Citation: | Qiqin Wang, Lingjue Sun, Huihui Wu, Ning Deng, Xianglong Zhao, Jingwei Zhou, Tingting Zhang, Hai Han, Zhengjin Jiang. Rapid fabrication of zwitterionic sulfobetaine vinylimidazole-based monoliths via photoinitiated copolymerization for hydrophilic interaction chromatography[J]. Journal of Pharmaceutical Analysis, 2022, 12(5): 783-790. doi: 10.1016/j.jpha.2022.05.008 |
B. Li, Z. Yuan, P. Jain, et al., De novo design of functional zwitterionic biomimetic material for immunomodulation, Sci. Adv. 6 (2020), eaba0754
|
S. Jiang, Z. Cao, Ultralow-fouling, functionalizable, and hydrolyzable zwitterionic materials and their derivatives for biological applications, Adv. Mater. 22 (2010) 920-932
|
F. Zaccarian, M.B. Baker, M.J. Webber, Biomedical uses of sulfobetaine-based zwitterionic materials, Org. Mater. 2 (2020) 342-357
|
H.S. Sundaram, X. Han, A.K. Nowinski, et al., One-step dip coating of zwitterionic sulfobetaine polymers on hydrophobic and hydrophilic surfaces, ACS Appl. Mater. Interfaces 6 (2014) 6664-6671
|
R.A. Sonnenberg, S. Naz, L. Cougnaud, et al., Comparison of underivatized silica and zwitterionic sulfobetaine hydrophilic interaction liquid chromatography stationary phases for global metabolomics of human plasma, J. Chromatogr. A 1608 (2019), 460419
|
E. Wikberg, J.J. Verhage, C. Viklund, et al., Grafting of silica with sulfobetaine polymers via aqueous reversible addition fragmentation chain transfer polymerization and its use as a stationary phase in HILIC, J. Separ. Sci. 32 (2009) 2008-2016
|
D. Yu, Z. Guo, A. Shen, et al., Synthesis and evaluation of sulfobetaine zwitterionic polymer bonded stationary phase, Talanta 161 (2016) 860-866
|
X. Liu, Y. Jiang, F. Zhang, et al. Preparation and evaluation of a polymer-based sulfobetaine zwitterionic stationary phase, J. Chromatogr. A 1649 (2021), 462229
|
L. Qiao, X. Shi, G. Xu, Recent advances in development and characterization of stationary phases for hydrophilic interaction chromatography, Trends Anal. Chem. 81 (2016) 23-33
|
K. Broeckhoven, G. Desmet, Advances and innovations in liquid chromatography stationary phase supports, Anal. Chem. 93 (2021) 257-272
|
Q. Wang, K. Peng, W. Chen, et al., Development of double chain phosphatidylcholine functionalized polymeric monoliths for immobilized artificial membrane chromatography, J. Chromatogr. A 1479 (2017) 97-106
|
Q. Wang, Q. Zhang, H. Huang, et al., Fabrication and application of zwitterionic phosphorylcholine functionalized monoliths with different hydrophilic crosslinkers in hydrophilic interaction chromatography, Anal. Chim. Acta 1101 (2020) 222-229
|
Z. Zajickova, L. Novakova, F. Svec, Monolithic poly(styrene-co-divinylbenzene) columns for supercritical fluid chromatography-mass spectrometry analysis of polypeptide, Anal. Chem. 92 (2020) 11525-11529
|
F. Svec, Y. Lv, Advances and recent trends in the field of monolithic columns for chromatography, Anal. Chem. 87 (2015) 250-273
|
Q. Wang, K. Peng, N. Gan, et al., Rapid fabrication of versatile zwitterionic super-hydrophilic polymers by sole-monomer system for biomolecules separation, Chem. Eng. J. 396 (2020), 125121
|
L. Sun, D. Xu, Y. Shen, et al., Photo-assisted generation of versatile zwitterionic carboxybetaine-based hypercrosslinked polymers for separation science, Chem. Eng. J. 431 (2022), 133374
|
Q. Wang, H. Wu, K. Peng, et al., Hydrophilic polymeric monoliths containing choline phosphate for separation science applications, Anal. Chim. Acta 999 (2018) 184-189
|
J. Guo, Q. Wang, D. Xu, et al., Recent advances in preparation and applications of monolithic chiral stationary phases, Trends Anal. Chem. 123 (2020), 115774
|
Z. Jiang, N.W. Smith, P.D. Ferguson, et al., Hydrophilic interaction chromatography using methacrylate-based monolithic capillary column for the separation of polar analytes, Anal. Chem. 79 (2007) 1243-1250
|
H.C. Foo, J. Heaton, N.W. Smith, et al., Monolithic poly(SPE-co-BVPE) capillary columns as a novel hydrophilic interaction liquid chromatography stationary phase for the separation of polar analytes, Talanta 100 (2012) 344-348
|
Y. Lv, Z. Lin, F. Svec, “Thiol-ene” click chemistry: a facile and versatile route for the functionalization of porous polymer monoliths, Analyst 137 (2012) 4114-4118
|
X. Wang, X. Lin, Z. Xie, Preparation and evaluation of a sulfoalkylbetaine-based zwitterionic monolithic column for CEC of polar analytes, Electrophoresis 30 (2009) 2702-2710
|
C. Viklund, A. Sjögren, K. Irgum, et al., Chromatographic interactions between proteins and sulfoalkylbetaine-based zwitterionic copolymers in fully aqueous low-salt buffers, Anal. Chem. 73 (2001) 444-452
|
C. Viklund, K. Irgum, Synthesis of porous zwitterionic sulfobetaine monoliths and characterization of their interaction with proteins, Macromolecules 33 (2000) 2539-2544
|
Z.J. Jiang, N.W. Smith, P.D. Ferguson, et al., Novel highly hydrophilic zwitterionic monolithic column for hydrophilic interaction chromatography, J. Separ. Sci. 32 (2009) 2544-2555
|
G. Yuan, Y. Peng, Z. Liu, et al., A facile and efficient strategy to enhance hydrophilicity of zwitterionic sulfoalkylbetaine type monoliths, J. Chromatogr. A 1301 (2013) 88-97
|
H. Wu, H. Jin, G. Yuan, et al., Simultaneous quantification of urea and allantoin in cosmetic products by nano-HPLC using a highly hydrophilic monolith, J. Liq. Chromatogr. Relat. Technol. 41 (2018) 780-785
|
Z.H. Liu, Y.B. Peng, T.T. Wang, et al., Preparation and application of novel zwitterionic monolithic column for hydrophilic interaction chromatography, J. Separ. Sci. 36 (2013) 262-269
|
C. Liu, W. Chen, G. Yuan, et al., Influence of the crosslinker type on the chromatographic properties of hydrophilic sulfoalkylbetaine-type monolithic columns, J. Chromatogr. A 1373 (2014) 73-80
|
H. Li, C. Liu, Q. Wang, et al., The effect of charged groups on hydrophilic monolithic stationary phases on their chromatographic properties, J. Chromatogr. A 1469 (2016) 77-87
|
H. Li, C. Liu, L. Zhao, et al., A systematic investigation of the effect of sample solvent on peak shape in nano- and microflow hydrophilic interaction liquid chromatography columns, J. Chromatogr. A 1655 (2021), 462498
|
C. Liu, H. Li, Q. Wang, et al., Preparation and evaluation of 400 μm I.D. polymer-based hydrophilic interaction chromatography monolithic columns with high column efficiency, J. Chromatogr. A 1509 (2017) 83-90
|
Y. Huang, Z.J. Jiang, Supercritical fluid chromatography using methacrylate-based monolithic column for the separation of polar analytes, J. Separ. Sci. 44 (2021) 3324-3332
|
L. Carr, G. Cheng, H. Xue, et al., Engineering the polymer backbone to strengthen nonfouling sulfobetaine hydrogels, Langmuir 26 (2010) 14793-14798
|
R. Quintana, D. Jańczewski, V.A. Vasantha, et al., Sulfobetaine-based polymer brushes in marine environment: is there an effect of the polymerizable group on the antifouling performance? Colloids Surf. B Biointerfaces 120 (2014) 118-124
|
W. Zhao, Q. Ye, H. Hu, et al., Grafting zwitterionic polymer brushes via electrochemical surface-initiated atomic-transfer radical polymerization for anti-fouling applications, J. Mater. Chem. B 2 (2014), 5352
|
M. Ezzat, C.J. Huang, Zwitterionic polymer brush coatings with excellent anti-fog and anti-frost properties, RSC Adv. 6 (2016) 61695-61702
|
M. Catalá-Icardo, S. Torres-Cartas, E.F. Simó-Alfonso, et al., Influence of photo-initiators in the preparation of methacrylate monoliths into poly(ethylene-co-tetrafluoroethylene) tubing for microbore HPLC, Anal. Chim. Acta 1093 (2020) 160-167
|
P. Zhu, W. Chen, Q. Wang, et al., Phosphatidylethanolamine functionalized biomimetic monolith for immobilized artificial membrane chromatography, J. Pharm. Anal. 12 (2022) 332-338
|
Z. Jiang, J. Reilly, B. Everatt, et al., Novel zwitterionic polyphosphorylcholine monolithic column for hydrophilic interaction chromatography, J. Chromatogr. A 1216 (2009) 2439-2448
|
P.A. Bristow, J.H. Knox, Standardization of test conditions for high performance liquid chromatography columns, Chromatographia 10 (1977) 279-289
|
J.B. Schlenoff, Zwitteration: coating surfaces with zwitterionic functionality to reduce nonspecific adsorption, Langmuir 30 (2014) 9625-9636
|
J. Nilsson, U. Rüetschi, A. Halim, et al., Enrichment of glycopeptides for glycan structure and attachment site identification, Nat. Methods 6 (2009) 809-811
|
G. Qing, J. Yan, X. He, et al., Recent advances in hydrophilic interaction liquid interaction chromatography materials for glycopeptide enrichment and glycan separation, Trends Anal. Chem. 124 (2020), 115570
|
Y. Wu, N. Sun, C. Deng, Construction of magnetic covalent organic frameworks with inherent hydrophilicity for efficiently enriching endogenous glycopeptides in human saliva, ACS Appl. Mater. Interfaces 12 (2020) 9814-9823
|
Y.Y. Zhou, X. Sheng, J. Garemark, et al., Enrichment of glycopeptides using environmentally friendly wood materials, Green Chem. 22 (2020) 5666-5676
|
Q.Q. Zhang, Y.Y. Huang, B.Y. Jiang, et al., In situ synthesis of magnetic mesoporous phenolic resin for the selective enrichment of glycopeptides, Anal. Chem. 90 (2018) 7357-7363
|
C. Xia, F. Jiao, F. Gao, et al., Two-dimensional MoS2-based zwitterionic hydrophilic interaction liquid chromatography material for the specific enrichment of glycopeptides, Anal. Chem. 90 (2018) 6651-6659
|