Citation: | Xiaodong Sun, Bing Niu, Qi Zhang, Qin Chen. MIL-53-based homochiral metal-organic framework as a stationary phase for open-tubular capillary electrochromatography[J]. Journal of Pharmaceutical Analysis, 2022, 12(3): 509-516. doi: 10.1016/j.jpha.2021.12.004 |
E. Guihen, J.D. Glennon, Recent highlights in stationary phase design for open-tubular capillary electrochromatography, J. Chromatogr. A 1044(2004)67-81
|
L. Zhen, K. Otsuka, S. Terabe, Evaluation of extended light path capillary and etched capillary for use in open tubular capillary electrochromatography, J. Chromatogr. A 961(2002)285-291
|
M.A. Ahmed, B.M.B. Felisilda, J.P. Quirino, Recent advancements in open-tubular liquid chromatography and capillary electrochromatography during 2014-2018, Anal. Chimica. Acta 1088(2019)20-34
|
Z. Liu, Y. Du, Z. Feng, Enantioseparation of drugs by capillary electrochromatography using a stationary phase covalently modified with graphene oxide, Microchimica Acta 184(2018)583-593
|
L. Fang, Y. Zhao, C. Wang, et al., Preparation of a thiols β-cyclodextrin/gold nanoparticles-coated open tubular column for capillary electrochromatography enantioseparations, J. Sep. Sci. 43(2020)2209-2216
|
L.-F. Hu, S.-J. Yin, H. Zhang, et al., Recent developments of monolithic and open-tubular capillary electrochromatography (2017-2019), J. Sep. Sci. 1(2020)1-5
|
L.-M. Li, F. Yang, H.-F. Wang, et al., Metal-organic framework poly methylmethacrylate composites for open-tubular capillary electrochromatography, J. Chromatogr. A 1316(2013)97-103
|
H. Furukawa, K.E. Cordova, M. O'Keeffe, et al., The chemistry and applications of metal-organic frameworks, Science 341(2013), 1230444
|
Y. Huang, G. Yi, B. Ji, et al., In situ one-pot synthesis of polydopamine/octadecylamine co-deposited coating in capillary for open-tubular capillary electrochromatography, J. Chromatogr. A 1610(2020), 460559
|
Q. Zhang, S. Ren, S. Xue, et al., Tetraalkylammonium-l-tartrate ionic liquids as sole chiral selectors in capillary electrophoresis, Sep. Purif. Technol. 256(2021), 117842
|
Q. Zhang, S. Ren, A. Li, et al., Tartaric acid-based ionic liquid-type chiral selectors:Effect of cation species on their enantioseparation performance in capillary electrophoresis, Sep. Purif. Technol. 275(2021), 119228
|
Q. Zhang, S. Xue, A. Li, et al., Functional materials in chiral capillary electrophoresis, Coord. Chem. Rev. 445(2021), 214108
|
X. Sun, C. Chen, X. Li, et al., Gold nanoparticles coated with a tetramethylammonium lactobionate ionic liquid for enhanced chiral differentiation in open tubular capillary electrochromatography:application to enantioseparation of β-blockers, Microchim. Acta 187(2020), 170
|
Q. Zhang, S. Ren, C. Gu, et al., Enhanced enantioselectivity of tartaric acid in capillary electrophoresis:From tartaric acid to tartaric acid-based ionic liquid, J. Mol. Liq. 327(2021), 114840
|
X. Sun, Y. Du, S. Zhao, et al., Enantioseparation of propranolol, amlodipine and metoprolol by electrochromatography using an open tubular capillary modified with β-cyclodextrin and poly (glycidyl methacrylate) nanoparticles, Microchim. Acta 186(2019), 128
|
Z. Li, Z. Mao, Z. Chen, Polydopamine-assisted immobilization of a zinc (II)-derived metal-organic cage as a stationary phase for open-tubular capillary electrochromatography, Microchim. Acta 186(2019), 449
|
X. Niu, W. Lv, Y. Sun, et al., In situ fabrication of 3D COF-300 in a capillary for separation of aromatic compounds by open-tubular capillary electrochromatography, Microchim. Acta 187(2020), 233
|
N, Ye, J. Ma, J. An, et al., Separation of amino acid enantiomers by a capillary modified with a metal-organic framework, RSC Adv. 6(2016)41587-41593
|
Y. Yu, Y. Ren, W. Shen, et al, Applications of metal-organic frame-works as stationary phases in chromatography, TrAC-Trends Anal. Chem. 50(2013)33-41
|
J. Ma, N. Ye, J. Li, Covalent bonding of homochiral metal-organic framework in capillaries for stereoisomer separation by capillary electrochromatography, Electrophoresis 37(2016)601-608
|
P. Tang, T. Bao, Z. Chen, Novel Zn-based MOFs stationary phase with large pores for capillary electrochromatography, Electrophoresis 37(2016)2181-2189
|
L. Yu, C. Yang, X. Yan, Room temperature fabrication of post-modified zeolitic imidazolate framework-90 as stationary phase for open-tubular capillary electrochromatography, J. Chromatogr. A 1343(2014)188-194
|
X. Sun, T. Yu, Y. Du, et al., Metal organic framework HKUST-1 modified with carboxymethyl-β-cyclodextrin for use in improved open tubular capillary electrochromatographic enantioseparation of five basic drugs, Microchim. Acta 186(2019), 462
|
Y. Lu, H. Zhang, J. Chang, et al., Homochiral MOF-Polymer Mixed Matrix Membranes for Efficient Separation of Chiral Molecules, Angew. Chem. Int. Ed. 58(2019)16928-16935
|
S. Yang, F. Ye, Q. Lv, et al., Incorporation of metal-organic framework HKUST-1 into porous polymer monolithic capillary columns to enhance the chromatographic separation of small molecules, J. Chromatogr. A 1360(2014)143-149
|
L. Zhou, S. Jiang, X. Zhang, L. et al., Preparation of β-cyclodextrin-gold nanoparticles modified open tubular column for capillary electrochromatographic separation of chiral drugs, Electrophoresis 39(2018)941-947
|
X. Yang, X. Sun, Z. Feng, et al., Open-tubular capillary electrochromatography with β-cyclodextrin-functionalized magnetic nanoparticles as stationary phase for enantioseparation of dansylated amino acids, Microchim. Acta 186(2019), 244
|
X. Gao, R. Mo, Y. Ji, Preparation and characterization of tentacle-type polymer stationary phase modified with graphene oxide for open-tubular capillary electrochromatography, J. Chromatogr. A 1400(2015)19-26
|
Z. Gong, L. Duan, A. Tang, Amino-functionalized silica nanoparticles for improved enantiomeric separation in capillary electrophoresis using carboxymethyl-β-cyclodextrin (CM-β-CD) as a chiral selector, Microchim. Acta 182(2015)1297-1304
|
M. Ma, J. Zhang, P. Li, et al. Immobilization of cellulase on monolith supported with Zr (IV)-based metal-organic framework as chiral stationary phase for enantioseparation of five basic drugs in capillary electrochromatography. Microchim. Acta 188(2021)186
|
Z. Li, Z. Mao, W. Zhou, et al., γ-Cyclodextrin metal-organic framework supported by polydopamine as stationary phases for electrochromatographic enantioseparation. Talanta 218(2020)121160
|
W. Ding, M. Ma, Y.Du, et al., Metal organic framework ZIF-90 modified with lactobionic acid for use in improved open tubular capillary electrochromatographic enantioseparation of five basic drugs. Microchim. Acta 187(2020)651
|
C. Pan, W. Lv, X. Niu, et al., Homochiral zeolite-like metal-organic framework with DNA like double-helicity structure as stationary phase for capillaryelectrochromatography enantioseparation. J. Chromatogr. A 1541(2018)31-38
|