Citation: | Yikun Liu, Ning He, Yingfang Lu, Weiqiang Li, Xin He, Zhentao Li, Zilin Chen. A benzenesulfonic acid-modified organic polymer monolithic column with reversed-phase/hydrophilic bifunctional selectivity for capillary electrochromatography[J]. Journal of Pharmaceutical Analysis, 2023, 13(2): 209-215. doi: 10.1016/j.jpha.2022.10.006 |
M. M. Dittmann, G. P. Rozing, Capillary electrochromatography -a high-efficiency micro-separation technique, J. Chromatogr. A, 744 (1996) 63-74
|
P. Huang, X. Jin, Y. Chen, et al., Use of a Mixed-Mode Packing and Voltage Tuning for Peptide Mixture Separation in Pressurized Capillary Electrochromatography with an Ion Trap Storage/Reflectron Time-of-Flight Mass Spectrometer Detector, Anal. Chem., 71 (1999) 1786-1791
|
Z. Mao, C. Hu, Z. Li, et al., A reversed-phase/hydrophilic bifunctional interaction mixed-mode monolithic column with biphenyl and quaternary ammonium stationary phases for capillary electrochromatography, Analyst, 144 (2019) 4386-4394
|
C. Hu, Z. Mao, Z. Li, et al., Benzoic acid-modified monolithic column for separation of hydrophilic compounds by capillary electrochromatography with high content of water in mobile phase, J. Chromatogr. A, 1647 (2021)
|
Y. Huo, W.T. Kok, Recent applications in CEC, Electrophoresis, 29 (2008) 80-93
|
G. D'Orazio, M. Asensio-Ramos, C. Fanali, et al., Capillary electrochromatography in food analysis, Trac-Trends Anal. Chem., 82 (2016) 250-267
|
Y. Wang, S. Zhuo, J. Hou, et al., Construction of β-Cyclodextrin Covalent Organic Framework-Modified Chiral Stationary Phase for Chiral Separation, ACS Appl. Mater. Inter., 11 (2019) 48363-48369
|
B. Chen, Y. Du, H. Wang, Study on enantiomeric separation of basic drugs by NACE in methanol-based medium using erythromycin lactobionate as a chiral selector, Electrophoresis, 31 (2010) 371-377
|
L. D'Ulivo, Y.L. Feng, A novel open tubular capillary electrochromatographic method for differentiating the DNA interaction affinity of environmental contaminants, PLoS One, 11 (2016) e0153081
|
C. Tejada-Casado, M. Hernandez-Mesa, M. Del Olmo-Iruela, et al., Capillary electrochromatography coupled with dispersive liquid-liquid microextraction for the analysis of benzimidazole residues in water samples, Talanta, 161 (2016) 8-14
|
K. Liu, P. Aggarwal, J.S. Lawson, et al., Organic monoliths for high-performance reversed-phase liquid chromatography, J. Sep. Sci., 36 (2013) 2767-2781
|
V. Augustin, A. Jardy, P. Gareil, et al., In situ synthesis of monolithic stationary phases for electrochromatographic separations: study of polymerization conditions, J. Chromatogr. A, 1119 (2006) 80-87
|
M. Jonnada, R. Rathnasekara, Z. El Rassi, Recent advances in nonpolar and polar organic monoliths for HPLC and CEC, Electrophoresis, 36 (2015) 76-100
|
F. Ye, S. Wang, S. Zhao, Preparation and characterization of mixed-mode monolithic silica column for capillary electrochromatography, J. Chromatogr. A, 1216 (2009) 8845-8850
|
T. A. Lin, G. Y. Li, L. K. Chau, Sol-gel monolithic anion-exchange column for capillary electrochromatography, Anal. Chim. Acta, 576 (2006) 117-123
|
J. Kang, D. Wistuba, V. Schurig, A silica monolithic column prepared by the sol-gel process for enantiomeric separation by capillary electrochromatography, Electrophoresis, 23 (2002) 1116-1120
|
W. Bao, C. Zhang, M. Yang, et al., Preparation and modeling study of novel carboxymethyl-β-cyclodextrin silica hybrid monolithic column for enantioseparations in capillary electrochromatography, Microchem. J., 170 (2021)
|
L. J. Yan, Q. H. Zhang, Y. Q. Feng, et al., Octyl-functionalized hybrid silica monolithic column for reversed-phase capillary electrochromatography, J. Chromatogr. A, 1121 (2006) 92-98
|
Y. Wang, Q.-L. Deng, G.-Z. Fang, et al., A novel ionic liquid monolithic column and its separation properties in capillary electrochromatography, Anal. Chim. Acta, 712 (2012) 1-8
|
H.-Y. Huang, Y.-J. Cheng, C.-L. Lin, Analyses of synthetic antioxidants by capillary electrochromatography using poly(styrene-divinylbenzene-lauryl methacrylate) monolith, Talanta, 82 (2010) 1426-1433
|
X. Wang, X. Lin, Z. Xie, et al., Preparation and evaluation of a neutral methacrylate-based monolithic column for hydrophilic interaction stationary phase by pressurized capillary electrochromatography, J. Chromatogr. A, 1216 (2009) 4611-4617
|
C.-C. Liu, Q.-L. Deng, G.-Z. Fang, et al., Ionic liquids monolithic columns for protein separation in capillary electrochromatography, Anal. Chim. Acta, 804 (2013) 313-320
|
E.F. Hilder, F. Svec, J.M. Frechet, Development and application of polymeric monolithic stationary phases for capillary electrochromatography, J. Chromatogr. A, 1044 (2004) 3-22
|
A.S. Popov, K.A. Spiridonov, A.S. Uzhel, et al., Prospects of using hyperbranched stationary phase based on poly(styrene-divinylbenzene) in mixed-mode chromatography, J. Chromatogr. A, 1642 (2021), 462010
|
A.V. Zatirakha, A.D. Smolenkov, O.A. Shpigun, Preparation and chromatographic performance of polymer-based anion exchangers for ion chromatography: A review, Anal. Chim. Acta, 904 (2016) 33-50
|
H.Y. Huang, H.Y. Lin, S.P. Lin, CEC with monolithic poly(styrene-divinylbenzene-vinylsulfonic acid) as the stationary phase, Electrophoresis, 27 (2006) 4674-4681
|
W.H. Jin, H.J. Fu, X.D. Huang, et al., Optimized preparation of poly(styrene-co-divinylbenzene-co-methacrylic acid) monolithic capillary column for capillary electrochromatography, Electrophoresis, 24 (2003) 3172-3180
|
F. Detobel, K. Broeckhoven, J. Wellens, et al., Parameters affecting the separation of intact proteins in gradient-elution reversed-phase chromatography using poly(styrene-co-divinylbenzene) monolithic capillary columns, J. Chromatogr. A, 1217 (2010) 3085-3090
|
M. Schmitt, M. Egorycheva, A. Seubert, Mixed-acidic cation-exchange material for the separation of underivatized amino acids, J. Chromatogr. A, 1664 (2022) 462790
|
A.S. Rasheed, B.A. Al-Phalahy, A. Seubert, Studies on Behaviors of Interactions Between New Polymer-based ZIC-HILIC Stationary Phases and Carboxylic Acids, J. Chromatogr. Sci., 55 (2017) 52-59
|
M.A. Abbas, A.S. Rasheed, Retention Characteristic of Ranitidine Hydrochloride on New Polymer-Based in Zwitter Ion Chromatography-Hydrophilic Interaction Chromatography Stationary Phases, J. Chem. Soc. Pak., 40 (2018) 89-94
|
H.G. Kang, M.S. Lee, W.J. Sim, et al., Effect of number of cross-linkable sites on proton conducting, pore-filling membranes, J. Membr. Sci., 460 (2014) 178-184
|
M. Quaglia, E. De Lorenzi, C. Sulitzky, et al., Molecularly imprinted polymer films grafted from porous or nonporous silica: Novel affinity stationary phases in capillary electrochromatography, Electrophoresis, 24 (2003) 952-957
|