Citation: | Congshan Jiang, Kaichong Jiang, Xiaowei Li, Ning Zhang, Wenhua Zhu, Liesu Meng, Yanmin Zhang, Shemin Lu. Evaluation of immunoprotection against coronavirus disease 2019: Novel variants, vaccine inoculation, and complications[J]. Journal of Pharmaceutical Analysis, 2023, 13(1): 1-10. doi: 10.1016/j.jpha.2022.10.003 |
Johns Hopkins University & Medicine, Coronavrius Resource Center, Global Map. https://coronavirus.jhu.edu/map.html. (Accessed 6 September 2022).
|
F. Wu, S. Zhao, B. Yu, et al., A new coronavirus associated with human respiratory disease in China, Nature 579 (2020) 265-269
|
X. Li, M. Geng, Y. Peng, et al., Molecular immune pathogenesis and diagnosis of COVID-19, J. Pharm. Anal. 10 (2020) 102-108
|
B. Oberfeld, A. Achanta, K. Carpenter, et al., SnapShot: COVID-19, Cell 181 (2020) 954-954.e1
|
C. Jiang, X. Li, C. Ge, et al., Molecular detection of SARS-CoV-2 being challenged by virus variation and asymptomatic infection, J. Pharm. Anal. 11 (2021) 257-264
|
J. Hadfield, C. Megill, S.M. Bell, et al., Nextstrain: Real-time tracking of pathogen evolution, Bioinformatics 34 (2018) 4121-4123
|
The Nextstrain team, Genomic epidemiology of SARS-CoV-2 with subsampling focused globally over the past 6 months. https://nextstrain.org/ncov/gisaid/global/6m. (Accessed 16 June 2022).
|
S.A. Madhi, G. Kwatra, J.E. Myers, et al., Population immunity and covid-19 severity with Omicron variant in South Africa, N. Engl. J. Med. 386 (2022) 1314-1326
|
J.A. Lewnard, V.X. Hong, M.M. Patel, et al., Clinical outcomes among patients infected with Omicron (B.1.1.529) SARS-CoV-2variant in southern California, Lancet. Respir. Med. 10 (2022) 689-699
|
R.A. Bull, T.N. Adikari, J.M. Ferguson, et al., Analytical validity of nanopore sequencing for rapid SARS-CoV-2 genome analysis, Nat. Commun. 11 (2020), 6272
|
A. Chappleboim, D. Joseph-Strauss, A. Rahat, et al., Early sample tagging and pooling enables simultaneous SARS-CoV-2 detection and variant sequencing, Sci. Transl. Med. 13 (2021), eabj2266
|
X. Li, Y. Xu, X. Li, et al., Real-world effectiveness and protection of SARS-CoV-2 vaccine among patients hospitalized for COVID-19 in Xi’an, China, December 8, 2021, to January 20, 2022: A retrospective study, Front. Immunol. 13 (2022), 978977.
|
C. Sheridan, Coronavirus and the race to distribute reliable diagnostics, Nat. Biotechnol. 38 (2020) 382-384
|
F. Arena, S. Pollini, G.M. Rossolini, et al., Summary of the available molecular methods for detection of SARS-CoV-2 during the ongoing pandemic, Int. J. Mol. Sci. 22 (2021), 1298
|
M. Artesi, S. Bontems, P. Gobbels, et al., A recurrent mutation at position 26340 of SARS-CoV-2 is associated with failure of the E gene quantitative reverse transcription-PCR utilized in a commercial dual-target diagnostic assay, J. Clin. Microbiol. 58 (2020), 015988-20
|
K.K.K. Ko, N.B. Abdul Rahman, S.Y.L. Tan, et al., SARS-CoV-2 N gene G29195T point mutation may affect diagnostic reverse transcription-PCR detection, Microbiol. Spectr. 10 (2022), e0222321
|
J.C.C. Lesbon, M.D. Poleti, E.C. de Mattos Oliveira, et al., Nucleocapsid (N) gene mutations of SARS-CoV-2 can affect real-time RT-PCR diagnostic and impact false-negative results, Viruses 13 (2021), 2474.
|
P. Laine, H. Nihtila, E. Mustanoja, et al., SARS-CoV-2 variant with mutations in N gene affecting detection by widely used PCR primers, J. Med. Virol. 94 (2022) 1227-1231
|
A. Jain, M. Rophina, S. Mahajan, et al., Analysis of the potential impact of genomic variants in global SARS-CoV-2 genomes on molecular diagnostic assays, Int. J. Infect. Dis. 102 (2021) 460-462
|
R.W. Peeling, P.L. Olliaro, D.I. Boeras, et al., Scaling up COVID-19 rapid antigen tests: Promises and challenges, Lancet Infect. Dis. 21 (2021) e290-e295
|
Antigen-detection in the Diagnosis of SARS-CoV-2 Infection Using Rapid Immunoassays: Interim Guidance. https://www.who.int/publications/i/item/antigen-detection-in-the-diagnosis-of-sars-cov-2infection-using-rapid-immunoassays. (Accessed 6 September 2022).
|
J. Xu, W. Suo, Y. Goulev, et al., Handheld microfluidic filtration platform enables rapid, low-cost, and robust self-testing of SARS-CoV-2 virus, Small 17 (2021), e2104009
|
L. Liv, G. Çoban, N. Nakiboğlu, et al., A rapid, ultrasensitive voltammetric biosensor for determining SARS-CoV-2 spike protein in real samples, Biosens. Bioelectron. 192 (2021), 113497.
|
M. Nóra, D. Déri, D.S. Veres, et al., Evaluating the field performance of multiple SARS-Cov-2 antigen rapid tests using nasopharyngeal swab samples, PLoS One 17 (2022), e0262399.
|
J.-L. Bayart, J. Degosserie, J. Favresse, et al., Analytical sensitivity of six SARS-CoV-2 rapid antigen tests for omicron versus delta variant, Viruses 14 (2022), 654.
|
A. Sette, S. Crotty, Adaptive immunity to SARS-CoV-2 and COVID-19, Cell 184 (2021) 861-880
|
M.J. Peluso, A.N. Deitchman, L. Torres, et al., Long-term SARS-CoV-2-specific immune and inflammatory responses in individuals recovering from COVID-19 with and without post-acute symptoms, Cell Rep. 36 (2021), 109518
|
S. Jeffrey, G. Carl, M. Blair, et al., Longitudinal evaluation and decline of antibody responses in SARS-CoV-2 infection, Nat. Biotechnol. 5 (2020), 1598-1607
|
Q.-X. Long, X.-J. Tang, Q.-L. Shi, et al., Clinical and immunological assessment of asymptomatic SARS-CoV-2 infections, Nat. Med. 26 (2020) 1200-1204
|
N. Mumoli, J. Vitale, A. Mazzone, Clinical immunity in discharged medical patients with COVID-19, Int. J. Infect. Dis. 99 (2020) 229-230
|
S.F. Lumley, J. Wei, D. O'Donnell, et al., The duration, dynamics, and determinants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibody responses in individual healthcare workers, Clin. Infect. Dis. 73 (2021) e699-e709
|
S.F. Lumley, D. O'Donnell, N.E. Stoesser, et al., Antibody status and incidence of SARS-CoV-2 infection in health care workers, N. Engl. J. Med. 384 (2021) 533-540
|
M. Ackermann, H.-J. Anders, R. Bilyy, et al., Patients with COVID-19: In the dark-NETs of neutrophils, Cell Death Differ. 28 (2021) 3125-3139
|
S. Lee, R. Channappanavar, T.-D. Kanneganti, Coronaviruses: Innate immunity, inflammasome activation, inflammatory cell death, and cytokines, Trends Immunol. 41 (2020) 1083-1099
|
A. Grifoni, D. Weiskopf, S.I. Ramirez, et al., Targets of T cell responses to SARS-CoV-2 Coronavirus in Humans with COVID-19 disease and unexposed individuals, Cell 181 (2020) 1489-1501.e15
|
K.J. Ewer, J.R. Barrett, S. Belij-Rammerstorfer, et al., T cell and antibody responses induced by a single dose of ChAdOx1 nCoV-19 (AZD1222) vaccine in a phase 1/2 clinical trial, Nat. Med. 27 (2021) 270-278
|
A. Tarke, J. Sidney, C.K. Kidd, et al., Comprehensive analysis of T cell immunodominance and immunoprevalence of SARS-CoV-2 epitopes in COVID-19 cases, Cell Rep. Med. 2 (2021), 100204
|
P. Brodin, Immune determinants of COVID-19 disease presentation and severity, Nat. Med. 27 (2021) 28-33
|
United States COVID-19 cases and deaths by state over time. https://data.cdc.gov/Case-Surveillance/United-States-COVID-19-Cases-and-Deaths-by-State-o/9mfq-cb36. (Accessed 6 September 2022).
|
C. Rydyznski Moderbacher, S.I. Ramirez, J.M. Dan, et al., Antigen-specific adaptive immunity to SARS-CoV-2 in acute COVID-19 and associations with age and disease severity, Cell 183 (2020) 996-1012.e19
|
K. Lingappan, H. Karmouty-Quintana, J. Davies, et al., Understanding the age divide in COVID-19: Why are children overwhelmingly spared? Am. J. Physiol. Lung Cell. Mol. Physiol. 319 (2020) L39-L44
|
P. Brodin, Why is COVID-19 so mild in children? Acta Paediatr. 109 (2020) 1082-1083
|
L.A. Bienvenu, J. Noonan, X. Wang, et al., Higher mortality of COVID-19 in males: Sex differences in immune response and cardiovascular comorbidities, Cardiovasc. Res. 116 (2020) 2197-2206
|
G. Chen, Y. Zhang, Y. Zhang, et al., Differential immune responses in pregnant patients recovered from COVID-19, Signal Transduct. Target. Ther. 6 (2021), 289
|
D.J. Jamieson, S.A. Rasmussen, An update on COVID-19 and pregnancy, Am. J. Obstet. Gynecol. 226 (2022) 177-186
|
J.D. Goldman, P.C. Robinson, T.S. Uldrick, et al., COVID-19 in immunocompromised populations: Implications for prognosis and repurposing of immunotherapies, J. Immunother. Cancer 9 (2021), e002630
|
P. Bost, F. De Sanctis, S. Cane, et al., Deciphering the state of immune silence in fatal COVID-19 patients, Nat. Commun. 12 (2021), 1428
|
C. Huang, Y. Wang, X. Li, et al., Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China, Lancet 395 (2020) 497-506
|
National SARS-CoV-2 Serology Assay Evaluation Group, Performance characteristics of five immunoassays for SARS-CoV-2: A head-to-head benchmark comparison, Lancet Infect. Dis. 20 (2020) 1390-1400
|
E.R. Adams, M. Ainsworth, R. Anand, et al., Antibody testing for COVID-19: A report from the National COVID Scientific Advisory Panel, Wellcome Open. Res. 5 (2020), 139
|
M. Merad, C.A. Blish, F. Sallusto, et al., The immunology and immunopathology of COVID-19, Science 375 (2022) 1122-1127
|
A. Dotan, S. Muller, D. Kanduc, et al., The SARS-CoV-2 as an instrumental trigger of autoimmunity, Autoimmun. Rev. 20 (2021), 102792
|
J. M. Dan, J. Mateus, Y. Kato, et al., Immunological memory to SARS-CoV-2 assessed for up to eight months after infection, BioRxiv. 2020. https://pubmed.ncbi.nlm.nih.gov/33442687
|
L. Premkumar, B. Segovia-Chumbez, R. Jadi, et al., The receptor binding domain of the viral spike protein is an immunodominant and highly specific target of antibodies in SARS-CoV-2 patients, Sci. Immunol. 5 (2020), eabc8413
|
N.M.A. Okba, M.A. Muller, W. Li, et al., Severe acute respiratory syndrome coronavirus 2-specific antibody responses in coronavirus disease Patients, Emerg. Infect. Dis. 26 (2020) 1478-1488
|
A.J. Wilk, A. Rustagi, N.Q. Zhao, et al., A single-cell atlas of the peripheral immune response in patients with severe COVID-19, Nat. Med. 26 (2020) 1070-1076
|
E. Callaway, The race for coronavirus vaccines: A graphical guide, Nature 580 (2020) 576-577
|
J. Pallesen, N. Wang, K.S. Corbett, et al., Immunogenicity and structures of a rationally designed prefusion MERS-CoV spike antigen, Proc. Natl. Acad. Sci. U S A 114 (2017) E7348-E7357
|
View-hub by IVAC, COVID vaccine data. https://view-hub.org. (Accessed 16 June 2022).
|
K.S. Corbett, D.K. Edwards, S.R. Leist, et al., SARS-CoV-2 mRNA vaccine design enabled by prototype pathogen preparedness, Nature 586 (2020) 567-571
|
U. Sahin, A. Muik, I. Vogler, et al., BNT162b2 vaccine induces neutralizing antibodies and poly-specific T cells in humans, Nature 595 (2021) 572-577
|
H. Wang, Y. Zhang, B. Huang, et al., Development of an inactivated vaccine candidate, BBIBP-CorV, with potent protection against SARS-CoV-2, Cell 182 (2020) 713-721.e9
|
Y. Zhang, G. Zeng, H. Pan, et al., Safety, tolerability, and immunogenicity of an inactivated SARS-CoV-2 vaccine in healthy adults aged 18-59 years: A randomised, double-blind, placebo-controlled, phase 1/2 clinical trial, Lancet Infect. Dis. 21 (2021) 181-192
|
H. Kelly, B. Sokola, H. Abboud, Safety and efficacy of COVID-19 vaccines in multiple sclerosis patients, J. Neuroimmunol. 356 (2021), 577599.
|
M. Bergwerk, T. Gonen, Y. Lustig, et al., Covid-19 breakthrough infections in vaccinated health care workers, N. Engl. J. Med. 385 (2021) 1474-1484
|
Y.J. Hou, S. Chiba, P. Halfmann, et al., SARS-CoV-2 D614G variant exhibits efficient replication ex vivo and transmission in vivo, Science 370 (2020), 1464-1468
|
B. Korber, W.M. Fischer, S. Gnanakaran, et al., Tracking changes in SARS-CoV-2 spike: Evidence that D614G increases infectivity of the COVID-19 virus, Cell 182 (2020) 812-827.e19
|
J. Wu, L. Zhang, Y. Zhang, et al., The antigenicity of epidemic SARS-CoV-2 variants in the United Kingdom, Front. Immunol. 12 (2021), 687869.
|
Q. Li, J. Wu, J. Nie, et al., The impact of mutations in SARS-CoV-2 spike on viral infectivity and antigenicity, Cell 182 (2020), 1284-1294.e9
|
E.C. Thomson, L.E. Rosen, J.G. Shepherd, et al., Circulating SARS-CoV-2 spike N439K variants maintain fitness while evading antibody-mediated immunity, Cell 184 (2021) 1171-1187.e20
|
R.P.M.C. Borges, H.A. Brango, et al, Projeto S: A stepped-wedge randomized trial to assess CoronaVac effectiveness in Serrana, Brazil, Preprints with The Lancet. 2021. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3973422
|
J. Sadoff, G. Gray, A. Vandebosch, et al., Safety and efficacy of single-dose Ad26.COV2.S vaccine against covid-19, N. Engl. J. Med. 384 (2021) 2187-2201
|
K.R.W. Emary, T. Golubchik, P.K. Aley, et al., Efficacy of ChAdOx1 nCoV-19 (AZD1222) vaccine against SARS-CoV-2 variant of concern 202012/01 (B.1.1.7): An exploratory analysis of a randomised controlled trial, Lancet 397 (2021) 1351-1362
|
Sinopharm COVID-19 vaccine (BBIBP-CorV). https://www.precisionvaccinations.com/vaccines/sinopharm-covid-19-vaccine-bbibp-corv. (Accessed 16 June 2022).
|
L.R. Baden, H.M. El Sahly, B. Essink, et al., Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine, N. Engl. J. Med. 384 (2021) 403-416
|
R. Ella, S. Reddy, W. Blackwelder, et al., Efficacy, safety, and lot-to-lot immunogenicity of an inactivated SARS-CoV-2 vaccine (BBV152): Interim results of a randomised, double-blind, controlled, phase 3 trial, Lancet 398 (2021) 2173-2184
|
F.P. Polack, S.J. Thomas, N. Kitchin, et al., Safety and efficacy of the BNT162b2 mRNA covid-19 vaccine, N. Engl. J. Med. 383 (2020) 2603-2615
|
L. Lu, B.W.Y. Mok, L.L. Chen, et al., Neutralization of Severe Acute Respiratory Syndrome Coronavirus 2 Omicron variant by sera from BNT162b2 or CoronaVac vaccine recipients, Clin. Infect. Dis. 75 (2022) e822-e826
|
G. Alter, J. Yu, J. Liu, et al., Immunogenicity of Ad26.COV2.S vaccine against SARS-CoV-2 variants in humans, Nature 596 (2021) 268-272
|
J. Lopez Bernal, N. Andrews, C. Gower, et al., Effectiveness of covid-19 vaccines against the B.1.617.2 (delta) variant, N. Engl. J. Med. 385 (2021) 585-594
|
X. Zhao, D. Li, W. Ruan, et al., Effects of a prolonged booster interval on neutralization of omicron variant, N. Engl. J. Med. 386 (2022) 894-896
|
A. Choi, M. Koch, K. Wu, et al., Serum neutralizing activity of mRNA-1273 against SARS-CoV-2 variants, J. Virol. 95 (2021), e0131321
|
T. Bhatnagar, S. Chaudhuri, M. Ponnaiah, et al., Effectiveness of BBV152/Covaxin and AZD1222/Covishield vaccines against severe COVID-19 and B.1.617.2/Delta variant in India, 2021: A multi-centric hospital-based case-control study, Int. J. Infect. Dis. 122 (2022) 693-702
|
C. Davis, N. Logan, G. Tyson, et al., Reduced neutralisation of the Delta (B.1.617.2) SARS-CoV-2 variant of concern following vaccination, PLoS Pathog. 17 (2021), e1010022
|
C. Ma, W. Sun, T. Tang, et al., Effectiveness of adenovirus type 5 vectored and inactivated COVID-19 vaccines against symptomatic COVID-19, COVID-19 pneumonia, and severe COVID-19 caused by the B.1.617.2 (Delta) variant: Evidence from an outbreak in Yunnan, China, 2021, Vaccine 40 (2022) 2869-2874
|
T. Tada, H. Zhou, M.I. Samanovic, et al., Comparison of neutralizing antibody titers elicited by mRNA and adenoviral vector vaccine against SARS-CoV-2 variants, BioRxiv. 2021. https://www.biorxiv.org/content/10.1101/2021.07.19.452771v3
|
M. Mousa, M. Albreiki, F. Alshehhi, et al., Similar effectiveness of the inactivated vaccine BBIBP-CorV (Sinopharm) and the mRNA vaccine BNT162b2 (Pfizer-BioNTech) against COVID-19 related hospitalizations during the Delta outbreak in the UAE, J. Travel Med. 29 (2022), taac036
|
V.V. Edara, B.A. Pinsky, M.S. Suthar, et al., Infection and vaccine-induced neutralizing-antibody responses to the SARS-CoV-2 B.1.617 variants, N. Engl. J. Med. 385 (2021) 664-666
|
P.D. Yadav, G.N. Sapkal, R.R. Sahay, et al., Elevated neutralization of Omicron with sera of COVID-19 recovered and breakthrough cases vaccinated with Covaxin than two dose naive vaccinees, J. Infect. 84 (2022) 834-872
|
C. Liu, H.M. Ginn, W. Dejnirattisai, et al., Reduced neutralization of SARS-CoV-2 B.1.617 by vaccine and convalescent serum, Cell 184 (2021) 4220-4236.e13
|
J.L. Suah, B.H. Tng, P.S.K. Tok, et al., Real-world effectiveness of homologous and heterologous BNT162b2, CoronaVac, and AZD1222 booster vaccination against Delta and Omicron SARS-CoV-2 infection, Emerg. Microbes Infect. 11 (2022) 1343-1345
|
P. Mlcochova, S.A. Kemp, M.S. Dhar, et al., SARS-CoV-2 B.1.617.2 Delta variant replication and immune evasion, Nature 599 (2021) 114-119
|
Y. Lustig, N. Zuckerman, I. Nemet, et al., Neutralising capacity against Delta (B.1.617.2) and other variants of concern following Comirnaty (BNT162b2, BioNTech/Pfizer) vaccination in health care workers, Israel, Euro. Surveill. 26 (2021), 2100557
|
E. Perez-Then, C. Lucas, V.S. Monteiro, et al., Neutralizing antibodies against the SARS-CoV-2 Delta and Omicron variants following heterologous CoronaVac plus BNT162b2 booster vaccination, Nat. Med. 28 (2022) 481-485
|
L. Liu, S. Iketani, Y. Guo, et al., Striking antibody evasion manifested by the Omicron variant of SARS-CoV-2, Nature 602 (2022) 676-681
|
W. F. Garcia-Beltran, K. J. St Denis, A. Hoelzemer, et al., mRNA-based COVID-19 vaccine boosters induce neutralizing immunity against SARS-CoV-2 Omicron variant, Cell. 185 (2022) 457-466
|
E. Cameroni, J.E. Bowen, L.E. Rosen, et al., Broadly neutralizing antibodies overcome SARS-CoV-2 Omicron antigenic shift, Nature 602 (2022), 664-670
|
C. Zeng, J.P. Evans, K. Chakravarthy, et al., COVID-19 mRNA booster vaccines elicit strong protection against SARS-CoV-2 Omicron variant in patients with cancer, Cancer Cell 40 (2022) 117-119
|
W. Dejnirattisai, J. Huo, D. Zhou, et al., SARS-CoV-2 Omicron-B.1.1.529 leads to widespread escape from neutralizing antibody responses, Cell 185 (2022) 467-484.e15
|
J.M. Carreno, H. Alshammary, J. Tcheou, et al., Activity of convalescent and vaccine serum against SARS-CoV-2 Omicron, Nature 602 (2022) 682-688
|
S. Cele, L. Jackson, D.S. Khoury, et al., Omicron extensively but incompletely escapes Pfizer BNT162b2 neutralization, Nature 602 (2022) 654-656
|
M. Hoffmann, N. Kruger, S. Schulz, et al., The Omicron variant is highly resistant against antibody-mediated neutralization: Implications for control of the COVID-19 pandemic, Cell 185 (2022) 447-456
|
W.J. Wiersinga, A. Rhodes, A.C. Cheng, et al., Pathophysiology, transmission, diagnosis, and treatment of coronavirus disease 2019 (COVID-19): A review, JAMA 324 (2020) 782-793
|
S.R. Wilcox, Management of respiratory failure due to covid-19, BMJ 369 (2020), m1786
|
A. Copaescu, O. Smibert, A. Gibson, et al., The role of IL-6 and other mediators in the cytokine storm associated with SARS-CoV-2 infection, J. Allergy Clin. Immunol. 146 (2020) 518-534.e1
|
D.A. Berlin, R.M. Gulick, F.J. Martinez, Severe covid-19, N Engl J. Med. 383 (2020) 2451-2460
|
H. Zacharias, S. Dubey, G. Koduri, et al., Rheumatological complications of covid 19, Autoimmun. Rev. 20 (2021), 102883
|
S. Joshi, A. Bhatia, N. Tayal, et al., Rare multisystem inflammatory syndrome in young adult after COVID-19 immunization and subsequent SARSCoV-2 infection, J. Assoc. Physicians India 69 (2022) 11-12
|
C. Diorio, S.E. Henrickson, L.A. Vella, et al., Multisystem inflammatory syndrome in children and COVID-19 are distinct presentations of SARS-CoV-2, J. Clin. Invest. 130 (2020) 5967-5975
|
B. Raman, D.A. Bluemke, T.F. Luscher, et al., Long COVID: Post-acute sequelae of COVID-19 with a cardiovascular focus, Eur. Heart J. 43 (2022) 1157-1172
|
S. Mandal, J. Barnett, S.E. Brill, et al., ‘Long-COVID’: A cross-sectional study of persisting symptoms, biomarker and imaging abnormalities following hospitalisation for COVID-19, Thorax 76 (2021) 396-398
|
J. Seessle, T. Waterboer, T. Hippchen, et al., Persistent symptoms in adult patients 1 year after coronavirus disease 2019 (COVID-19): A prospective cohort study, Clin. Infect. Dis. 74 (2022) 1191-1198
|
W.-J. Song, C.K.M. Hui, J.H. Hull, et al., Confronting COVID-19-associated cough and the post-COVID syndrome: Role of viral neurotropism, neuroinflammation, and neuroimmune responses, Lancet Respir. Med. 9 (2021) 533-544
|
R. Caricchio, M. Gallucci, C. Dass, et al., Preliminary predictive criteria for COVID-19 cytokine storm, Ann. Rheum. Dis. 80 (2021) 88-95
|
N. Vaninov, In the eye of the COVID-19 cytokine storm, Nat. Rev. Immunol. 20 (2020), 277
|