Citation: | Liyun Niu, Huiyu Zhou, Yueru Lian, Ya Gao, Yulu Liu, Ruolan Gu, Zhuona Wu, Xiaoxia Zhu, Hui Gan, Zhiyun Meng, Guifang Dou. Evaluation of the metabolism of PEP06, an endostatin-RGDRGD 30-amino-acid polypeptide and a promising novel drug for targeting tumor cells[J]. Journal of Pharmaceutical Analysis, 2022, 12(5): 766-773. doi: 10.1016/j.jpha.2022.03.002 |
N. Mohtavinejad, M. Shafiee Ardestani, A. Khalaj, et al., Application of radiolabeled peptides in tumor imaging and therapy, Life Sci. 258 (2020), 118206
|
S. Avilés-Gaxiola, E.P. Gutiérrez-Grijalva, J. León-Felix, et al., Peptides in colorectal cancer: current state of knowledge, Plant Foods Hum. Nutr. 75 (2020) 467-476
|
L.D. Fricker, E.B. Margolis, I. Gomes, et al., Five decades of research on opioid peptides: Current knowledge and unanswered questions, Mol. Pharmacol. 98 (2020) 96-108
|
S. Fu, X. Xu, Y. Ma, et al., RGD peptide-based non-viral gene delivery vectors targeting integrin αvβ3 for cancer therapy, J. Drug Target. 27 (2019) 1-11
|
K. Fosgerau, T. Hoffmann, Peptide therapeutics: current status and future directions, Drug Discov. Today. 20 (2015) 122-128
|
J.L. Lau, M.K. Dunn, Therapeutic peptides: Historical perspectives, current development trends, and future directions, Bioorg. Med. Chem. 26 (2018) 2700-2707
|
A. Sorolla, M.A. Sorolla, E. Wang, et al., Peptides, proteins and nanotechnology: a promising synergy for breast cancer targeting and treatment, Expert Opin. Drug Deliv. 17 (2020) 1597-1613
|
J. Folkman, Role of angiogenesis in tumor growth and metastasis, Semin. Oncol. 29 (2002) 15-18
|
M. Nieberler, U. Reuning, F. Reichart, et al., Exploring the role of RGD-recognizing integrins in cancer, Cancers. 9 (2017), 116
|
R. Soldi, S. Mitola, M. Strasly, et al., Role of αvβ3 integrin in the activation of vascular endothelial growth factor receptor-2, EMBO J. 18 (1999) 882-892
|
S. Fu, Y. Zhao, J. Sun, et al., Integrin αvβ3-targeted liposomal drug delivery system for enhanced lung cancer therapy, Colloids Surf. B. Biointerfaces. 201 (2021), 111623
|
S. Sani, M. Messe, Q. Fuchs, et al., Biological Relevance of RGD-Integrin Subtype-Specific Ligands in Cancer, ChembioChem. 22 (2021) 1151-1160
|
F. Danhier, A.L. Breton, V. Preat, RGD-based strategies to target alpha (v) beta (3) integrin in cancer therapy and diagnosis, Mol. Pharm. 9 (2012) 2961-2973
|
Y. Cheng, Y. Ji, RGD-modified polymer and liposome nanovehicles: Recent research progress for drug delivery in cancer therapeutics, Eur. J. Pharm Sci. 128 (2019) 8-17
|
A. Abdollahi, P. Hahnfeldt, C. Maercker, et al., Endostatin’s Antiangiogenic Signaling Network, Mol. Cell. 13 (2004) 649-663
|
Y.C. Li, Y. Liang, Z.Y. Tang, et al., Quantification of endostar in rat plasma by LC-MS/MS and its application in a pharmacokinetic study, J. Pharm. Biomed. Anal. 70 (2012) 505-511
|
S. Li, J. Wei, L. Yuan, et al., RGD-modified endostatin peptide 30 derived from endostatin suppresses invasion and migration of HepG2 cells through the αvβ3 pathway, Cancer Biother. Radiopharm. 26 (2011) 529-538
|
R.M. Tjin Tham Sjin, R. Satchi-Fainaro, A.E. Birsner, et al., A 27-amino-acid synthetic peptide corresponding to the NH2-terminal zinc-binding domain of endostatin is responsible for its antitumor activity, Cancer Res. 65 (2005) 3656-3663
|
G. Tuguzbaeva, E. Yue, X. Chen, et al., PEP06 polypeptide 30 is a novel cluster-dissociating agent inhibiting αv integrin/FAK/Src signaling in oral squamous cell carcinoma cells, Acta Pharm. Sin. B. 9 (2019) 1163-1173
|
W. Tian, J. Li, Z. Wang, et al., HYD-PEP06 suppresses hepatocellular carcinoma metastasis, epithelial-mesenchymal transition and cancer stem cell-like properties by inhibiting PI3K/AKT and WNT/β-catenin signaling activation, Acta Pharm. Sin. B. 11 (2021) 1592-1606
|
X. Dong, Y. Zhang, Z. Meng, et al., A LC-MS/MS method to monitor the concentration of HYD-PEP06, a RGD-modified Endostar mimetic peptide in rat blood, J. Chromatogr. B. 1092 (2018) 296-305
|
R. Ramanathan, M. Jemal, S. Ramagiri, et al., It is time for a paradigm shift in drug discovery bioanalysis: from SRM to HRMS, J. Mass Spectrom. 46 (2011) 595-601
|
T. Katsila, A.P. Siskos, C. Tamvakopoulos, Peptide and protein drugs: the study of their metabolism and catabolism by mass spectrometry, Mass Spectrom. Rev. 31 (2012) 110-133
|
G. Grasso, The use of mass spectrometry to study amyloid-β peptides, Mass Spectrom. Rev. 30 (2011) 347-365
|
G. Wang, T. Rao, Y. Shao, et al., The metabolic and pharmacokinetic studies for HM-3 in rats based on LC-Q-TOF/MS and LC-MS/MS combing a convenient biological sample processing method, J. Chromatogr. B. 1031 (2016) 68-75
|
S. Toräng, S. Veedfald, M.M. Rosenkilde, et al., The anorexic hormone peptide YY3-36 is rapidly metabolized to inactive peptide YY3-34 in vivo, Physiol. Rep. 3 (2015), e12455
|
B. Domon, R. Aebersold, Mass spectrometry and protein analysis, Sci. 312 (2006) 212-217
|
R. Bakhtiar, Z. Guan, Electron capture dissociation mass spectrometry in characterization of peptides and proteins, Biotechnol. Lett. 28 (2006) 1047-1059
|
S.Yu, L. Li, W. Tian, et al., PEP06 polypeptide 30 exerts antitumour effect in colorectal carcinoma via inhibiting epithelial mesenchymal transition, Br. J. Pharmacol. 175 (2018) 3111-3130
|