Citation: | Xiang Gu, Yu Hua, Jie Yu, Ludi Yang, Shengfang Ge, Renbing Jia, Peiwei Chai, Ai Zhuang, Xianqun Fan. Epigenetic drug library screening reveals targeting DOT1L abrogates NAD+ synthesis by reprogramming H3K79 methylation in uveal melanoma[J]. Journal of Pharmaceutical Analysis, 2023, 13(1): 24-38. doi: 10.1016/j.jpha.2022.11.008 |
D. Hanahan, Hallmarks of Cancer: New Dimensions, Cancer Discov. 12 (2022) 31-46
|
J. C. Black, C. Van Rechem, J. R. Whetstine, Histone lysine methylation dynamics: establishment, regulation, and biological impact, Mol. Cell. 48 (2012) 491-507
|
M. Esteller, Cancer epigenomics: DNA methylomes and histone-modification maps, Nat. Rev. Genet. 8 (2007) 286-298
|
G. G. Wang, L. Cai, M. P. Pasillas, et al., NUP98-NSD1 links H3K36 methylation to Hox-A gene activation and leukaemogenesis, Nat. Cell Biol. 9 (2007) 804-812
|
E. Metzger, M. Wissmann, N. Yin, et al., LSD1 demethylates repressive histone marks to promote androgen-receptor-dependent transcription, Nature. 437 (2005) 436-439
|
E. Kujala, T. Makitie, T. Kivela, Very long-term prognosis of patients with malignant uveal melanoma, Invest Ophthalmol. Vis. Sci. 44 (2003) 4651-4659
|
L. Khoja, E. G. Atenafu, S. Suciu, et al., Meta-analysis in metastatic uveal melanoma to determine progression free and overall survival benchmarks: an international rare cancers initiative (IRCI) ocular melanoma study, Ann. Oncol. 30 (2019) 1370-1380
|
A. G. Robertson, J. Shih, C. Yau, et al., Integrative Analysis Identifies Four Molecular and Clinical Subsets in Uveal Melanoma, Cancer Cell. 32 (2017) 204-220
|
P. Chai, R. Jia, Y. Li, et al., Regulation of epigenetic homeostasis in uveal melanoma and retinoblastoma, Prog. Retin. Eye Res. (2021), 101030
|
T. M. Holling, M. W. Bergevoet, L. Wilson, et al., A role for EZH2 in silencing of IFN-gamma inducible MHC2TA transcription in uveal melanoma, J. Immunol. 179 (2007) 5317-5325
|
B. Jin, P. Zhang, H. Zou, et al., Verification of EZH2 as a druggable target in metastatic uveal melanoma, Mol. Cancer. 19 (2020), 52
|
L. M. LaFave, W. Beguelin, R. Koche, et al., Loss of BAP1 function leads to EZH2-dependent transformation, Nat. Med. 21 (2015) 1344-1349
|
M. Schoumacher, S. Le Corre, A. Houy, et al., Uveal melanoma cells are resistant to EZH2 inhibition regardless of BAP1 status, Nat. Med. 22 (2016) 577-578
|
H. S. Kaya-Okur, S. J. Wu, C. A. Codomo, et al., CUT&Tag for efficient epigenomic profiling of small samples and single cells, Nat. Commun. 10 (2019), 1930
|
J. W. Harbour, M. D. Onken, E. D. Roberson, et al., Frequent mutation of BAP1 in metastasizing uveal melanomas, Science. 330 (2010) 1410-1413
|
J. J. Bosch, J. A. Thompson, M. K. Srivastava, et al., MHC class II-transduced tumor cells originating in the immune-privileged eye prime and boost CD4(+) T lymphocytes that cross-react with primary and metastatic uveal melanoma cells, Cancer Res. 67 (2007) 4499-4506
|
P. Chai, J. Yu, R. Jia, et al., Generation of onco-enhancer enhances chromosomal remodeling and accelerates tumorigenesis, Nucleic Acids Res. 48 (2020) 12135-12150
|
R. Lin, S. Elf, C. Shan, et al., 6-Phosphogluconate dehydrogenase links oxidative PPP, lipogenesis and tumour growth by inhibiting LKB1-AMPK signalling, Nat. Cell Biol. 17 (2015) 1484-1496
|
M. G. Field, C. L. Decatur, S. Kurtenbach, et al., PRAME as an Independent Biomarker for Metastasis in Uveal Melanoma, Clin. Cancer Res. 22 (2016) 1234-1242
|
G. Gezgin, S. J. Luk, J. Cao, et al., PRAME as a Potential Target for Immunotherapy in Metastatic Uveal Melanoma, JAMA Ophthalmol. 135 (2017) 541-549
|
A. Barski, S. Cuddapah, K. Cui, et al., High-resolution profiling of histone methylations in the human genome, Cell. 129 (2007) 823-837
|
S. Chowdhry, C. Zanca, U. Rajkumar, et al., NAD metabolic dependency in cancer is shaped by gene amplification and enhancer remodelling, Nature. 569 (2019) 570-575
|
A. Basavapathruni, L. Jin, S. R. Daigle, et al., Conformational adaptation drives potent, selective and durable inhibition of the human protein methyltransferase DOT1L, Chem. Biol. Drug Des. 80 (2012) 971-980
|
E. M. Michalak, M. L. Burr, A. J. Bannister, et al., The roles of DNA, RNA and histone methylation in ageing and cancer, Nat. Rev. Mol. Cell Biol. 20 (2019) 573-589
|
Q. Feng, H. Wang, H. H. Ng, et al., Methylation of H3-lysine 79 is mediated by a new family of HMTases without a SET domain, Curr. Biol. 12 (2002) 1052-1058
|
D. J. Steger, M. I. Lefterova, L. Ying, et al., DOT1L/KMT4 recruitment and H3K79 methylation are ubiquitously coupled with gene transcription in mammalian cells, Mol. Cell Biol. 28 (2008) 2825-2839
|
M. Wong, P. Polly, T. Liu, The histone methyltransferase DOT1L: regulatory functions and a cancer therapy target, Am. J. Cancer Res. 5 (2015) 2823-2837
|
Z. Zhou, H. Chen, R. Xie, et al., Epigenetically modulated FOXM1 suppresses dendritic cell maturation in pancreatic cancer and colon cancer, Mol. Oncol. 13 (2019) 873-893
|
L. Y. Bourguignon, G. Wong, M. Shiina, Up-regulation of Histone Methyltransferase, DOT1L, by Matrix Hyaluronan Promotes MicroRNA-10 Expression Leading to Tumor Cell Invasion and Chemoresistance in Cancer Stem Cells from Head and Neck Squamous Cell Carcinoma, J. Biol. Chem. 291 (2016) 10571-10585
|
X. Wang, H. Wang, B. Xu, et al., Depletion of H3K79 methyltransferase Dot1L promotes cell invasion and cancer stem-like cell property in ovarian cancer, Am. J. Transl. Res. 11 (2019) 1145-1153
|
C. W. Chen, R. P. Koche, A. U. Sinha, et al., DOT1L inhibits SIRT1-mediated epigenetic silencing to maintain leukemic gene expression in MLL-rearranged leukemia, Nat. Med. 21 (2015) 335-343
|
M. H. Cho, J. H. Park, H. J. Choi, et al., DOT1L cooperates with the c-Myc-p300 complex to epigenetically derepress CDH1 transcription factors in breast cancer progression, Nat. Commun. 6 (2015), 7821
|
S. R. Daigle, E. J. Olhava, C. A. Therkelsen, et al., Potent inhibition of DOT1L as treatment of MLL-fusion leukemia, Blood. 122 (2013) 1017-1025
|
W. Yu, E. J. Chory, A. K. Wernimont, et al., Catalytic site remodelling of the DOT1L methyltransferase by selective inhibitors, Nat. Commun. 3 (2012), 1288
|
S. R. Daigle, E. J. Olhava, C. A. Therkelsen, et al., Selective killing of mixed lineage leukemia cells by a potent small-molecule DOT1L inhibitor, Cancer Cell. 20 (2011) 53-65
|
M. Wong, A. E. L. Tee, G. Milazzo, et al., The Histone Methyltransferase DOT1L Promotes Neuroblastoma by Regulating Gene Transcription, Cancer Res. 77 (2017) 2522-2533
|
K. Ishiguro, H. Kitajima, T. Niinuma, et al., DOT1L inhibition blocks multiple myeloma cell proliferation by suppressing IRF4-MYC signaling, Haematologica. 104 (2019) 155-165
|
L. Yang, Q. Lei, L. Li, et al., Silencing or inhibition of H3K79 methyltransferase DOT1L induces cell cycle arrest by epigenetically modulating c-Myc expression in colorectal cancer, Clin. Epigenetics. 11 (2019), 199
|
W. Kim, R. Kim, G. Park, et al., Deficiency of H3K79 histone methyltransferase Dot1-like protein (DOT1L) inhibits cell proliferation, J. Biol. Chem. 287 (2012) 5588-5599
|
E. M. Stein, G. Garcia-Manero, D. A. Rizzieri, et al., The DOT1L inhibitor pinometostat reduces H3K79 methylation and has modest clinical activity in adult acute leukemia, Blood. 131 (2018) 2661-2669
|
J. E. Bradner, D. Hnisz, R. A. Young, Transcriptional Addiction in Cancer, Cell. 168 (2017) 629-643
|
C. W. Chen, S. A. Armstrong, Targeting DOT1L and HOX gene expression in MLL-rearranged leukemia and beyond, Exp. Hematol. 43 (2015) 673-684
|
K. Cao, M. Ugarenko, P. A. Ozark, et al., DOT1L-controlled cell-fate determination and transcription elongation are independent of H3K79 methylation, Proc. Natl. Acad. Sci. U S A. 117 (2020) 27365-27373
|
Y. Huyen, O. Zgheib, R. A. Ditullio, Jr., et al., Methylated lysine 79 of histone H3 targets 53BP1 to DNA double-strand breaks, Nature. 432 (2004) 406-411
|
Y. H. Takahashi, J. M. Schulze, J. Jackson, et al., Dot1 and histone H3K79 methylation in natural telomeric and HM silencing, Mol. Cell. 42 (2011) 118-126
|
C. J. Janzen, S. B. Hake, J. E. Lowell, et al., Selective di- or trimethylation of histone H3 lysine 76 by two DOT1 homologs is important for cell cycle regulation in Trypanosoma brucei, Mol. Cell. 23 (2006) 497-507
|
V. Audrito, V. G. Messana, S. Deaglio, NAMPT and NAPRT: Two Metabolic Enzymes with Key Roles in Inflammation, Front. Oncol. 10 (2020), 358
|
F. Piacente, I. Caffa, S. Ravera, et al., Nicotinic Acid Phosphoribosyltransferase Regulates Cancer Cell Metabolism, Susceptibility to NAMPT Inhibitors, and DNA Repair, Cancer Res. 77 (2017) 3857-3869
|
Y. Zhu, J. Liu, J. Park, et al., Subcellular compartmentalization of NAD (+) and its role in cancer: A sereNADe of metabolic melodies, Pharmacol. Ther. 200 (2019) 27-41
|
A. Chiarugi, C. Dolle, R. Felici, et al., The NAD metabolome--a key determinant of cancer cell biology, Nat. Rev. Cancer. 12 (2012) 741-752
|
J. Morales, L. Li, F. J. Fattah, et al., Review of poly (ADP-ribose) polymerase (PARP) mechanisms of action and rationale for targeting in cancer and other diseases, Crit. Rev. Eukaryot. Gene Expr. 24 (2014) 15-28
|
R. H. Houtkooper, E. Pirinen, J. Auwerx, Sirtuins as regulators of metabolism and healthspan, Nat. Rev. Mol. Cell Biol. 13 (2012) 225-238
|
N. N. Pavlova, J. Zhu, C. B. Thompson, The hallmarks of cancer metabolism: Still emerging, Cell Metab. 34 (2022) 355-377
|
D. Hanahan, R. A. Weinberg, Hallmarks of cancer: the next generation, Cell. 144 (2011) 646-674
|