Citation: | Ningning Wang, Entao Li, Huifang Deng, Lanxin Yue, Lei Zhou, Rina Su, Baokun He, Chengcai Lai, Gaofu Li, Yuwei Gao, Wei Zhou, Yue Gao. Inosine: A broad-spectrum anti-inflammatory against SARS-CoV-2 infection-induced acute lung injury via suppressing TBK1 phosphorylation[J]. Journal of Pharmaceutical Analysis, 2023, 13(1): 11-23. doi: 10.1016/j.jpha.2022.10.002 |
A. Martinez Mesa, E. Cabrera Cesar, E. Martin-Montanez, et al., Acute Lung Injury Biomarkers in the Prediction of COVID-19 Severity: Total Thiol, Ferritin and Lactate Dehydrogenase, Antioxidants (Basel Switzerland). 10 (2021) 1221
|
A.M. Edwards, R.S. Baric, E.O. Saphire, et al., Stopping pandemics before they start: Lessons learned from SARS-CoV-2, Science. 375 (2022) 1133-1139
|
W. Zhou, Y. Liu, D. Tian, et al., Potential benefits of precise corticosteroids therapy for severe 2019-nCoV pneumonia, Signal Transduct Target Ther. 5 (2020) 18
|
R. Dal-Re, S.L. Becker, E. Bottieau, et al., Availability of oral antivirals against SARS-CoV-2 infection and the requirement for an ethical prescribing approach, Lancet Infect Dis. 22 (2022) e231-e238
|
R. Karki, B.R. Sharma, S. Tuladhar, et al., Synergism of TNF-α and IFN-γ Triggers Inflammatory Cell Death, Tissue Damage, and Mortality in SARS-CoV-2 Infection and Cytokine Shock Syndromes, Cell. 184 (2021) 149-168.e17
|
R.Q. Cron, R. Caricchio, W.W. Chatham, Calming the cytokine storm in COVID-19, Nat Med. 27 (2021) 1674-1675
|
P.F. Dequin, N. Heming, F. Meziani, et al., Effect of Hydrocortisone on 21-Day Mortality or Respiratory Support Among Critically Ill Patients With COVID-19: A Randomized Clinical Trial, JAMA. 324 (2020) 1298-1306
|
B.M. Tomazini, I.S. Maia, A.B. Cavalcanti, et al., Effect of Dexamethasone on Days Alive and Ventilator-Free in Patients With Moderate or Severe Acute Respiratory Distress Syndrome and COVID-19: The CoDEX Randomized Clinical Trial, JAMA. 324 (2020) 1307-1316
|
R. Huang, C. Zhu, W. Jian, et al., Corticosteroid therapy is associated with the delay of SARS-CoV-2 clearance in COVID-19 patients, Eur J Pharmacol. 889 (2020), 173556
|
D.C. Fajgenbaum, C.H. June, Cytokine Storm, New England Journal of Medicine. 383 (2020) 2255-2273
|
W. Zhou, Y. Liu, B. Xu, et al., Early identification of patients with severe COVID-19 at increased risk of in-hospital death: a multicenter case-control study in Wuhan, J Thorac Dis. 13 (2021) 1380-1395
|
L.Y.C. Chen, R.L. Hoiland, S. Stukas, et al., Confronting the controversy: interleukin-6 and the COVID-19 cytokine storm syndrome, European Respiratory Journal. 56 (2020), 2003006
|
O.J. McElvaney, G.F. Curley, S. Rose-John, et al., Interleukin-6: obstacles to targeting a complex cytokine in critical illness, Lancet Respir Med. 9 (2021) 643-654
|
S.A. Jones, C.A. Hunter, Is IL-6 a key cytokine target for therapy in COVID-19?, Nat Rev Immunol. 21 (2021) 337-339
|
Z. Zhou, X. Zhang, X. Lei, et al., Sensing of cytoplasmic chromatin by cGAS activates innate immune response in SARS-CoV-2 infection, Signal Transduct Target Ther. 6 (2021) 382
|
N. Sugimoto, H. Mitoma, T. Kim, et al., Helicase proteins DHX29 and RIG-I cosense cytosolic nucleic acids in the human airway system, Proceedings of the National Academy of Sciences. 111 (2014) 7747-7752
|
Y. Yu, Y. Liu, W. An, et al., STING-mediated inflammation in Kupffer cells contributes to progression of nonalcoholic steatohepatitis, Journal of Clinical Investigation. 129 (2019) 546-555
|
A. Park, A. Iwasaki, Type I and Type III Interferons-Induction, Signaling, Evasion, and Application to Combat COVID-19, Cell Host Microbe. 27 (2020) 870-878
|
S. Khan, M.S. Shafiei, C. Longoria, et al., SARS-CoV-2 spike protein induces inflammation via TLR2-dependent activation of the NF-kappaB pathway, Elife. 10 (2021), 68563
|
A.K. Rana, S.N. Rahmatkar, A. Kumar, et al., Glycogen synthase kinase-3: A putative target to combat severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic, Cytokine Growth Factor Rev. 58 (2021) 92-101
|
A. Marineau, K.A. Khan, M.J. Servant, Roles of GSK-3 and β-Catenin in Antiviral Innate Immune Sensing of Nucleic Acids, Cells. 9 (2020) 897
|
S. Yum, M. Li, Y. Fang, et al., TBK1 recruitment to STING activates both IRF3 and NF-κB that mediate immune defense against tumors and viral infections, Proceedings of the National Academy of Sciences. 118 (2021), e2100225118
|
S. Srinivasan, A.G. Torres, L. Ribas de Pouplana, Inosine in Biology and Disease, Genes (Basel). 12 (2021) 600
|
L. Liaudet, J.G. Mabley, P. Pacher, et al., Inosine exerts a broad range of antiinflammatory effects in a murine model of acute lung injury, Ann Surg. 235 (2002) 568-578
|
L. Liaudet, J.G. Mabley, F.G. Soriano, et al., Inosine reduces systemic inflammation and improves survival in septic shock induced by cecal ligation and puncture, Am J Respir Crit Care Med. 164 (2001) 1213-1220
|
L.P. Chen, Y.M. Cai, J.S. Li, Medication rules of famous veteran traditional Chinese medicine doctor in treatment of chronic bronchitis based on implicit structure model, Zhongguo Zhong Yao Za Zhi. 42 (2017) 1609-1616
|
C. Ding, Z. Song, A. Shen, et al., Small molecules targeting the innate immune cGAS-STING-TBK1 signaling pathway, Acta Pharm Sin B. 10 (2020) 2272-2298
|
Y. Liu, W. Liu, Z. Liang, Endophytic bacteria from Pinellia ternata, a new source of purine alkaloids and bacterial manure, Pharm Biol. 53 (2015) 1545-1548
|
M. Ogasawara, K. Yoshii, J. Wada, et al., Identification of guanine, guanosine, and inosine for α-amylase inhibitors in the extracts of the earthworm Eisenia fetida and characterization of their inhibitory activities against porcine pancreatic α-amylase, Enzyme Microb Technol. 142 (2020), 109693
|
L. Zhu, P. Yang, Y. Zhao, et al., Single-Cell Sequencing of Peripheral Mononuclear Cells Reveals Distinct Immune Response Landscapes of COVID-19 and Influenza Patients, Immunity. 53 (2020) 685-696 e683
|
X. Ren, W. Wen, X. Fan, et al., COVID-19 immune features revealed by a large-scale single-cell transcriptome atlas, Cell. 184 (2021) 1895-1913.e19
|
N.G. Ravindra, M.M. Alfajaro, V. Gasque, et al., Single-cell longitudinal analysis of SARS-CoV-2 infection in human airway epithelium identifies target cells, alterations in gene expression, and cell state changes, PLoS Biol. 19 (2021), e3001143
|
R.T. Huang, D. Wu, A. Meliton, et al., Experimental Lung Injury Reduces Kruppel-like Factor 2 to Increase Endothelial Permeability via Regulation of RAPGEF3-Rac1 Signaling, Am J Respir Crit Care Med. 195 (2017) 639-651
|
S. Liu, X. Cai, J. Wu, et al., Phosphorylation of innate immune adaptor proteins MAVS, STING, and TRIF induces IRF3 activation, Science. 347 (2015), aaa2630
|
D.B. Stetson, R. Medzhitov, Recognition of cytosolic DNA activates an IRF3-dependent innate immune response, Immunity. 24 (2006) 93-103
|
E.R. Sang, Y. Tian, L.C. Miller, et al., Epigenetic Evolution of ACE2 and IL-6 Genes: Non-Canonical Interferon-Stimulated Genes Correlate to COVID-19 Susceptibility in Vertebrates, Genes (Basel). 12 (2021) 154
|
F. Dos Anjos, J.L.B. Simoes, C.E. Assmann, et al., Potential Therapeutic Role of Purinergic Receptors in Cardiovascular Disease Mediated by SARS-CoV-2, J Immunol Res. 2020 (2020), 8632048
|
M. Lovaszi, Z.H. Nemeth, W.C. Gause, et al., Inosine monophosphate and inosine differentially regulate endotoxemia and bacterial sepsis, FASEB J. 35 (2021), e21935
|
G.R. Milne, T.M. Palmer, Anti-inflammatory and immunosuppressive effects of the A2A adenosine receptor, The Scientific World Journal. 11 (2011) 320-339
|
Y. Qin, Q. Liu, S. Tian, et al., TRIM9 short isoform preferentially promotes DNA and RNA virus-induced production of type I interferon by recruiting GSK3β to TBK1, Cell Res. 26 (2016) 613-628
|
C. Zhang, G. Shang, X. Gui, et al., Structural basis of STING binding with and phosphorylation by TBK1, Nature. 567 (2019) 394-398
|
D.L. Burdette, K.M. Monroe, K. Sotelo-Troha, et al., STING is a direct innate immune sensor of cyclic di-GMP, Nature. 478 (2011) 515-518
|
D. Zhang, L. Liu, L. Pang, et al., Biological evaluation and energetic analyses of novel GSK-3β inhibitors, J Cell Biochem. 119 (2018) 3510-3518
|