Citation: | Min Mu, Xiaoyan Liang, Na Zhao, Di Chuan, Bo Chen, Shasha Zhao, Guoqing Wang, Rangrang Fan, Bingwen Zou, Bo Han, Gang Guo. Boosting ferroptosis and microtubule inhibition for antitumor therapy via a carrier-free supermolecule nanoreactor[J]. Journal of Pharmaceutical Analysis, 2023, 13(1): 99-109. doi: 10.1016/j.jpha.2022.09.003 |
F. Hellal, A. Hurtado, J. Ruschel, et al., Microtubule stabilization reduces scarring and causes axon regeneration after spinal cord injury, Science 331 (2011) 928-931
|
M. He, Y. Ding, C. Chu, et al., Autophagy induction stabilizes microtubules and promotes axon regeneration after spinal cord injury, Proc. Natl. Acad. Sci. U S A 113 (2016) 11324-11329
|
G. Li, X. Hu, X. Wu, et al., Microtubule-targeted self-assembly triggers prometaphase metaphase oscillations suppressing tumor growth, Nano Lett. 21 (2021) 3052-3059
|
C. Dumontet, M.A. Jordan, Microtubule-binding agents: A dynamic field of cancer therapeutics, Nat. Rev. Drug Discov. 9 (2010) 790-803
|
J. Kim, J. Lee, J. Lee, et al., Tubulin-based nanotubes as delivery platform for microtubule-targeting agents, Adv. Mater. 32 (2020), e2002902
|
T. Feng, J. Wan, P. Li, et al., A novel NIR-controlled NO release of sodium nitroprusside-doped Prussian blue nanoparticle for synergistic tumor treatment, Biomaterials 214 (2019), 119213
|
K. Poudel, S. Park, J. Hwang, et al., Photothermally modulatable and structurally disintegratable sub-8-nm Au1Ag9 embedded nanoblocks for combination cancer therapy produced by plug-in assembly, ACS Nano 14 (2020) 11040-11054
|
S. Wang, J. Shao, Z. Li, et al., Black phosphorus-based multimodal nanoagent: Showing targeted combinatory therapeutics against cancer metastasis, Nano Lett. 19 (2019) 5587-5594
|
J. Tian, B. Huang, H. Li, et al., NIR-activated polymeric nanoplatform with upper critical solution temperature for image-guided synergistic photothermal therapy and chemotherapy, Biomacromolecules 20 (2019) 2338-2349
|
S.J. Dixon, K.M. Lemberg, M.R. Lamprecht, et al., Ferroptosis: An iron-dependent form of nonapoptotic cell death, Cell 149 (2012) 1060-1072
|
E. Nottingham, E. Mazzio, S.K. Surapaneni, et al., Synergistic effects of methyl 2-cyano-3,11-dioxo-18beta-olean-1,-12-dien-30-oate and erlotinib on erlotinib-resistant non-small cell lung cancer cells, J. Pharm. Anal. 11 (2021) 799-807
|
H. Liang, X. Wu, G. Zhao, et al., Renal clearable ultrasmall single-crystal Fe nanoparticles for highly selective and effective ferroptosis therapy and immunotherapy, J. Am. Chem. Soc. 143 (2021) 15812-15823
|
S. Xie, W. Sun, C. Zhang, et al., Metabolic control by heat stress determining cell fate to ferroptosis for effective cancer therapy, ACS Nano 15 (2021) 7179-7194
|
L.-L. Zhou, Q. Guan, W.-Y. Li, et al., A ferrocene-functionalized covalent organic framework for enhancing chemodynamic therapy via redox dyshomeostasis, Small, 17, 2021, e2101368
|
Metal-polyphenol-network coated Prussian blue nanoparticles for synergistic ferroptosis and apoptosis via triggered GPX4 inhibition and concurrent in situ bleomycin toxification, Small 17 (2021), e2103919. bleomycin toxification, Small, 17, 2021, e2103919
|
G. Wang, L. Xie, B. Li, et al., A nanounit strategy reverses immune suppression of exosomal PD-L1 and is associated with enhanced ferroptosis, Nat. Commun., 12, 2021, 5733
|
M. Mu, Y. Wang, S. Zhao, et al., Engineering a pH/glutathione-responsive tea polyphenol nanodevice as an apoptosis/ferroptosis-inducing agent, ACS Appl. Bio Mater. 3 (2020) 4128-4138
|
S.J. Dixon, B.R. Stockwell, The role of iron and reactive oxygen species in cell death, Nat. Chem. Biol. 10 (2014) 9-17
|
T. Ganz, E. Nemeth, Iron homeostasis in host defence and inflammation, Nat. Rev. Immunol. 15 (2015) 500-510
|
J.P. Friedmann Angeli, M. Schneider, B. Proneth, et al., Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice, Nat. Cell Biol. 16 (2014) 1180-1191
|
H. He, L. Du, H. Guo, et al., Redox responsive metal organic framework nanoparticles induces ferroptosis for cancer therapy, Small 16 (2020), e2001251
|
Y.-J. He, X.-Y. Liu, L. Xing, et al., Fenton reaction-independent ferroptosis therapy via glutathione and iron redox couple sequentially triggered lipid peroxide generator, Biomaterials 241 (2020), 119911
|
T. Liu, W. Liu, M. Zhang, et al., Ferrous-supply-regeneration nanoengineering for cancer-cell-specific ferroptosis in combination with imaging-guided photodynamic therapy, ACS Nano 12 (2018) 12181-12192
|
E. Sawicki, M.J. Hillebrand, H. Rosing, et al., Validation of a liquid chromatographic method for the pharmaceutical quality control of products containing elacridar, J. Pharm. Anal. 6 (2016) 268-275
|
L. Zhang, S.-S. Wan, C.-X. Li, et al., An adenosine triphosphate-responsive autocatalytic Fenton nanoparticle for tumor ablation with self-supplied H2O2 and acceleration of Fe(III)/Fe(II) conversion, Nano Lett. 18 (2018) 7609-7618
|
C.-C. Xue, M.-H. Li, Y. Zhao, et al., Tumor microenvironment-activatable Fe-doxorubicin preloaded amorphous CaCO3 nanoformulation triggers ferroptosis in target tumor cells, Sci. Adv. 6 (2020), eaax1346
|
J. Chen, F. Chen, L. Zhang, et al., Self-assembling porphyrins as a single therapeutic agent for synergistic cancer therapy: A one stone three birds strategy, ACS Appl. Mater. Interfaces 13 (2021) 27856-27867
|
C. Pan, M. Ou, Q. Cheng, et al., Z-scheme heterojunction functionalized pyrite nanosheets for modulating tumor microenvironment and strengthening photo/chemodynamic therapeutic effects, Adv. Funct. Mater. 30 (2020), 1906466
|
G. Shen, R. Xing, N. Zhang, et al., Interfacial cohesion and assembly of bioadhesive molecules for design of long-term stable hydrophobic nanodrugs toward effective anticancer therapy, ACS Nano 10 (2016) 5720-5729
|
Z. Ren, S. Sun, R. Sun, et al., A metal-polyphenol-coordinated nanomedicine for synergistic cascade cancer chemotherapy and chemodynamic therapy, Adv. Mater. 32 (2020), e1906024
|
M. Mu, H. Chen, R. Fan, et al., A tumor-specific ferric-coordinated epigallocatechin-3-gallate cascade nanoreactor for glioblastoma therapy, J. Adv. Res. 34 (2021) 29-41
|
H. Ejima, J.J. Richardson, K. Liang, et al. One-step assembly of coordination complexes for versatile film and particle engineering, Science 341 (2013) 154-157
|
Y. Ping, J. Guo, H. Ejima, et al., pH-responsive capsules engineered from metal-phenolic networks for anticancer drug delivery, Small 11 (2015) 2032-2036
|
Y. Zheng, X. Li, C. Dong, et al., Ultrasound-augmented nanocatalytic ferroptosis reverses chemotherapeutic resistance and induces synergistic tumor nanotherapy, Adv. Funct. Mater. 32 (2021), 2107529
|
M. Mu, X. Liang, D. Chuan, et al., Chitosan coated pH-responsive metal-polyphenol delivery platform for melanoma chemotherapy, Carbohydr. Polym. 264 (2021), 118000
|
J. Chen, J. Li, J. Zhou, et al., Metal-phenolic coatings as a platform to trigger endosomal escape of nanoparticles, ACS Nano 13 (2019) 11653-11664
|
R. Fan, C. Chen, H. Hou, et al., Tumor acidity and near-infrared light responsive dual drug delivery polydopamine-based nanoparticles for chemo-photothermal therapy, Adv. Funct. Mater. 31 (2021), 2009733
|
X. Yu, T. Shang, G. Zheng, et al., Metal-polyphenol-coordinated nanomedicines for Fe(II) catalyzed photoacoustic-imaging guided mild hyperthermia-assisted ferroustherapy against breast cancer, Chin. Chem. Lett. 33 (2022) 1895-1900
|
Z. Zhang, M. Lu, C. Chen, et al., Holo-lactoferrin: the link between ferroptosis and radiotherapy in triple-negative breast cancer, Theranostics 11 (2021) 3167-3182
|
Y. Zhang, K. Xi, X. Fu, et al., Versatile metal-phenolic network nanoparticles for multitargeted combination therapy and magnetic resonance tracing in glioblastoma, Biomaterials, 278, 2021, 121163
|
S. Wang, F. Li, R. Qiao, et al., Arginine-rich manganese silicate nanobubbles as a ferroptosis-inducing agent for tumor-targeted theranostics, ACS Nano 12 (2018) 12380-12392
|
X. Meng, J. Deng, F. Liu, et al., Triggered all-active metal organic framework: Ferroptosis machinery contributes to the apoptotic photodynamic antitumor therapy, Nano Lett. 19 (2019) 7866-7876
|
H. Xiong, C. Wang, Z. Wang, et al., Intracellular cascade activated nanosystem for improving ER+ breast cancer therapy through attacking GSH-mediated metabolic vulnerability, J. Control. Release 309 (2019) 145-157
|