Volume 13 Issue 1
Jan.  2023
Turn off MathJax
Article Contents
Min Mu, Xiaoyan Liang, Na Zhao, Di Chuan, Bo Chen, Shasha Zhao, Guoqing Wang, Rangrang Fan, Bingwen Zou, Bo Han, Gang Guo. Boosting ferroptosis and microtubule inhibition for antitumor therapy via a carrier-free supermolecule nanoreactor[J]. Journal of Pharmaceutical Analysis, 2023, 13(1): 99-109. doi: 10.1016/j.jpha.2022.09.003
Citation: Min Mu, Xiaoyan Liang, Na Zhao, Di Chuan, Bo Chen, Shasha Zhao, Guoqing Wang, Rangrang Fan, Bingwen Zou, Bo Han, Gang Guo. Boosting ferroptosis and microtubule inhibition for antitumor therapy via a carrier-free supermolecule nanoreactor[J]. Journal of Pharmaceutical Analysis, 2023, 13(1): 99-109. doi: 10.1016/j.jpha.2022.09.003

Boosting ferroptosis and microtubule inhibition for antitumor therapy via a carrier-free supermolecule nanoreactor

doi: 10.1016/j.jpha.2022.09.003
Funds:

This work was financially supported by the National Natural Science Foundation of China (Grant Nos.: 31971308, 81960769, and U1903211), National S&

T Major Project (Grant No.: 2019ZX09301-147), Luzhou Science and Technology Plan (Grant No.: 2018CDLZ-10), and Sichuan Science and Technology Program (Grant No.: 2021YFS0081). Thanks go to www.figdraw.com for the material drawing graphical abstract.

  • Received Date: Mar. 30, 2022
  • Accepted Date: Sep. 30, 2022
  • Rev Recd Date: Sep. 23, 2022
  • Publish Date: Oct. 07, 2022
  • Traditional microtubule inhibitors fail to significantly enhance the effect of colorectal cancer; hence, new and efficient strategies are necessary. In this study, a supramolecular nanoreactor (DOC@TA-Fe3+) based on tannic acid (TA), iron ion (Fe3+), and docetaxel (DOC) with microtubule inhibition, reactive oxygen species (ROS) generation, and glutathione peroxidase 4 (GPX4) inhibition, is prepared for ferroptosis/apoptosis treatment. After internalization by CT26 cells, the DOC@TA-Fe3+ nanoreactor escapes from the lysosomes to release payloads. The subsequent Fe3+/Fe2+ conversion mediated by TA reducibility can trigger the Fenton reaction to enhance the ROS concentration. Additionally, Fe3+ can consume glutathione to repress the activity of GPX4 to induce ferroptosis. Meanwhile, the released DOC controls microtubule dynamics to activate the apoptosis pathway. The superior in vivo antitumor efficacy of DOC@TA-Fe3+ nanoreactor in terms of tumor growth inhibition and improved survival is verified in CT26 tumor-bearing mouse model. Therefore, the nanoreactor can act as an effective apoptosis and ferroptosis inducer for application in colorectal cancer therapy.
  • loading
  • F. Hellal, A. Hurtado, J. Ruschel, et al., Microtubule stabilization reduces scarring and causes axon regeneration after spinal cord injury, Science 331 (2011) 928-931
    M. He, Y. Ding, C. Chu, et al., Autophagy induction stabilizes microtubules and promotes axon regeneration after spinal cord injury, Proc. Natl. Acad. Sci. U S A 113 (2016) 11324-11329
    G. Li, X. Hu, X. Wu, et al., Microtubule-targeted self-assembly triggers prometaphase metaphase oscillations suppressing tumor growth, Nano Lett. 21 (2021) 3052-3059
    C. Dumontet, M.A. Jordan, Microtubule-binding agents: A dynamic field of cancer therapeutics, Nat. Rev. Drug Discov. 9 (2010) 790-803
    J. Kim, J. Lee, J. Lee, et al., Tubulin-based nanotubes as delivery platform for microtubule-targeting agents, Adv. Mater. 32 (2020), e2002902
    T. Feng, J. Wan, P. Li, et al., A novel NIR-controlled NO release of sodium nitroprusside-doped Prussian blue nanoparticle for synergistic tumor treatment, Biomaterials 214 (2019), 119213
    K. Poudel, S. Park, J. Hwang, et al., Photothermally modulatable and structurally disintegratable sub-8-nm Au1Ag9 embedded nanoblocks for combination cancer therapy produced by plug-in assembly, ACS Nano 14 (2020) 11040-11054
    S. Wang, J. Shao, Z. Li, et al., Black phosphorus-based multimodal nanoagent: Showing targeted combinatory therapeutics against cancer metastasis, Nano Lett. 19 (2019) 5587-5594
    J. Tian, B. Huang, H. Li, et al., NIR-activated polymeric nanoplatform with upper critical solution temperature for image-guided synergistic photothermal therapy and chemotherapy, Biomacromolecules 20 (2019) 2338-2349
    S.J. Dixon, K.M. Lemberg, M.R. Lamprecht, et al., Ferroptosis: An iron-dependent form of nonapoptotic cell death, Cell 149 (2012) 1060-1072
    E. Nottingham, E. Mazzio, S.K. Surapaneni, et al., Synergistic effects of methyl 2-cyano-3,11-dioxo-18beta-olean-1,-12-dien-30-oate and erlotinib on erlotinib-resistant non-small cell lung cancer cells, J. Pharm. Anal. 11 (2021) 799-807
    H. Liang, X. Wu, G. Zhao, et al., Renal clearable ultrasmall single-crystal Fe nanoparticles for highly selective and effective ferroptosis therapy and immunotherapy, J. Am. Chem. Soc. 143 (2021) 15812-15823
    S. Xie, W. Sun, C. Zhang, et al., Metabolic control by heat stress determining cell fate to ferroptosis for effective cancer therapy, ACS Nano 15 (2021) 7179-7194
    L.-L. Zhou, Q. Guan, W.-Y. Li, et al., A ferrocene-functionalized covalent organic framework for enhancing chemodynamic therapy via redox dyshomeostasis, Small, 17, 2021, e2101368
    Metal-polyphenol-network coated Prussian blue nanoparticles for synergistic ferroptosis and apoptosis via triggered GPX4 inhibition and concurrent in situ bleomycin toxification, Small 17 (2021), e2103919. bleomycin toxification, Small, 17, 2021, e2103919
    G. Wang, L. Xie, B. Li, et al., A nanounit strategy reverses immune suppression of exosomal PD-L1 and is associated with enhanced ferroptosis, Nat. Commun., 12, 2021, 5733
    M. Mu, Y. Wang, S. Zhao, et al., Engineering a pH/glutathione-responsive tea polyphenol nanodevice as an apoptosis/ferroptosis-inducing agent, ACS Appl. Bio Mater. 3 (2020) 4128-4138
    S.J. Dixon, B.R. Stockwell, The role of iron and reactive oxygen species in cell death, Nat. Chem. Biol. 10 (2014) 9-17
    T. Ganz, E. Nemeth, Iron homeostasis in host defence and inflammation, Nat. Rev. Immunol. 15 (2015) 500-510
    J.P. Friedmann Angeli, M. Schneider, B. Proneth, et al., Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice, Nat. Cell Biol. 16 (2014) 1180-1191
    H. He, L. Du, H. Guo, et al., Redox responsive metal organic framework nanoparticles induces ferroptosis for cancer therapy, Small 16 (2020), e2001251
    Y.-J. He, X.-Y. Liu, L. Xing, et al., Fenton reaction-independent ferroptosis therapy via glutathione and iron redox couple sequentially triggered lipid peroxide generator, Biomaterials 241 (2020), 119911
    T. Liu, W. Liu, M. Zhang, et al., Ferrous-supply-regeneration nanoengineering for cancer-cell-specific ferroptosis in combination with imaging-guided photodynamic therapy, ACS Nano 12 (2018) 12181-12192
    E. Sawicki, M.J. Hillebrand, H. Rosing, et al., Validation of a liquid chromatographic method for the pharmaceutical quality control of products containing elacridar, J. Pharm. Anal. 6 (2016) 268-275
    L. Zhang, S.-S. Wan, C.-X. Li, et al., An adenosine triphosphate-responsive autocatalytic Fenton nanoparticle for tumor ablation with self-supplied H2O2 and acceleration of Fe(III)/Fe(II) conversion, Nano Lett. 18 (2018) 7609-7618
    C.-C. Xue, M.-H. Li, Y. Zhao, et al., Tumor microenvironment-activatable Fe-doxorubicin preloaded amorphous CaCO3 nanoformulation triggers ferroptosis in target tumor cells, Sci. Adv. 6 (2020), eaax1346
    J. Chen, F. Chen, L. Zhang, et al., Self-assembling porphyrins as a single therapeutic agent for synergistic cancer therapy: A one stone three birds strategy, ACS Appl. Mater. Interfaces 13 (2021) 27856-27867
    C. Pan, M. Ou, Q. Cheng, et al., Z-scheme heterojunction functionalized pyrite nanosheets for modulating tumor microenvironment and strengthening photo/chemodynamic therapeutic effects, Adv. Funct. Mater. 30 (2020), 1906466
    G. Shen, R. Xing, N. Zhang, et al., Interfacial cohesion and assembly of bioadhesive molecules for design of long-term stable hydrophobic nanodrugs toward effective anticancer therapy, ACS Nano 10 (2016) 5720-5729
    Z. Ren, S. Sun, R. Sun, et al., A metal-polyphenol-coordinated nanomedicine for synergistic cascade cancer chemotherapy and chemodynamic therapy, Adv. Mater. 32 (2020), e1906024
    M. Mu, H. Chen, R. Fan, et al., A tumor-specific ferric-coordinated epigallocatechin-3-gallate cascade nanoreactor for glioblastoma therapy, J. Adv. Res. 34 (2021) 29-41
    H. Ejima, J.J. Richardson, K. Liang, et al. One-step assembly of coordination complexes for versatile film and particle engineering, Science 341 (2013) 154-157
    Y. Ping, J. Guo, H. Ejima, et al., pH-responsive capsules engineered from metal-phenolic networks for anticancer drug delivery, Small 11 (2015) 2032-2036
    Y. Zheng, X. Li, C. Dong, et al., Ultrasound-augmented nanocatalytic ferroptosis reverses chemotherapeutic resistance and induces synergistic tumor nanotherapy, Adv. Funct. Mater. 32 (2021), 2107529
    M. Mu, X. Liang, D. Chuan, et al., Chitosan coated pH-responsive metal-polyphenol delivery platform for melanoma chemotherapy, Carbohydr. Polym. 264 (2021), 118000
    J. Chen, J. Li, J. Zhou, et al., Metal-phenolic coatings as a platform to trigger endosomal escape of nanoparticles, ACS Nano 13 (2019) 11653-11664
    R. Fan, C. Chen, H. Hou, et al., Tumor acidity and near-infrared light responsive dual drug delivery polydopamine-based nanoparticles for chemo-photothermal therapy, Adv. Funct. Mater. 31 (2021), 2009733
    X. Yu, T. Shang, G. Zheng, et al., Metal-polyphenol-coordinated nanomedicines for Fe(II) catalyzed photoacoustic-imaging guided mild hyperthermia-assisted ferroustherapy against breast cancer, Chin. Chem. Lett. 33 (2022) 1895-1900
    Z. Zhang, M. Lu, C. Chen, et al., Holo-lactoferrin: the link between ferroptosis and radiotherapy in triple-negative breast cancer, Theranostics 11 (2021) 3167-3182
    Y. Zhang, K. Xi, X. Fu, et al., Versatile metal-phenolic network nanoparticles for multitargeted combination therapy and magnetic resonance tracing in glioblastoma, Biomaterials, 278, 2021, 121163
    S. Wang, F. Li, R. Qiao, et al., Arginine-rich manganese silicate nanobubbles as a ferroptosis-inducing agent for tumor-targeted theranostics, ACS Nano 12 (2018) 12380-12392
    X. Meng, J. Deng, F. Liu, et al., Triggered all-active metal organic framework: Ferroptosis machinery contributes to the apoptotic photodynamic antitumor therapy, Nano Lett. 19 (2019) 7866-7876
    H. Xiong, C. Wang, Z. Wang, et al., Intracellular cascade activated nanosystem for improving ER+ breast cancer therapy through attacking GSH-mediated metabolic vulnerability, J. Control. Release 309 (2019) 145-157
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (378) PDF downloads(26) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return