Citation: | Ying Zhang, Qinghua Cai, Yuxiang Luo, Yu Zhang, Huilin Li. Integrated top-down and bottom-up proteomics mass spectrometry for the characterization of endogenous ribosomal protein heterogeneity[J]. Journal of Pharmaceutical Analysis, 2023, 13(1): 63-72. doi: 10.1016/j.jpha.2022.11.003 |
S. Pechmann, F. Willmund, J. Frydman, The ribosome as a hub for protein quality control, Mol. Cell 49 (2013) 411-421
|
K. Ikeuchi, T. Izawa, T. Inada, Recent progress on the molecular mechanism of quality controls induced by ribosome stalling, Front. Genet. 9 (2019), 743
|
J.C. Bowman, A.S. Petrov, M. Frenkel-Pinter, et al., Root of the tree: the significance, evolution, and origins of the ribosome, Chem. Rev. 120 (2020) 4848-4878
|
C. Pena, E. Hurt, V.G. Panse, Eukaryotic ribosome assembly, transport and quality control, Nat. Struct. Mol. Biol. 24 (2017) 689-699
|
A.S. Petrov, B. Gulen, A.M. Norris, et al., History of the ribosome and the origin of translation, Proc. Natl. Acad. Sci. USA 112 (2015) 15396-15401
|
A.V. Korobeinikova, M.B. Garber, G.M. Gongadze, Ribosomal proteins: structure, function, and evolution, Biochemistry (Mosc.) 77 (2012) 562-574
|
J. Kang, N. Brajanovski, K.T. Chan, et al., Ribosomal proteins and human diseases: molecular mechanisms and targeted therapy, Signal Transduct. Targeted Ther. 6 (2021), 323
|
Z. Turi, M. Lacey, M. Mistrik, et al., Impaired ribosome biogenesis: mechanisms and relevance to cancer and aging, Aging 11 (2019) 2512-2540
|
I. Boria, P. Quarello, F. Avondo, et al., A new database for ribosomal protein genes which are mutated in Diamond-Blackfan anemia, Hum. Mutat. 29 (2008) E263-E270
|
H.T. Gazda, M.R. Sheen, A. Vlachos, et al., Ribosomal protein L5 and L11 mutations are associated with cleft palate and abnormal thumbs in Diamond-Blackfan anemia patients, Am. J. Hum. Genet. 83 (2008) 769-780
|
I. Orsolic, S. Bursac, D. Jurada, et al., Cancer-associated mutations in the ribosomal protein L5 gene dysregulate the HDM2/p53-mediated ribosome biogenesis checkpoint, Oncogene 39 (2020) 3443-3457
|
R.J. Weatheritt, T. Sterne-Weiler, B.J. Blencowe, The ribosome-engaged landscape of alternative splicing, Nat. Struct. Mol. Biol. 23 (2016) 1117-1123
|
Y. Zhang, J. Qian, C. Gu, et al., Alternative splicing and cancer: a systematic review, Signal Transduct. Targeted Ther. 6 (2021), 78
|
D. Simsek, M. Barna, An emerging role for the ribosome as a nexus for post-translational modifications, Curr. Opin. Cell Biol. 45 (2017) 92-101
|
C. Petibon, M.M. Ghulam, M. Catala, et al., Regulation of ribosomal protein genes: an ordered anarchy, Wiley Interdiscip Rev RNA 12 (2021), e1632
|
L.M. Smith, N.L. Kelleher, Proteoform: a single term describing protein complexity, Nat. Methods 10 (2013) 186-187
|
R. Aebersold, J.N. Agar, I.J. Amster, et al., How many human proteoforms are there?, Nat. Chem. Biol. 14 (2018) 206-214
|
L.M. Smith, N.L. Kelleher, Proteoforms as the next proteomics currency, Science 359 (2018) 1106-1107
|
G. Millan-Zambrano, A. Burton, A.J. Bannister, et al., Histone post-translational modifications-cause and consequence of genome function, Nat. Rev. Genet. 23 (2022) 563-580
|
R. Aebersold, M. Mann, Mass spectrometry-based proteomics, Nature 422 (2003) 198-207
|
J.R. Yates, C.I. Ruse, A. Nakorchevsky, Proteomics by mass spectrometry: approaches, advances, and applications, Annu. Rev. Biomed. Eng. 11 (2009) 49-79
|
J.B. Muller, P.E. Geyer, A.R. Colaco, et al., The proteome landscape of the kingdoms of life, Nature 582 (2020) 592-596
|
R. Aebersold, M. Mann, Mass-spectrometric exploration of proteome structure and function, Nature 537 (2016) 347-355
|
B.T. Chait, Chemistry. mass spectrometry: bottom-up or top-down?, Science 314 (2006) 65-66
|
N.L. Kelleher, Peer reviewed: top-down proteomics, Anal. Chem. 76 (2004) 196A-203A
|
J.C. Tran, L. Zamdborg, D.R. Ahlf, et al., Mapping intact protein isoforms in discovery mode using top-down proteomics, Nature 480 (2011) 254-258
|
T.K. Toby, L. Fornelli, N.L. Kelleher, Progress in top-down proteomics and the analysis of proteoforms, Annu. Rev. Anal. Chem. Palo Alto Calif 9 (2016) 499-519
|
L.M. Smith, J.N. Agar, J. Chamot-Rooke, et al., The human proteoform project: defining the human proteome, Sci. Adv. 7 (2021), eabk0734
|
A.D. Catherman, O.S. Skinner, N.L. Kelleher, Top down proteomics: facts and perspectives, Biochem. Biophys. Res. Commun. 445 (2014) 683-693
|
J.A. Melby, D.S. Roberts, E.J. Larson, et al., Novel strategies to address the challenges in top-down proteomics, J. Am. Soc. Mass Spectrom. 32 (2021) 1278-1294
|
S.J. Hardy, C.G. Kurland, P. Voynow, et al., The ribosomal proteins of Escherichia coli. I. purification of the 30S ribosomal proteins, Biochemistry 8 (1969) 2897-2905
|
T.J. El-Baba, S.A. Raab, R.P. Buckley, et al., Thermal analysis of a mixture of ribosomal proteins by vT-ESI-MS: toward a parallel approach for characterizing the stabilitome, Anal. Chem. 93 (2021) 8484-8492
|
B. Burton, M.T. Zimmermann, R.L. Jernigan, et al., A computational investigation on the connection between dynamics properties of ribosomal proteins and ribosome assembly, PLoS Comput. Biol. 8 (2012), e1002530
|
A.T. Gudkov, The L7/L12 ribosomal domain of the ribosome: structural and functional studies, FEBS Lett. 407 (1997) 253-256
|
L. Tsiatsiani, A.J.R. Heck, Proteomics beyond trypsin, FEBS J. 282 (2015) 2612-2626
|
C. Chabanet, M. Yvon, Prediction of peptide retention time in reversed-phase high-performance liquid chromatography, J. Chromatogr. 599 (1992) 211-225
|
C.N. Chang, M. Schwartz, F.N. Chang, Identification and characterization of a new methylated amino acid in ribosomal protein L33 of Escherichia coli, Biochem. Biophys. Res. Commun. 73 (1976) 233-239
|
E.J. Dupree, M. Jayathirtha, H. Yorkey, et al., A critical review of bottom-up proteomics: the good, the bad, and the future of this field, Proteomes 8 (2020), 14
|
P.T. Wingfield, N-terminal methionine processing, Curr. Protoc. Protein Sci. 88 (2017) 6.14.1-6.14.3
|
H. Demirci, S.T. Gregory, A.E. Dahlberg, et al., Multiple-site trimethylation of ribosomal protein L11 by the PrmA methyltransferase, Structure 16 (2008) 1059-1066
|
M.J. Suh, D.M. Hamburg, S.T. Gregory, et al., Extending ribosomal protein identifications to unsequenced bacterial strains using matrix-assisted laser desorption/ionization mass spectrometry, Proteomics 5 (2005) 4818-4831
|
W.E. Running, S. Ravipaty, J.A. Karty, et al., A top-down/bottom-up study of the ribosomal proteins of Caulobacter crescentus, J. Proteome Res. 6 (2007) 337-347
|
J. Lhoest, C. Colson, Cold-sensitive ribosome assembly in an Escherichia coli mutant lacking a single methyl group in ribosomal protein L3, Eur. J. Biochem. 121 (1981) 33-37
|
D.M. Cameron, S.T. Gregory, J. Thompson, et al., Thermus thermophilus L11 methyltransferase, PrmA, is dispensable for growth and preferentially modifies free ribosomal protein L11 prior to ribosome assembly, J. Bacteriol. 186 (2004) 5819-5825
|
N. Brot, W.P. Tate, C.T. Caskey, et al., The requirement for ribosomal proteins L7 and L12 in peptide-chain termination, Proc. Natl. Acad. Sci. USA 71 (1974) 89-92
|
A.V. Oleinikov, G.G. Jokhadze, R.R. Traut, A single-headed dimer of Escherichia coli ribosomal protein L7/L12 supports protein synthesis, Proc. Natl. Acad. Sci. USA 95 (1998) 4215-4218
|
I. Pettersson, C.G. Kurland, Ribosomal protein L7/L12 is required for optimal translation, Proc. Natl. Acad. Sci. USA 77 (1980) 4007-4010
|
F.N. Chang, Temperature-dependent variation in the extent of methylation of ribosomal proteins L7 and L12 in Escherichia coli, J. Bacteriol. 135 (1978) 1165-1166
|
W. Ge, A. Wolf, T. Feng, et al., Oxygenase-catalyzed ribosome hydroxylation occurs in prokaryotes and humans, Nat. Chem. Biol. 8 (2012) 960-962
|
C. DeBoever, Y. Tanigawa, M.E. Lindholm, et al., Medical relevance of protein-truncating variants across 337,205 individuals in the UK Biobank study, Nat. Commun. 9 (2018), 1612
|
J. Vlasak, R. Ionescu, Fragmentation of monoclonal antibodies, mAbs 3 (2011) 253-263
|
W. Yu, J.E. Vath, M.C. Huberty, et al., Identification of the facile gas-phase cleavage of the Asp-Pro and Asp-Xxx peptide bonds in matrix-assisted laser desorption time-of-flight mass spectrometry, Anal. Chem. 65 (1993) 3015-3023
|
M.I. Lerman, A.S. Spirin, L.P. Gavrilova, et al., Studies on the structure of ribosomes: II. Stepwise dissociation of protein from ribosomes by caesium chloride and the re-assembly of ribosome-like particles, J. Mol. Biol. 15 (1966) 268-281
|
G.M. Blaha, S. Diggs, T.K. Tam, et al., The Effects of Ribosomal Proteins uS2, uS3, and uS4 on Transcription, 2022. https://doi.org/10.1096/fasebj.2022.36.S1.L7615
|
H. Khatter, A.G. Myasnikov, S.K. Natchiar, et al., Structure of the human 80S ribosome, Nature 520 (2015) 640-645
|
M. van de Waterbeemd, S. Tamara, K.L. Fort, et al., Dissecting ribosomal particles throughout the kingdoms of life using advanced hybrid mass spectrometry methods, Nat. Commun. 9 (2018), 2493
|
M.A. Rivas, M. Pirinen, D.F. Conrad, et al., Human genomics. Effect of predicted protein-truncating genetic variants on the human transcriptome, Science 348 (2015) 666-669
|
A.D. Neverov, I.I. Artamonova, R.N. Nurtdinov, et al., Alternative splicing and protein function, BMC Bioinf. 6 (2005), 266
|
X. Xie, P. Guo, H. Yu, et al., Ribosomal proteins: insight into molecular roles and functions in hepatocellular carcinoma, Oncogene 37 (2018) 277-285
|
W. Wang, S. Nag, X. Zhang, et al., Ribosomal proteins and human diseases: pathogenesis, molecular mechanisms, and therapeutic implications, Med. Res. Rev. 35 (2015) 225-285
|
S. Challa, B.R. Khulpateea, T. Nandu, et al., Ribosome ADP-ribosylation inhibits translation and maintains proteostasis in cancers, Cell 184 (2021) 4531-4546.e26
|
A. Pecoraro, M. Pagano, G. Russo, et al., Ribosome biogenesis and cancer: overview on ribosomal proteins, Int. J. Mol. Sci. 22 (2021), 5496
|
J. Xie, W. Zhang, X. Liang, et al., RpL32 promotes lung cancer progression by facilitating p53 degradation, Mol. Ther. Nucleic Acids 21 (2020) 75-85
|
C. Li, M. Ge, D. Chen, et al., RPL21 siRNA blocks proliferation in pancreatic cancer cells by inhibiting DNA replication and inducing G1 arrest and apoptosis, Front. Oncol. 10 (2020), 1730
|
R.Y. Ebright, S. Lee, B.S. Wittner, et al., Deregulation of ribosomal protein expression and translation promotes breast cancer metastasis, Science 367 (2020) 1468-1473
|
S. N. Slimane, V. Marcel, T. Fenouil, et al., Ribosome biogenesis alterations in colorectal cancer, Cells 9 (2020), 2361
|
A. Bee, Y.Q. Ke, S. Forootan, et al., Ribosomal protein L19 is a prognostic marker for human prostate cancer, Clin. Cancer Res. 12 (2006) 2061-2065
|
S. Muro, Y. Miyake, H. Kato, et al., Serum anti-60S ribosomal protein L29 antibody as a novel prognostic marker for unresectable pancreatic cancer, Digestion 91 (2015) 164-173
|
C. Li, M. Ge, Y. Yin, et al., Silencing expression of ribosomal protein L26 and L29 by RNA interfering inhibits proliferation of human pancreatic cancer PANC-1 cells, Mol. Cell. Biochem. 370 (2012) 127-139
|
T. Ota, Y. Suzuki, T. Nishikawa, et al., Complete sequencing and characterization of 21,243 full-length human cDNAs, Nat. Genet. 36 (2004) 40-45
|
A. Labriet, E. Levesque, E. Cecchin, et al., Germline variability and tumor expression level of ribosomal protein gene RPL28 are associated with survival of metastatic colorectal cancer patients, Sci. Rep. 9 (2019), 13008
|
M.I. Yavor, T.V. Pomozov, S.N. Kirillov, et al., High performance gridless ion mirrors for multi-reflection time-of-flight and electrostatic trap mass analyzers, Int. J. Mass Spectrom. 426 (2018) 1-11
|
K. Richardson, J. Hoyes, A novel multipass oa-TOF mass spectrometer, Int. J. Mass Spectrom. 377 (2015) 309-315
|
X. Shen, T. Xu, B. Hakkila, et al., Capillary zone electrophoresis-electron-capture collision-induced dissociation on a quadrupole time-of-flight mass spectrometer for top-down characterization of intact proteins, J. Am. Soc. Mass Spectrom. 32 (2021) 1361-1369
|
M.R. Mehaffey, Q. Xia, J.S. Brodbelt, Uniting native capillary electrophoresis and multistage ultraviolet photodissociation mass spectrometry for online separation and characterization of Escherichia coli ribosomal proteins and protein complexes, Anal. Chem. 92 (2020) 15202-15211
|
K.A. Brown, C. Anderson, L. Reilly, et al., Proteomic analysis of the functional inward rectifier potassium channel (kir) 2.1 reveals several novel phosphorylation sites, Biochemistry 60 (2021) 3292-3301
|
D.S. Roberts, B. Chen, T.N. Tiambeng, et al., Reproducible large-scale synthesis of surface silanized nanoparticles as an enabling nanoproteomics platform: enrichment of the human heart phosphoproteome, Nano Res. 12 (2019) 1473-1481
|
L.V. Schaffer, R.J. Millikin, M.R. Shortreed, et al., Improving proteoform identifications in complex systems through integration of bottom-up and top-down data, J. Proteome Res. 19 (2020) 3510-3517
|
A.J. Cesnik, M.R. Shortreed, L.V. Schaffer, et al., Proteoform Suite: Software for constructing, quantifying, and visualizing proteoform families, J. Proteome Res. 17 (2018) 568-578
|
D.B. Lima, M. Dupre, M. Duchateau, et al., ProteoCombiner: integrating bottom-up with top-down proteomics data for improved proteoform assessment, Bioinformatics 37 (2021) 2206-2208
|