Citation: | Min-Fei Sun, Jia-Ning Liao, Zhen-Yi Jing, Han Gao, Bin-Bin Shen, You-Fu Xu, Wei-Jie Fang. Effects of polyol excipient stability during storage and use on the quality of biopharmaceutical formulations[J]. Journal of Pharmaceutical Analysis, 2022, 12(5): 774-782. doi: 10.1016/j.jpha.2022.03.003 |
M.E. Krause, E. Sahin, Chemical and physical instabilities in manufacturing and storage of therapeutic proteins, Curr. Opin. Biotechnol. 60 (2019) 159-167
|
W.-J. Fang, Y.-Z. Huang, F. Poon, et al., Degradation of biotherapeutics during manufacturing processes and its solution, J. Int. Pharm. Res. 44 (2017) 1012-1018
|
A.S. Narang, D. Desai, S. Badawy, Impact of excipient interactions on solid dosage form stability, Pharm. Res. 29 (2012) 2660-2683
|
W. Wang, S. Ohtake, Science and art of protein formulation development, Int. J. Pharm. 568 (2019), 118505
|
S. Hasan, S. Fatma, M. Zaman, et al., Carboxylic acids of different nature induces aggregation of hemoglobin, Int. J. Biol. Macromol. 118 (2018) 1584-1593
|
S.Y. Zheng, D.F. Qiu, M. Adams, et al., Investigating the degradation behaviors of a therapeutic monoclonal antibody associated with pH and buffer species, AAPS PharmSciTech. 18 (2017) 42-48
|
C. Chumsae, L.L. Zhou, Y. Shen, et al., Discovery of a chemical modification by citric acid in a recombinant monoclonal antibody, Anal. Chem. 86 (2014) 8932-8936
|
S. Ajito, H. Iwase, S.-I. Takata, et al., Sugar-mediated stabilization of protein against chemical or thermal denaturation, J. Phys. Chem. B 122 (2018) 8685-8697
|
S. James, J.J. McManus, Thermal and solution stability of lysozyme in the presence of sucrose, glucose, and trehalose, J. Phys. Chem. B 116 (2012) 10182-10188
|
W. Wang, A.A. Ignatius, S.V. Thakkar, Impact of residual impurities and contaminants on protein stability, J. Pharm. Sci. 103 (2014) 1315-1330
|
L. Zang, T. Carlage, D. Murphy, et al., Residual metals cause variability in methionine oxidation measurements in protein pharmaceuticals using LC-UV/MS peptide mapping, J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 895-896 (2012) 71-76
|
J.F. Carpenter, S.C. Hand, L.M. Crowe, et al., Cryoprotection of phosphofructokinase with organic solutes: characterization of enhanced protection in the presence of divalent cations, Arch. Biochem. Biophys. 250 (1986) 505-512
|
W.R. Wasylaschuk, P.A. Harmon, G. Wagner, et al., Evaluation of hydroperoxides in common pharmaceutical excipients, J. Pharm. Sci. 96 (2007) 106-116
|
H. Santana, Y. González, P.T. Campana, et al., Screening for stability and compatibility conditions of recombinant human epidermal growth factor for parenteral formulation: effect of pH, buffers, and excipients, Int. J. Pharm. 452 (2013) 52-62
|
V.S. Dave, S.D. Saoji, N.A. Raut, et al., Excipient variability and its impact on dosage form functionality, J. Pharm. Sci. 104 (2015) 906-915
|
K.C. Waterman, W.B. Arikpo, M.B. Fergione, et al., N-methylation and N-formylation of a secondary amine drug (varenicline) in an osmotic tablet, J. Pharm. Sci. 97 (2008) 1499-1507
|
G. Wang, J.D. Fiske, S.P. Jennings, et al., Identification and control of a degradation product in Avapro film-coated tablet: low dose formulation, Pharm. Dev. Technol. 13 (2008) 393-399
|
M.A. Darji, R.M. Lalge, S.P. Marathe, et al., Excipient stability in oral solid dosage forms: A review, AAPS PharmSciTech 19 (2018) 12-26
|
M. Donbrow, E. Azaz, A. Pillersdorf, Autoxidation of polysorbates, J. Pharm. Sci. 67 (1978) 1676-1681
|
B.A. Kerwin, Polysorbates 20 and 80 used in the formulation of protein biotherapeutics: structure and degradation pathways, J. Pharm. Sci. 97 (2008) 2924-2935
|
V.M. Knepp, J.L. Whatley, A. Muchnik, et al., Identification of antioxidants for prevention of peroxide-mediated oxidation of recombinant human ciliary neurotrophic factor and recombinant human nerve growth factor, PDA J. Pharm. Sci. Techol. 50 (1996) 163-171
|
N. Doshi, R. Fish, K. Padilla, et al., Evaluation of super refinedTM polysorbate 20 with respect to polysorbate degradation, particle formation and protein stability, J. Pharm. Sci. 109 (2020) 2986-2995
|
A. Tomlinson, B. Demeule, B. Lin, et al., Polysorbate 20 degradation in biopharmaceutical formulations: quantification of free fatty acids, characterization of particulates, and insights into the degradation mechanism, Mol. Pharm. 12 (2015) 3805-3815
|
M. Saggu, J. Liu, A. Patel, Identification of subvisible particles in biopharmaceutical formulations using Raman spectroscopy provides insight into polysorbate 20 degradation pathway, Pharm. Res. 32 (2015) 2877-2888
|
M.T. Jones, H.-C. Mahler, S. Yadav, et al., Considerations for the use of polysorbates in biopharmaceuticals, Pharm. Res. 35 (2018), 148
|
L.C. Becker, W.F. Bergfeld, D.V. Belsito, et al., Safety assessment of glycerin as used in cosmetics, Int. J. Toxicol. 38 (2019) 6S-22S
|
J. Horn, J. Schanda, W. Friess, Impact of fast and conservative freeze-drying on product quality of protein-mannitol-sucrose-glycerol lyophilizates, Eur. J. Pharm. Biopharm. 127 (2018) 342-354
|
Y.Z. Tan, Y.Q. Chong, E. Khong, et al., Effect of disaccharide-polyol systems on the thermal stability of freeze-dried Mycobacterium bovis, Int. J. Pharm. 566 (2019) 400-409
|
B. Katryniok, H. Kimura, E. Skrzyńska, et al., Selective catalytic oxidation of glycerol: perspectives for high value chemicals, Green Chem. 13 (2011) 1960-1979
|
C.H. Zhou, J.N. Beltramini, Y.X. Fan, et al., Chemoselective catalytic conversion of glycerol as a biorenewable source to valuable commodity chemicals, Chem. Soc. Rev. 37 (2008) 527-549
|
D.M. Liu, Preparation method of hydroxyacetone by dehydration of glycerol, China patent CN109665952A. 23 April 2019
|
S.S. Niu, Y.L. Zhu, H.Y. Zheng, et al., Dehydration of glycerol to acetol over copper-based catalysts, Chin. J. Catal. 32 (2011) 345-351
|
K. Sugiura, S. Koike, T. Suzuki, et al., Oxidative formation of methylglyoxal in glycerol preparations during storage, Biol. Pharm. Bull. 43 (2020) 879-883
|
Chinese Pharmacopoeia Commission, Pharmacopoeia of People’s Republic of China, 4th Edition, 2015, pp. 490-492
|
J. Xie, C.-P. Zhang, Y.-M. Wang, Effectiveness of thymopentin as adjuvant therapy: an evidence-based analysis, Chin. J. New Drugs 24 (2015) 2599-2605
|
L. Jin, G. Wei, W.-y. Lu, Stability of thymopentin solution, Chin. J. Pharm. 38 (2007) 709-711
|
S. Frokjaer, D.E. Otzen, Protein drug stability: a formulation challenge, Nat. Rev. Drug Discov. 4 (2005) 298-306
|
European Pharmacopoeia Commission, European Pharmacopoeia, 9th edition, 2017, pp. 2595-2596
|
T.R. Zhan, J.M. Song, Progress in studies of mannitol in medicinal application, Chin. J. Marine Drugs 3 (2003) 57-61
|
H. Hibbert, M.S. Whelen, Studies on reactions relating to carbohydrates and polysaccharides. XXIII. Synthesis and properties of hydroxy alkylidene glycols and glycerols, J. Am. Chem. Soc. 51 (1929) 3115-3123
|
R.F. Fisher, C.W. Smith, inventors; Polyols, United States patent US2888492. 26 May 1959
|
A.W. Pierpont, E.R. Batista, R.L. Martin, et al., Origins of the regioselectivity in the lutetium triflate catalyzed ketalization of acetone with glycerol: a DFT study, ACS Catal. 5 (2015) 1013-1019
|
J. McMurry, Organic Compounds: Cycloalkanes and Their Stereochemistry, in: Organic Chemistry, Vol. 4, Brooks/Cole, California, 1999, pp. 121-124
|
M.A. Casadei, C. Galli, L. Mandolini, Ring-closure reactions. 22. Kinetics of cyclization of diethyl (.omega.-bromoalkyl)malonates in the range of 4- to 21-membered rings. Role of ring strain, J. Am. Chem. Soc. 106 (1984) 1051-1056
|
G.S. Dmitriev, A.V. Terekhov, L.N. Zanaveskin, et al., Choice of a catalyst and technological scheme for synthesis of solketal, Russ. J. Appl. Chem. 89 (2016) 1619-1624
|
J. Deutsch, A. Martin, H. Lieske, Investigations on heterogeneously catalysed condensations of glycerol to cyclic acetals, J. Catal. 245 (2007) 428-435
|
D.K. Chowdhury, H. Sarker, P. Schwartz, Regulatory notes on impact of excipients on drug products and the Maillard reaction, AAPS PharmSciTech. 19 (2018) 965-969
|
N.E. Robinson, A.B. Robinson, Use of Merrifield solid phase peptide synthesis in investigations of biological deamidation of peptides and proteins, Biopolymers 90 (2008) 297-306
|
A.A. Wakankar, R.T. Borchardt, Formulation considerations for proteins susceptible to asparagine deamidation and aspartate isomerization, J. Pharm. Sci. 95 (2006) 2321-2336
|
S. Catak, G. Monard, V. Aviyente, et al., Computational study on nonenzymatic peptide bond cleavage at asparagine and aspartic acid, J. Phys. Chem. A 112 (2008) 8752-8761
|
E.M. Topp, L. Zhang, H. Zhao, et al., Chemical Instability in Peptide and Protein Pharmceuticals, in: Formulation and Process Development Strategies for Manufacturing Biopharmaceuticals, Vol. 2, John Wiley & Sons, Inc., Hoboken, New Jersey, 2010, pp. 41-67
|
V.J. Helm, B.W. Müller, Stability of the synthetic pentapeptide thymopentin in aqueous solution: Effect of pH and buffer on degradation, Int. J. Pharm. 70 (1991) 29-34
|
J. Boonen, L. Veryser, L. Taevernier, et al., Risk evaluation of impurities in topical excipients: the acetol case, J. Pharm. Anal. 4 (2014) 303-315
|
B. Metz, G.F.A. Kersten, G.J.E. Baart, et al., Identification of formaldehyde-induced modifications in proteins: reactions with insulin, Bioconjugate Chem. 17 (2006) 815-822
|
B. Li, H. Tang, A. Turlik, et al., Cooperative stapling of native peptides at lysine and tyrosine or arginine with formaldehyde, Angew. Chem. Int. Ed. 60 (2021) 6646-6652
|