein degradation for cancer therapy, Nat. Rev. Cancer 21 (2021) 638-654
    W. Yu, E.J. Chory, A.K. Wernimont, et al., Catalytic site remodelling of the DOT1L methyltransferase by selective inhibitors, Nat. Commun. 3 (2012), 1288
    S.R. Daigle, E.J. Olhava, C.A. Therkelsen, et al., Selective killing of mixed lineage leukemia cells by a potent small-molecule DOT1L inhibitor, Cancer Cell 20 (2011) 53-65
    S.R. Daigle, E.J. Olhava, C.A. Therkelsen, et al., Potent inhibition of DOT1L as treatment of MLL-fusion leukemia, Blood 122 (2013) 1017-1025
    E.M. Stein, G. Garcia-Manero, D.A. Rizzieri, et al., The DOT1L inhibitor pinometostat reduces H3K79 methylation and has modest clinical activity in adult acute leukemia, Blood 131 (2018) 2661-2669
    F. Wu, S. Nie, Y. Yao, et al., Small-molecule inhibitor of AF9/ENL-DOT1L/AF4/AFF4 interactions suppresses malignant gene expression and tumor growth, Theranostics 11 (2021) 8172-8184
    K. Cao, M. Ugarenko, P.A. Ozark, et al., DOT1L-controlled cell-fate determination and transcription elongation are independent of H3K79 methylation, Proc. Natl. Acad. Sci. USA. 117 (2020) 27365-27373
    Y. Yi, S. Ge, Targeting the histone H3 lysine 79 methyltransferase DOT1L in MLL-rearranged leukemias, J. Hematol. Oncol. 15 (2022), 35
    X. Li, Y. Song, Structure, function and inhibition of critical protein-protein interactions involving mixed lineage leukemia 1 and its fusion oncoproteins, J. Hematol. Oncol. 14 (2021), 56
    S. Kubicek, R.J. O'Sullivan, E.M. August, et al., Reversal of H3K9me2 by a small-molecule inhibitor for the G9a histone methyltransferase, Mol. Cell 25 (2007) 473-481
    M. Vedadi, D. Barsyte-Lovejoy, F. Liu, et al., A chemical probe selectively inhibits G9a and GLP methyltransferase activity in cells, Nat. Chem. Biol. 7 (2011) 566-574
    F. Liu, D. Barsyte-Lovejoy, F. Li, et al., Discovery of an in vivo chemical probe of the lysine methyltransferases G9a and GLP, J. Med. Chem. 56 (2013) 8931-8942
    H. Cao, L. Li, D. Yang, et al., Recent progress in histone methyltransferase (G9a) inhibitors as anticancer agents, Eur. J. Med. Chem. 179 (2019) 537-546
    Y. Kim, H.M. Lee, Y. Xiong, et al., Targeting the histone methyltransferase G9a activates imprinted genes and improves survival of a mouse model of Prader-Willi syndrome, Nat. Med. 23 (2017) 213-222
    E.S. Jose-Eneriz, X. Agirre, O. Rabal, et al., Discovery of first-in-class reversible dual small molecule inhibitors against G9a and DNMTs in hematological malignancies, Nat. Commun. 8 (2017), 15424
    F. Casciello, G.M. Kelly, P. Ramarao-Milne, et al., Combined inhibition of G9a and EZH2 suppresses tumor growth via synergistic induction of IL24-mediated apoptosis, Cancer Res. 82 (2022) 1208-1221
    P. Spiliopoulou, S. Spear, H. Mirza, et al., Dual G9A/EZH2 inhibition stimulates antitumor immune response in ovarian high-grade serous carcinoma, Mol. Cancer Therapeut. 21 (2022) 522-534
    J.K. Lee, K.C. Kim, DZNep, inhibitor of S-adenosylhomocysteine hydrolase, down-regulates expression of SETDB1 H3K9me3 HMTase in human lung cancer cells, Biochem. Biophys. Res. Commun. 438 (2013) 647-652
    C.M. Wong, L. Wei, C.T. Law, et al., Up-regulation of histone methyltransferase SETDB1 by multiple mechanisms in hepatocellular carcinoma promotes cancer metastasis, Hepatology 63 (2016) 474-487
    V. Veschi, Z. Liu, T.C. Voss, et al., Epigenetic siRNA and chemical screens identify SETD8 inhibition as a therapeutic strategy for p53 activation in high-risk neuroblastoma, Cancer Cell 31 (2017) 50-63
    L. Herviou, S. Ovejero, F. Izard, et al., Targeting the methyltransferase SETD8 impairs tumor cell survival and overcomes drug resistance independently of p53 status in multiple myeloma, Clin. Epigenet. 13 (2021), 174
    K.P. Bhat, H. Umit Kaniskan, J. Jin, et al., Epigenetics and beyond: targeting writers of protein lysine methylation to treat disease, Nat. Rev. Drug Discov. 20 (2021) 265-286
    X. Tan, Z. Zhang, P. Liu, et al., Inhibition of EZH2 enhances the therapeutic effect of 5-FU via PUMA upregulation in colorectal cancer, Cell Death Dis. 11 (2020), 1061
    S. Ramakrishnan, V. Granger, M. Rak, et al., Inhibition of EZH2 induces NK cell-mediated differentiation and death in muscle-invasive bladder cancer, Cell Death Differ. 26 (2019) 2100-2114
    Q. Yang, S. Zhao, Z. Shi, et al., Chemotherapy-elicited exosomal miR-378a-3p and miR-378d promote breast cancer stemness and chemoresistance via the activation of EZH2/STAT3 signaling, J. Exp. Clin. Cancer Res. 40 (2021), 120
    Y. Li, Y. Gan, J. Liu, et al., Downregulation of MEIS1 mediated by ELFN1-AS1/EZH2/DNMT3a axis promotes tumorigenesis and oxaliplatin resistance in colorectal cancer, Signal Transduct. Targeted Ther. 7 (2022), 87
    C.R. Klaus, D. Iwanowicz, D. Johnston, et al., DOT1L inhibitor EPZ-5676 displays synergistic antiproliferative activity in combination with standard of care drugs and hypomethylating agents inMLL-rearranged leukemia cells, J. Pharmacol. Exp. Therapeut. 350 (2014) 646-656
    Y. Mao, Y. Sun, Z. Wu, et al., Targeting of histone methyltransferase DOT1L plays a dual role in chemosensitization of retinoblastoma cells and enhances the efficacy of chemotherapy, Cell Death Dis. 12 (2021), 1141
    C.W. Liu, K. Hua, K. Li, et al., Histone methyltransferase G9a drives chemotherapy resistance by regulating the glutamate-cysteine ligase catalytic subunit in head and neck squamous cell carcinoma, Mol. Cancer Therapeut. 16 (2017) 1421-1434
    G. Wu, H. Peng, M. Tang, et al., ZNF711 down-regulation promotes CISPLATIN resistance in epithelial ovarian cancer via interacting with JHDM2A and suppressing SLC31A1 expression, EBioMedicine 71 (2021), 103558
    A.K. Nanayakkara, H.W. Boucher, V.G. Fowler Jr, et al., Antibiotic resistance in the patient with cancer: escalating challenges and paths forward, CA Cancer J. Clin. 71 (2021) 488-504
    B.S. Moon, M. Cai, G. Lee, et al., Epigenetic modulator inhibition overcomes temozolomide chemoresistance and antagonizes tumor recurrence of glioblastoma, J. Clin. Invest. 130 (2020) 5782-5799
    C. Zhang, C. Xu, X. Gao, et al., Platinum-based drugs for cancer therapy and anti-tumor strategies, Theranostics 12 (2022) 2115-2132
    S. Vodenkova, T. Buchler, K. Cervena, et al., 5-fluorouracil and other fluoropyrimidines in colorectal cancer: past, present and future, Pharmacol. Ther. 206 (2020), 107447
    S. Lee, C. Lee, C.Y. Hwang, et al., Network inference analysis identifies SETDB1 as a key regulator for reverting colorectal cancer cells into differentiated normal-like cells, Mol. Cancer Res. 18 (2020) 118-129
    C. Sarkozy, F. Morschhauser, S. Dubois, et al., A LYSA phase ib study of tazemetostat (EPZ-6438) plus R-CHOP in patients with newly diagnosed diffuse large B-cell lymphoma (DLBCL) with poor prognosis features, Clin. Cancer Res. 26 (2020) 3145-3153
    A. Hirukawa, S. Singh, J. Wang, et al., Reduction of global H3K27me3 enhances HER2/ErbB2 targeted therapy, Cell Rep. 29 (2019) 249-257.e8
    H. Fu, L. Cheng, R. Sa, et al., Combined tazemetostat and MAPKi enhances differentiation of papillary thyroid cancer cells harbouring BRAFV600E by synergistically decreasing global trimethylation of H3K27, J. Cell Mol. Med. 24 (2020) 3336-3345
    X. Huang, J. Yan, M. Zhang, et al., Targeting epigenetic crosstalk as a therapeutic strategy for EZH2-aberrant solid tumors, Cell 175 (2018) 186-199.e19
    R. Adelaiye-Ogala, J. Budka, N.P. Damayanti, et al., EZH2 modifies sunitinib resistance in renal cell carcinoma by kinome reprogramming, Cancer Res. 77 (2017) 6651-6666
    H. Gong, Y. Li, Y. Yuan, et al., EZH2 inhibitors reverse resistance to gefitinib in primary EGFR wild-type lung cancer cells, BMC Cancer 20 (2020), 1189
    Y. Yang, F. Zhu, Q. Wang, et al., Inhibition of EZH2 and EGFR produces a synergistic effect on cell apoptosis by increasing autophagy in gastric cancer cells, OncoTargets Ther. 11 (2018) 8455-8463
    B.W. Katona, Y. Liu, A. Ma, et al., EZH2 inhibition enhances the efficacy of an EGFR inhibitor in suppressing colon cancer cells, Cancer Biol. Ther. 15 (2014) 1677-1687
    L. Wang, X. Dong, Y. Ren, et al., Targeting EHMT2 reverses EGFR-TKI resistance in NSCLC by epigenetically regulating the PTEN/AKT signaling pathway, Cell Death Dis. 9 (2018), 129
    V. Fresquet, M.J. Garcia-Barchino, M. Larrayoz, et al., Endogenous retroelement activation by epigenetic therapy reverses the Warburg effect and elicits mitochondrial-mediated cancer cell death, Cancer Discov. 11 (2021) 1268-1285
    C. Chen, R.P. Koche, A.U. Sinha, et al., DOT1L inhibits SIRT1-mediated epigenetic silencing to maintain leukemic gene expression in MLL-rearranged leukemia, Nat. Med. 21 (2015) 335-343
    Z. Feng, Y. Yao, C. Zhou, et al., Pharmacological inhibition of LSD1 for the treatment of MLL-rearranged leukemia, J. Hematol. Oncol. 9 (2016), 24
    C. Dafflon, V.J. Craig, H. Mereau, et al., Complementary activities of DOT1L and menin inhibitors in MLL-rearranged leukemia, Leukemia 31 (2017) 1269-1277
    Z. Liu, Y. Liu, L. Qian, et al., A proteomic and phosphoproteomic landscape of KRAS mutant cancers identifies combination therapies, Mol. Cell 81 (2021) 4076-4090.e8
    J.S. de Bono, N. Mehra, G.V. Scagliotti, et al., Talazoparib monotherapy in metastatic castration-resistant prostate cancer with DNA repair alterations (TALAPRO-1): an open-label, phase 2 trial, Lancet Oncol. 22 (2021) 1250-1264
    C. Robert, B. Karaszewska, J. Schachter, et al., Improved overall survival in melanoma with combined dabrafenib and trametinib, N. Engl. J. Med. 372 (2015) 30-39
    M. Lunning, J. Vose, L. Nastoupil, et al., Ublituximab and umbralisib in relapsed/refractory B-cell non-Hodgkin lymphoma and chronic lymphocytic leukemia, Blood 134 (2019) 1811-1820
    M. Maemondo, A. Inoue, K. Kobayashi, et al., Gefitinib or chemotherapy for non-small-cell lung cancer with mutated EGFR, N. Engl. J. Med. 362 (2010) 2380-2388
    V.L. Keedy, S. Temin, M.R. Somerfield, et al., American Society of Clinical Oncology provisional clinical opinion: epidermal growth factor receptor (EGFR) Mutation testing for patients with advanced non-small-cell lung cancer considering first-line EGFR tyrosine kinase inhibitor therapy, J. Clin. Oncol. 29 (2011) 2121-2127
    J.A. Engelman, P.A. Janne, Mechanisms of acquired resistance to epidermal growth factor receptor tyrosine kinase inhibitors in non-small cell lung cancer, Clin. Cancer Res. 14 (2008) 2895-2899
    K.M. Bernt, N. Zhu, A.U. Sinha, et al., MLL-rearranged leukemia is dependent on aberrant H3K79 methylation by DOT1L, Cancer Cell 20 (2011) 66-78
    L. Zhou, T. Mudianto, X. Ma, et al., Targeting EZH2 enhances antigen presentation, antitumor immunity, and circumvents anti-PD-1 resistance in head and neck cancer, Clin. Cancer Res. 26 (2020) 290-300
    S. Goswami, I. Apostolou, J. Zhang, et al., Modulation of EZH2 expression in T cells improves efficacy of anti-CTLA-4 therapy, J. Clin. Invest. 128 (2018) 3813-3818
    C. Segovia, E.S. Jose-Eneriz, E. Munera-Maravilla, et al., Inhibition of a G9a/DNMT network triggers immune-mediated bladder cancer regression, Nat. Med. 25 (2019) 1073-1081
    S. Park, S.H. Jo, J.H. Kim, et al., Combination treatment with GSK126 and pomalidomide induces B-cell differentiation in EZH2 gain-of-function mutant diffuse large B-cell lymphoma, Cancers 12 (2020), 2541
    D. Ennishi, K. Takata, W. Béguelin, et al., Molecular and genetic characterization of MHC deficiency identifies EZH2 as therapeutic target for enhancing immune recognition, Cancer Discov. 9 (2019) 546–563.
    A. Sadagopan, T. Michelakos, G. Boyiadzis, et al., Human leukocyte antigen class I antigen-processing machinery upregulation by anticancer therapies in the era of checkpoint inhibitors: a review, JAMA Oncol. 8 (2022) 462-473
    J. Bellmunt, R. de Wit, D.J. Vaughn, et al., Pembrolizumab as second-line therapy for advanced urothelial carcinoma, N. Engl. J. Med. 376 (2017) 1015-1026
    A.V. Balar, M.D. Galsky, J.E. Rosenberg, et al., Atezolizumab as first-line treatment in cisplatin-ineligible patients with locally advanced and metastatic urothelial carcinoma: a single-arm, multicentre, phase 2 trial, Lancet 389 (2017) 67-76
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (367) PDF downloads(38) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return