Volume 12 Issue 2
May  2022
Turn off MathJax
Article Contents
Umer Saeed, Syed Yaseen Shah, Jawad Ahmad, Muhammad Ali Imran, Qammer H. Abbasi, Syed Aziz Shah. Machine learning empowered COVID-19 patient monitoring using non-contact sensing: An extensive review[J]. Journal of Pharmaceutical Analysis, 2022, 12(2): 193-204. doi: 10.1016/j.jpha.2021.12.006
Citation: Umer Saeed, Syed Yaseen Shah, Jawad Ahmad, Muhammad Ali Imran, Qammer H. Abbasi, Syed Aziz Shah. Machine learning empowered COVID-19 patient monitoring using non-contact sensing: An extensive review[J]. Journal of Pharmaceutical Analysis, 2022, 12(2): 193-204. doi: 10.1016/j.jpha.2021.12.006

Machine learning empowered COVID-19 patient monitoring using non-contact sensing: An extensive review

doi: 10.1016/j.jpha.2021.12.006
  • Received Date: Apr. 05, 2021
  • Accepted Date: Dec. 30, 2021
  • Rev Recd Date: Dec. 29, 2021
  • Publish Date: Jan. 04, 2022
  • The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which caused the coronavirus disease 2019 (COVID-19) pandemic, has affected more than 400 million people worldwide. With the recent rise of new Delta and Omicron variants, the efficacy of the vaccines has become an important question. The goal of various studies has been to limit the spread of the virus by utilizing wireless sensing technologies to prevent human-to-human interactions, particularly for healthcare workers. In this paper, we discuss the current literature on invasive/contact and non-invasive/non-contact technologies (including Wi-Fi, radar, and software-defined radio) that have been effectively used to detect, diagnose, and monitor human activities and COVID-19 related symptoms, such as irregular respiration. In addition, we focused on cutting-edge machine learning algorithms (such as generative adversarial networks, random forest, multilayer perceptron, support vector machine, extremely randomized trees, and k-nearest neighbors) and their essential role in intelligent healthcare systems. Furthermore, this study highlights the limitations related to non-invasive techniques and prospective research directions.
  • loading
  • Report on coronavirus by World Health Organization (WHO). https://COVID19.who.int. (Accessed 15 November 2021)
    J. Hellewell, S. Abbott, A. Gimma, et al., Feasibility of controlling COVID-19 outbreaks by isolation of cases and contacts, The Lan. Glob. Heal. 8 (2020) e488-e496
    S. Jiang, S. Xia, T. Ying, et al., A novel coronavirus (2019-ncov) causing pneumonia-associated respiratory syndrome, Cell. Mol. Immunol. 17 (5) (2020) 554
    M. A. Khan, A. Atangana, Modeling the dynamics of novel coronavirus (2019-ncov) with fractional derivative, Alex. Eng. J. 59 (2020) 2379-2389
    H. Nishiura, N. M. Linton, A. R. Akhmetzhanov, Initial cluster of novel coronavirus (2019-ncov) infections in Wuhan, China is consistent with substantial human-to-human transmission, J. Clin. Med. 9 (2020) 488
    N. Poyiadji, G. Shahin, D. Noujaim, et al., COVID-19-associated acute hemorrhagic necrotizing encephalopathy: imaging features, Radiology 296 (2020) e119-e120
    Z. Xu, L. Shi, Y. Wang, et al., Pathological findings of COVID-19 associated with acute respiratory distress syndrome, Lancet Respir. Med. 8 (2020) 420-422
    T. Singhal, A review of coronavirus disease-2019 (COVID-19), Indian J. Pediatr. 87 (4) (2020) 281-286
    L. Pan, M. Mu, P. Yang, et al., Clinical characteristics of COVID-19 patients with digestive symptoms in Hubei, China: a descriptive, cross-sectional, multicenter study, Am. J. Gastroenterol. 115 (2020) 766-773
    P. Dawson, E. M. Rabold, R. L. Laws, et al., Loss of taste and smell as distinguishing symptoms of coronavirus disease 2019, Clin. Infect. Dis. 72 (4) (2021) 682-685
    World Health Organization, Considerations for Quarantine of Individuals in the Context of Containment for Coronavirus Disease (COVID-19): Interim Guidance, 19 March 2020. https://apps.who.int/iris/bitstream/handle/10665/331497/WHO-2019-nCoV-IHR_Quarantine-2020.2-eng.pdf?sequence=1&isAllowed=y. (Accessed 10 July 2021)
    National Bureau of Economic Research, How are small businesses adjusting to COVID-19? Early evidence from a survey. https://www.nber.org/papers/w26989. (Accessed 15 July 2021).
    LSE Business Review, How is Covid-19 affecting businesses in the UK? https://blogs.lse.ac.uk/businessreview/2020/05/07/how-is-covid-19-affecting-businesses-in-the-uk/. (Accessed 25 July 2021).
    R. P. Singh, M. Javaid, A. Haleem, et al., Internet of things (iot) applications to fight against COVID-19 pandemic, Diabetes Metab. Syndr. Clin. Res. Rev. 14 (2020) 521-524
    A. Haleem, M. Javaid, R. Vaishya, Effects of COVID-19 pandemic in daily life, Curr. Med. Res. Pract. 10 (2020) 78-79
    J. Cai, W. Sun, J. Huang, et al., Indirect virus transmission in cluster of COVID-19 cases, Wenzhou, China, 2020, Emerg. Infect. Dis. 26 (2020) 1345
    D. Dong, Z. Tang, S. Wang, et al., The role of imaging in the detection and management of COVID-19: a review, IEEE Rev. in Biomed. Eng. 14 (2021) 16-29
    A. W. Lindsley, J. T. Schwartz, M. E. Rothenberg, Eosinophil responses during COVID-19 infections and coronavirus vaccination, J. Allergy Clin. Immunol. 146 (2020) 1-7
    S. Loomba, A. de Figueiredo, S. J. Piatek, et al., Measuring the impact of COVID-19 vaccine misinformation on vaccination intent in the UK and USA, Nat. Hum. Behav. (2021) 337-348
    V. Mazereel, K. van Assche, J. Detraux, et al., COVID-19 vaccination for people with severe mental illness: why, what, and how?, Lancet Psychiatry. 8 (2021) 444-450
    J.-F. Daoust, Elderly people and responses to COVID-19 in 27 countries, PLoS One 15 (2020), e0235590
    S. Kadambari, P. Klenerman, A. J. Pollard, Why the elderly appear to be more severely affected by COVID-19: The potential role of immunosenescence and CMV, Rev. Med. Virol. 30 (2020), e2144
    W.-R. Zhang, K. Wang, L. Yin, et al., Mental health and psychosocial problems of medical health workers during the COVID-19 epidemic in China, Psychother. Psychosom. 89 (2020) 242-250
    A. Haleem, M. Javaid, R. Vaishya, et al., Areas of academic research with the impact of COVID-19, Am. J. Emerg. Med. 38 (2020) 1524-1526
    S. Feng, C. Shen, N. Xia, et al., Rational use of face masks in the COVID-19 pandemic, Lancet Respir. Med. 8 (2020) 434-436
    J. Howard, A. Huang, Z. Li, et al., Face masks against COVID-19: an evidence review, (2020), doi: 10.1073/pnas.2014564118
    M. Bakhit, N. Krzyzaniak, A. M. Scott, et al., Downsides of face masks and possible mitigation strategies: a systematic review and meta-analysis, BMJ Open 11 (2021), e044364
    J. H. Kim, F. Marks, J. D. Clemens, Looking beyond COVID-19 vaccine phase 3 trials, Nat. Med. 27 (2021) 205-211
    M. Wadman, Public needs to prep for vaccine side effects, Science 370 (2020) 1022
    E. Mahase, COVID-19: Vaccine candidate may be more than 90% effective, interim results indicate, BMJ Clin. Res. Ed. 371 (2020), m4347
    D. van Riel, E. de Wit, Next-generation vaccine platforms for COVID-19, Nat. Mater. 19 (2020) 810-812
    M. Salathé, C. L. Althaus, R. Neher, et al., COVID-19 epidemic in Switzerland: on the importance of testing, contact tracing and isolation, Swiss Med. Week. 150 (2020), w20225
    J. A. Lewnard, N. C. Lo, Scientific and ethical basis for social-distancing interventions against COVID-19, Lancet Infect. Dis. 20 (2020) 631-633
    S. Brandstetter, S. Roth, S. Harner, et al., Symptoms and immunoglobulin development in hospital staff exposed to a SARS-CoV-2 outbreak, Pediatr. Allergy Immunol. 31 (2020) 841-847
    S. Fill Malfertheiner, S. Brandstetter, S. Roth, et al., Immune response to SARS-CoV-2 in health care workers following a COVID-19 outbreak: a prospective longitudinal study, J. Clin. Virol. 130 (2020), 104575
    R. Buselli, M. Corsi, S. Baldanzi, et al., Professional quality of life and mental health outcomes among health care workers exposed to SARS-CoV-2 (COVID-19), Int. J. Environ. Res. Public Heal. 17 (2020), 6180
    J. Willan, A. J. King, K. Jeffery, et al., Challenges for NHS hospitals during COVID-19 epidemic, BMJ 368 (2020), m1117
    J. Pandit, Demand-capacity modelling and COVID-19 disease: identifying themes for future NHS planning, Anaesthesia 75 (2020) 1278-1283
    G. Manzano García, J. C. Ayala Calvo, The threat of COVID-19 and its influence on nursing staff burnout, J. Adv. Nurs. 77 (2021) 832-844
    X. Yang, X. Ren, M. Chen, et al., Human posture recognition in intelligent healthcare, J. Phys.: Conf. Ser. 1437 (2020) 012014
    Q. H. Abbasi, M. Ur Rehman, K. Qaraqe, et al., Advances in body-centric wireless communication: Applications and state-of-the-art, Institution of Engineering and Technology, 2016, https://digital-library.theiet.org/content/books/te/pbte065e
    F. Li, M. Valero, H. Shahriar, et al., Wi-COVID: A COVID-19 symptom detection and patient monitoring framework using WIFI, Smart Health (Amst) 19 (2021), 100147
    A. Kapoor, S. Guha, M. Kanti Das, et al., Digital healthcare: The only solution for better healthcare during COVID-19 pandemic?, Indian Heart J. 72 (2020) 61-64
    J. Liu, G. Teng, F. Hong, Human activity sensing with wireless signals: a survey, Sensors 20 (2020), 1210
    J. Ma, H. Wang, D. Zhang, et al., A survey on Wi-Fi based contactless activity recognition, 2016 Intl IEEE Conferences on Ubiquitous Intelligence & Computing, Advanced and Trusted Computing, Scalable Computing and Communications, Cloud and Big Data Computing, Internet of People, and Smart World Congress (UIC/ATC/ScalCom/CBDCom/IoP/SmartWorld), July 18-21, 2016, Toulouse, France, IEEE, 2016, pp. 1086-1091
    W. Naudé, Artificial intelligence vs COVID-19: limitations, constraints and pitfalls, AI Soc. 35 (2020) 761-765
    C. Massaroni, A. Nicolò, E. Schena, et al., Remote respiratory monitoring in the time of COVID-19, Front. Physiol. 11 (2020), 635
    S. Elagan, S. F. Abdelwahab, E. Zanaty, et al., Remote diagnostic, and detection of coronavirus disease (COVID-19) system based on intelligent healthcare and Internet of Things, Results Phys. 22 (2021), 103910
    C.-Y. Tsai, N.-C. Chang, H.-C. Fang, et al., A novel noncontact self-injection-locked radar for vital sign sensing and body movement monitoring in COVID-19 isolation ward, J. Med. Syst. 44 (2020) 1-4
    A. Haleem, M. Javaid, Medical 4.0 and its role in healthcare during COVID-19 pandemic: A review, J. Ind. Intg. Mgmt. 5 (2020) 531-545
    M. Javaid, A. Haleem, R. P. Singh, et al., Industry 5.0: potential applications in COVID-19, J. Ind. Intg. Mgmt. 5 (2020) 507-530
    R. Kahankova, R. Martinek, R. Jaros, et al., A review of signal processing techniques for non-invasive fetal electrocardiography, IEEE Rev. Biomed. Eng. 13 (2019) 51-73
    X. Ding, D. Clifton, N. Ji, et al., Wearable sensing and telehealth technology with potential applications in the coronavirus pandemic, IEEE Rev. Biomed. Eng. 14 (2020) 48-70
    S. Ahmadzadeh, J. Luo, R. Wiffen, Review on biomedical sensors, technologies, and algorithms for diagnosis of sleep disordered breathing: Comprehensive survey, IEEE Rev. Biomed. Eng. 2020, doi: 10.1109/RBME.2020.3033930
    L. Castera, Non-invasive tests for liver fibrosis in NAFLD: Creating pathways between primary healthcare and liver clinics, Liver Int. 40 (2020) 77-81
    J. C. Winck, N. Ambrosino, COVID-19 pandemic and non-invasive respiratory management: every Goliath needs a David. An evidence-based evaluation of problems, Pulmonology 26 (2020) 213-220
    G. Yang, G. Pang, Z. Pang, et al., Non-invasive flexible and stretchable wearable sensors with nano-based enhancement for chronic disease care, IEEE Rev. Biomed. Eng. 12 (2019) 34-71
    F. Ali, S. El-Sappagh, S. R. Islam, et al., An intelligent healthcare monitoring framework using wearable sensors and social networking data, Futur. Gener. Comput. Syst.114 (2021) 23-43
    R. Rucco, A. Sorriso, M. Liparoti, et al., Type and location of wearable sensors for monitoring falls during static and dynamic tasks in healthy elderly: a review, Sensors 18 (2018), 1613
    A. Moin, A. Zhou, A. Rahimi, et al., A wearable biosensing system with in-sensor adaptive machine learning for hand gesture recognition, Nat. Electron. 4 (2021) 54-63
    J. Wasserlauf, C. You, R. Patel, et al., Smartwatch performance for the detection and quantification of atrial fibrillation, Circ.: Arrhythmia Electrophysiol. 12 (2019), e006834
    O. S. Hoilett, A. M. Twibell, R. Srivastava, et al., Kick LL: a smartwatch for monitoring respiration and heart rate using photoplethysmography, 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), July 18-21, 2018, Honolulu, HI, USA, IEEE, 2018, pp. 3821-3824
    H. C. Irawan, T. Juhana, Heart rate monitoring using IoT wearable for ambulatory patient, 2017 11th International Conference on Telecommunication Systems Services and Applications (TSSA), October 26-27, 2017, Lombok, Indonesia, IEEE, 2017, pp. 1-4
    W. Taylor, Q. H. Abbasi, K. Dashtipour, et al., A review of the state of the art in non-contact sensing for COVID-19, Sensors 20 (2020), 5665
    M. B. Khan, Z. Zhang, L. Li, et al., A systematic review of non-contact sensing for developing a platform to contain COVID-19, Micromachines 11 (2020), 912
    S. N. Avdeev, A. I. Yaroshetskiy, N. A. Tsareva, et al., Noninvasive ventilation for acute hypoxemic respiratory failure in patients with COVID-19, Am. J. Emerg. Med. 39 (2021) 154-157
    Y.-X. Wang, H.-T. Guo, X.-W. Du, et al., Factors associated with post-traumatic stress disorder of nurses exposed to Corona virus disease 2019 in China, Medicine 99 (2020), e20965
    M. Javaid, I. H. Khan, Internet of Things (IoT) enabled healthcare helps to take the challenges of COVID-19 pandemic, J. Oral Biol. Craniofacial Res. 11 (2021) 209-214
    M. Javaid, A. Haleem, R. Vaishya, et al., Industry 4.0 technologies and their applications in fighting COVID-19 pandemic, Diabetes Metab. Syndr.: Clin. Res. Rev. 14 (2020) 419-422
    J. S. Wadali, P. K. Khosla, Healthcare 4.0 in future capacity building for pandemic control, Predictive and Preventive Measures for Covid-19 Pandemic, Singapore: Springer Singapore, 2021, pp. 87-107
    A. Rizwan, A. Zoha, I. Mabrouk, et al., A review on the state of the art in atrial fibrillation detection enabled by machine learning, IEEE Rev. Biomed. Eng. 14. (2020) 219-239
    S. A. Shah, H. Abbas, M. A. Imran, et al., Rf Sensing for Healthcare Applications, Backscattering and RF Sensing for Future Wireless Communication, Wiley: Hoboken, NJ. ISBN 9781119695653
    J. U. R. Kazim, T. J. Cui, A. Zoha, et al., Wireless on walls: Revolutionizing the future of health care, IEEE Antennas Propag. Mag., 2020
    A. Alimadadi, S. Aryal, I. Manandhar, et al., Artificial intelligence and machine learning to fight COVID-19, Physiol. Genom. 52 (2020) 200-202
    D. Fan, A. Ren, N. Zhao, et al., Breathing rhythm analysis in body centric networks, IEEE Access 6 (2018) 32507-32513
    J. J. Marini, L. Gattinoni, Management of COVID-19 respiratory distress, JAMA 323 (2020) 2329-2330
    Y.-Y. Zheng, Y.-T. Ma, J.-Y. Zhang, et al., COVID-19 and the cardiovascular system, Nat. Rev. Cardiol. 17 (2020) 259-260
    J. He, Y. Guo, R. Mao, et al., Proportion of asymptomatic coronavirus disease 2019: A systematic review and meta-analysis, J. Med. Virol. 93 (2021) 820-830
    S. K. Kunutsor, J. A. Laukkanen, Cardiovascular complications in COVID-19: a systematic review and meta-analysis, J. Infect. 81 (2020) e139-e141
    C. Li, V. M. Lubecke, O. Boric-Lubecke, et al., A review on recent advances in Doppler radar sensors for noncontact healthcare monitoring, IEEE Trans. Microw. Theory Tech. 61 (2013) 2046-2060
    C. Massaroni, D. S. Lopes, D. Lo Presti, et al., Contactless monitoring of breathing patterns and respiratory rate at the pit of the neck: A single camera approach, J. Sensor 2018 (2018) 1-13
    L. Queiroz, H. Oliveira, S. Yanushkevich, et al., Video-based breathing rate monitoring in sleeping subjects, 2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC), October 11-14, 2020, Toronto, ON, Canada, IEEE, 2020, pp. 2458- 2464
    Y. Nam, Y. Kong, B. Reyes, et al., Monitoring of heart and breathing rates using dual cameras on a smartphone, PLoS One 11 (2016), e0151013
    A. Procházka, H. Charvátová, O. Vyšata, et al., Breathing analysis using thermal and depth imaging camera video records, Sensors 17 (2017), 1408
    H. E. Elphick, A. H. Alkali, R. K. Kingshott, et al., Exploratory study to evaluate respiratory rate using a thermal imaging camera, Respiration 97 (2019) 205-212
    J. Born, G. Brandle, M. Cossio, et al., PoCOVID-net: automatic detection of COVID-19 from a new lung ultrasound imaging dataset (POCUS), arXiv preprint arXiv:2004.12084 (2020)
    C.-H. Tsai, J. van der Burgt, D. Vukovic, et al., Automatic deep learning based pleural effusion classification in lung ultrasound images for respiratory pathology diagnosis, Phys. Med. 83 (2021) 38-45
    J. Rasheed, A. A. Hameed, C. Djeddi, et al., A machine learning-based framework for diagnosis of COVID-19 from chest X-ray images, Interdiscip. Sci. Comput. Life Sci. 13 (2021) 103-117
    R. Jain, M. Gupta, S. Taneja, et al., Deep learning-based detection and analysis of COVID-19 on chest X-ray images, Appl. Intell. 51 (2021) 1690-1700
    M. Barstugan, U. Ozkaya, S. Ozturk, Coronavirus (COVID-19) classification using CT images by machine learning methods, arXiv preprint arXiv:2003.09424 (2020)
    F. Shan, Y. Gao, J. Wang, et al., Lung infection quantification of COVID-19 in CT images with deep learning, arXiv preprint arXiv:2003.04655 (2020)
    H. Zhao, H. Hong, D. Miao, et al., A noncontact breathing disorder recognition system using 2.4-GHz digital-IF Doppler radar, IEEE J. Biomed. Heal. Informatics. 23 (2018) 208-217
    A. M. Ashleibta, Q. H. Abbasi, S. A. Shah, et al., Non-invasive RF sensing for detecting breathing abnormalities using software defined radios, IEEE Sensor J., 21 (2020) 5111-5118
    A. E. Powles, D. J. Martin, I. T. Wells, et al., Physics of ultrasound, Anaesth. Intensive Care Med. 19 (2018) 202-205
    A. Genc, M. Ryk, M. Suwala, et al., Ultrasound imaging in the general practitioner’s office-a literature review, J. Ultrason. 16 (2016) 78-86
    F. Mojoli, B. Bouhemad, S. Mongodi, et al., Lung ultrasound for critically ill patients, Am. J. Respir. Crit. Care Med. 199 (2019) 701-714
    D. Buonsenso, D. Pata, A. Chiaretti, COVID-19 outbreak: less stethoscope, more ultrasound, Lanc. Resp. Med. 8 (5) (2020), e27
    G. Soldati, A. Smargiassi, R. Inchingolo, et al., Is there a role for lung ultrasound during the COVID-19 pandemic?, J. Ultrasound Med. 39 (2020) 1459-1462
    T. Wang, D. Zhang, L. Wang, et al., Contactless respiration monitoring using ultrasound signal with off-the shelf audio devices, IEEE Internet Things J. 6 (2018) 2959- 2973
    N. Hilmizen, A. Bustamam, D. Sarwinda, the multimodal deep learning for diagnosing COVID-19 pneumonia from chest CT-scan and X-ray images, 2020 3rd International Seminar on Research of Information Technology and Intelligent Systems (ISRITI), December 10-11, 2020, Yogyakarta, Indonesia, IEEE, 2020, pp. 26-31
    T. B. Chandra, K. Verma, B. K. Singh, et al., Coronavirus disease (COVID-19) detection in chest X-ray images using majority voting-based classifier ensemble, Expert. Syst. Appl. 165 (2021), 113909
    A. M. Ismael, A. Sengur, Deep learning approaches for COVID-19 detection based on chest X-ray images, Expert. Syst. Appl. 164 (2021), 114054
    S. R. Nayak, D. R. Nayak, U. Sinha, et al., Application of deep learning techniques for detection of COVID-19 cases using chest X-ray images: a comprehensive study, Biomed. Signal Process Control 64 (2021), 102365
    S. Serte, H. Demirel, Deep learning for diagnosis of COVID-19 using 3D CT scans, Comput. Biol. Med. (2021), 104306
    F. Shi, J. Wang, J. Shi, et al., Review of artificial intelligence techniques in imaging data acquisition, segmentation and diagnosis for COVID-19, IEEE Rev. Biomed. Eng.14 (2020) 4-15
    I. Ozsahin, B. Sekeroglu, M. S. Musa, et al., Review on diagnosis of COVID-19 from chest CT images using artificial intelligence, Comput. Math. Methods Med. (2020) 1-10
    S. Ahuja, B. K. Panigrahi, N. Dey, et al., Deep transfer learning-based automated detection of COVID-19 from lung CT scan slices, Appl. Intell. 51 (2021) 571-585
    B. Udugama, P. Kadhiresan, H. N. Kozlowski, et al., Diagnosing COVID-19: the disease and tools for detection, ACS Nano 14 (2020) 3822-3835
    S. A. Shah, X. Yang, Q. H. Abbasi, Cognitive health care system and its application in pill-rolling assessment, Int. J. Numer. Model. Electron. Networks Devices Fields 32 (2019), e2632
    X. Yang, D. Fan, A. Ren, et al., Diagnosis of the hypopnea syndrome in the early stage, Neural Comput. Appl. 32 (2020) 855-866
    S. A. Shah, A. Tahir, J. Ahmad et al., Sensor fusion for identification of freezing of gait episodes using Wi-Fi and radar imaging, IEEE Sensor J. 20 (2020) 14410-14422
    C. Ding, Y. Zou, L. Sun, et al., Fall detection with multi-domain features by a portable FMCW radar, 2019 IEEE MTT-S International Wireless Symposium (IWS), May 19-22, 2019, Guangzhou, China, IEEE, 2019, pp. 1-3
    S. A. Shah, F. Fioranelli, Human activity recognition: Preliminary results for dataset portability using FMCW radar, 2019 International Radar Conference (RADAR), September 23-27, 2019, Toulon, France, IEEE, 2019, pp. 1-4
    F. Fioranelli, J. Le Kernec, S. A. Shah, Radar for health care: Recognizing human activities and monitoring vital signs, IEEE Potentials 38 (2019) 16-23
    M. Alizadeh, G. Shaker, J. C. M. De Almeida, et al., Remote monitoring of human vital signs using mm-wave FMCW radar, IEEE Access 7 (2019) 54958-54968
    G. Gennarelli, G. Ludeno, F. Soldovieri, Real-time through-wall situation awareness using a microwave Doppler radar sensor, Remote. Sens. 8 (2016), 621
    X. Yang, S. A. Shah, A. Ren, et al., Detection of essential tremor at the S-band, IEEE J. Transl. Eng. Heal. Med. 6 (2018) 1-7
    S. Kushwaha, S. Bahl, A. K. Bagha, et al., Significant applications of machine learning for COVID-19 pandemic, J. Ind. Intg. Mgmt. 5 (2020) 453-479
    Q. Cai, H. Wang, Z. Li, et al., A survey on multimodal data-driven smart healthcare systems: approaches and applications, IEEE Access 7 (2019) 133583-133599
    A. Dinh, S. Miertschin, A. Young, et al., A data-driven approach to predicting diabetes and cardiovascular disease with machine learning, BMC Med. Informatics Decis. Mak. 19 (2019) 1-15
    Y.-J. Chang, K.-C. Hung, L.-K. Wang, et al., A real-time artificial intelligence-assisted system to predict weaning from ventilator immediately after lung resection surgery, Int. J. Environ. Res. Public Heal. 18 (2021), 2713
    T. Ba, S. Li, Y. Wei, A data-driven machine learning integrated wearable medical sensor framework for elderly care service, Measurement 167 (2021), 108383.
    H. Bhavsar, A. Ganatra, A comparative study of training algorithms for supervised machine learning, Int. J. Soft Comput. Eng. (IJSCE) 2 (4) (2012) 2231-2307
    A. Singh, N. Thakur, A. Sharma, A review of supervised machine learning algorithms, 2016 3rd Int. Conf. Comput. Sustain. Glob. Dev. (INDIACom), IEEE, 2016, pp. 1310-1315
    F.Y. Osisanwo, J.E.T. Akinsola, O. Awodele, et al., Supervised machine learning algorithms: classification and comparison, Int. J. Comput. Trends Technol. 48 (3) (2017) 128-138
    X. Li, D. Zhang, J. Xiong, et al., Training-free human vitality monitoring using commodity Wi-Fi devices, Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2 (2018) 1-25
    K. Qian, C. Wu, Z. Yang, et al., Enabling contactless detection of moving humans with dynamic speeds using CSI, ACM Trans. Embed. Comput. Syst. 17 (2018) 1-18
    N. Damodaran, E. Haruni, M. Kokhkharova, et al., Device free human activity and fall recognition using WiFi channel state information (CSI), CCF Trans. Pervasive Comput. Interact. 2 (2020) 1-17
    Z. Wang, K. Jiang, Y. Hou, et al., A survey on CSI-based human behavior recognition in through-the-wall scenario, IEEE Access 7 (2019) 78772-78793
    L. Guo, L. Wang, C. Lin, et al., Wiar: a public dataset for WiFi-based activity recognition, IEEE Access 7 (2019) 154935-154945
    S. Aziz Shah, J. Ahmad, A. Tahir, et al., Privacy-preserving non-wearable occupancy monitoring system exploiting Wi-Fi imaging for next-generation body centric communication, Micromachines 11 (2020), 379
    S.-C. Kim, T. G. Kim, S. H. Kim, Human activity recognition and prediction based on Wi-Fi channel state information and machine learning, 2019 Int. Conf. Artif. Intell. Inf. Commun. (ICAIIC), IEEE, 2019, pp. 418-422
    Y. Gu, Y. Wang, Z. Liu, et al., SleepGuardian: an RF-based healthcare system guarding your sleep from afar, IEEE Netw. 34 (2020) 164-171
    S. Lee, Y.-D. Park, Y.-J. Suh, et al., Design and implementation of monitoring system for breathing and heart rate pattern using WiFi signals, 2018 15th IEEE Annual Consumer Communications & Networking Conference (CCNC), January 12-15, 2018, Las Vegas, NV, USA, (CCNC), IEEE, 2018, pp. 1-7
    X. Wang, C. Yang, S. Mao, Resilient respiration rate monitoring with realtime bimodal CSI data, IEEE Sensor J. 20 (2020) 10187-10198
    S. Zhu, J. Xu, H. Guo, et al., Indoor human activity recognition based on ambient radar with signal processing and machine learning, 2018 IEEE International Conference on Communications (ICC), May 20-24, 2018, Kansas City, MO, USA, IEEE, 2018, pp. 1-6
    B. Çaǧliyan, S.Z. Gürbüz, Micro-Doppler-based human activity classification using the mote-scale BumbleBee radar, IEEE Geosci. Remote. Sens. Lett. 12 (2015) 2135-2139
    W. Li, B. Tan, R. Piechocki, Passive radar for opportunistic monitoring in E-health applications, IEEE J. Transl. Eng. Heal. Med. 6 (2018) 1-10
    W. Taylor, S. A. Shah, K. Dashtipour, et al., An intelligent non-invasive real-time human activity recognition system for next-generation healthcare, Sensors 20 (9) (2020), 2653
    S. Sigg, M. Scholz, S. Shi, et al., RF-sensing of activities from non-cooperative subjects in device-free recognition systems using ambient and local signals, IEEE Trans. Mob. Comput. 13 (2014) 907-920
    S. Sharma, H. Mohammadmoradi, M. Heydariaan, et al., Device free activity recognition using ultra-wideband radios, 2019 International Conference on Computing, Networking and Communications (ICNC), February 18-21, 2019, Honolulu, HI, USA, IEEE, 2019, pp. 1029-1033
    R. Kumar, R. Arora, V. Bansal, et al., Accurate prediction of COVID-19 using chest X-ray images through deep feature learning model with SMOTE and machine learning classifiers, MedRxiv, 2020, doi: 10.1101/2020.04.13.20063461
    S. H. Kassani, P. H. Kassasni, M. J. Wesolowski, et al., Automatic detection of coronavirus disease (COVID-19) in X-ray and CT images: A machine learning-based approach, Biocybern. Biomed. Eng. 41 (2021) 867-879
    A. Saygili, A new approach for computer-aided detection of coronavirus (COVID-19) from CT and X-ray images using machine learning methods, Appl. Soft Comput. 105 (2021), 107323
    J. Wu, P. Zhang, L. Zhang, et al., Rapid and accurate identification of COVID-19 infection through machine learning based on clinical available blood test results, MedRxiv, 2020, doi: 10.1101/2020.04.02.20051136
    D. Brinati, A. Campagner, D. Ferrari, et al., Detection of COVID-19 infection from routine blood exams with machine learning: a feasibility study, J. Med. Syst. 44 (2020), 135
    A. M. U. D. Khanday, S. T. Rabani, Q. R. Khan, et al., Machine learning based approaches for detecting COVID-19 using clinical text data, Int. J. Inf. Technol. 12 (2020) 731-739
    M. Pahar, M. Klopper, R. Warren, et al., COVID-19 cough classification using machine learning and global smartphone recordings, Comput. Biol. Med. 135. (2021), 104572
    N. E. M. Khalifa, M. H. N. Taha, A. E. Hassanien, et al., Detection of coronavirus (COVID-19) associated pneumonia based on generative adversarial networks and a fine-tuned deep transfer learning model using chest X-ray dataset, arXiv preprint arXiv:2004.01184 (2020)
    S. Motamed, P. Rogalla, F. Khalvati, RANDGAN: Randomized generative adversarial network for detection of COVID-19 in chest X-ray, Sci. Rep. 11 (2021) 1-10
    M. van der Schaar, A. M. Alaa, A. Floto, et al., How artificial intelligence and machine learning can help healthcare systems respond to COVID-19, Mach. Learn. 110 (2021) 1-14
    I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, et al., Generative adversarial networks, Commun. ACM 63 (2020) 139-144
    E. Choi, S. Biswal, B. Malin, et al., Generating multi-label discrete patient records using generative adversarial networks, Proceedings of Machine Learning for Healthcare, PMLR 68 (2017) 286-305
    C. Iwendi, A. K. Bashir, A. Peshkar, et al., COVID-19 patient health prediction using boosted random forest algorithm, Front. Public Heal. 8 (2020), 357
    P. Kaur, R. Kumar, M. Kumar, A healthcare monitoring system using random forest and Internet of Things (IoT), Multimed. Tools Appl. 78 (2019) 19905-19916
    M. C. E. Simsekler, A. Qazi, M. A. Alalami, et al., Evaluation of patient safety culture using a random forest algorithm, Reliab. Eng. Syst. Saf. 204 (2020), 107186
    G. Ogbuabor, R. La, Human activity recognition for healthcare using smartphones, Proceedings of the 2018 10th International Conference on Machine Learning and Computing, ACM, 2018, pp. 41-46
    M. Z. Amin, A. Ali, Application of multilayer perceptron (MLP) for data mining in healthcare operations, Conference: 2017 3rd International Conference on Biotechnology, February 2017, Lahore, Pakistan, 2017, pp. 2-11
    C. L. Krishna, P. V. S. Reddy, An efficient deep neural network multilayer perceptron based classifier in healthcare system, 2019 3rd International Conference on Computing and Communications Technologies (ICCCT), February 21-22, 2019, Chennai, India, IEEE, 2019, pp. 1-6
    S. U. Jan, Y.-D. Lee, J. Shin, et al., Sensor fault classification based on support vector machine and statistical time-domain features, IEEE Access 5 (2017) 8682-8690
    Z. Ahmad, A. Rai, A. S. Maliuk, et al., Discriminant feature extraction for centrifugal pump fault diagnosis, IEEE Access 8 (2020) 165512- 165528
    S. U. Jan, Y. D. Lee, I. S. Koo, A distributed sensor-fault detection and diagnosis framework using machine learning, Inf. Sci. 547 (2021) 777-796
    C. Venkatesan, P. Karthigaikumar, A. Paul, et al., ECG signal preprocessing and SVM classifier-based abnormality detection in remote healthcare applications, IEEE Access 6 (2018) 9767-9773
    U. Saeed, S. U. Jan, Y.-D. Lee, et al., Fault diagnosis based on extremely randomized trees in wireless sensor networks, Reliab. Eng. Syst. Saf. 205 (2021), 107284
    M. Soltaninejad, G. Yang, T. Lambrou, et al., Automated brain tumour detection and segmentation using superpixel-based extremely randomized trees in FLAIR MRI, Int. J. Comput. Assist. Radiol. Surg. 12 (2017) 183-203
    B. Padmaja, V. Prasa, K. Sunitha, A novel random split point procedure using extremely randomized (extra) trees ensemble method for human activity recognition, EAI Endorsed Trans. Pervasive Heal. Technol. 6 (2020), 164824
    U. Saeed, Y.-D. Lee, S.U. Jan, et al., CAFD: context-aware fault diagnostic scheme towards sensor faults utilizing machine learning, Sensors (Basel) 21 (2021), 617
    W. Xing, Y. Bei, Medical health big data classification based on KNN classification algorithm, IEEE Access 8 (2019) 28808-28819
    B. Venkataramanaiah, J. Kamala, ECG signal processing and KNN classifier based abnormality detection by VH-doctor for remote cardiac healthcare monitoring, Soft Comput. 24 (2020) 17457-17466
    N. Khateeb, M. Usman, Efficient heart disease prediction system using k-nearest neighbor classification technique, Proceedings of the International Conference on Big Data and Internet of Thing - BDIOT2017, December 20-22, 2017, London, United Kingdom, New York: ACM Press, 2017, pp. 21-26
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (354) PDF downloads(11) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return