Citation: | Zahra Hassani Nejad, Fataneh Fatemi, Seyed Ehsan Ranaei Siadat. An outlook on coronavirus disease 2019 detection methods[J]. Journal of Pharmaceutical Analysis, 2022, 12(2): 205-214. doi: 10.1016/j.jpha.2021.11.003 |
B. Chen, E.-K. Tian, B. He, et al., Overview of lethal human coronaviruses, Signal Transduct. Target. Ther. 5 (2020), 89
|
D. Wang, B. Hu, C. Hu, et al. Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China, JAMA. 323 (2020) 1061-1069
|
I.M. Villarreal, M. Morato, M. Martínez-RuizCoello, et al. Olfactory and taste disorders in healthcare workers with COVID-19 infection, Eur. Arch. Otorhinolaryngol. 278 (2021) 2123-2127
|
J.A. Backer, D. Klinkenberg, J. Wallinga, Incubation period of 2019 novel coronavirus (2019-nCoV) infections among travellers from Wuhan, China, 20-28 January 2020, Euro Surveill. 25 (2020), 2000062
|
G. Qian, N. Yang, A.H.Y. Ma, et al. COVID-19 Transmission Within a Family Cluster by Presymptomatic Carriers in China, Clin. Infect. Dis. 71 (2020) 861-862
|
F. Ye, S. Xu, Z. Rong, et al. Delivery of infection from asymptomatic carriers of COVID-19 in a familial cluster, Int. J. Infect. Dis. 94 (2020) 133-138
|
B.S. Bleier, M. Ramanathan, A.P. Lane, COVID-19 Vaccines May Not Prevent Nasal SARS-CoV-2 Infection and Asymptomatic Transmission, Otolaryngol. Neck Surg. 164 (2020) 305-307
|
A. Premraj, A.G. Aleyas, B. Nautiyal, et al., Nucleic Acid and Immunological Diagnostics for SARS-CoV-2: Processes, Platforms and Pitfalls, Diagnostics (Basel). 10 (2020), 866
|
V.M. Corman, O. Landt, M. Kaiser, et al., Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR, Euro. Surveill. 25 (2020), 2000045
|
J.F.-W. Chan, C.C.-Y. Yip, K.K.-W. To, et al. Improved Molecular Diagnosis of COVID-19 by the Novel, Highly Sensitive and Specific COVID-19-RdRp/Hel Real-Time Reverse Transcription-PCR Assay Validated In Vitro and with Clinical Specimens, J. Clin. Microbiol. 58 (2020), e00310-e00320
|
L. Xiu, R.A. Binder, N.A. Alarja, et al., A RT-PCR assay for the detection of coronaviruses from four genera, J. Clin. Virol. 128 (2020), 104391
|
S. Petrillo, G. Carra, P. Bottino, et al., A Novel Multiplex qRT-PCR Assay to Detect SARS-CoV-2 Infection: High Sensitivity and Increased Testing Capacity, Microorganisms. 8 (2020), 1064
|
T. Ishige, S. Murata, T. Taniguchi, et al. Highly sensitive detection of SARS-CoV-2 RNA by multiplex rRT-PCR for molecular diagnosis of COVID-19 by clinical laboratories, Clin. Chim. Acta. 507 (2020) 139-142
|
J. Wang, K. Cai, R. Zhang, et al. Novel One-Step Single-Tube Nested Quantitative Real-Time PCR Assay for Highly Sensitive Detection of SARS-CoV-2, Anal. Chem. 92 (2020) 9399-9404
|
W.-M. Chan, J.D. Ip, A.W.-H. Chu, et al. Identification of nsp1 gene as the target of SARS-CoV-2 real-time RT-PCR using nanopore whole-genome sequencing, J. Med. Virol. 92 (2020) 2725-2734
|
C.C.-Y. Yip, C.-C. Ho, J.F.-W. Chan, et al., Development of a Novel, Genome Subtraction-Derived, SARS-CoV-2-Specific COVID-19-nsp2 Real-Time RT-PCR Assay and Its Evaluation Using Clinical Specimens, Int. J. Mol. Sci. 21 (2020), 2574
|
Y. Matsumura, T. Shimizu, T. Noguchi, et al. Comparison of 12 Molecular Detection Assays for Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), J. Mol. Diagn. 23 (2021) 164-170
|
R. Weissleder, H. Lee, J. Ko, et al., COVID-19 diagnostics in context, Sci. Transl. Med. 12 (2020), eabc1931
|
R. Lu, X. Zhao, J. Li, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding, Lancet 395 (2020) 565-574
|
T. Notomi, H. Okayama, H. Masubuchi, et al. Loop-mediated isothermal amplification of DNA, Nucleic Acids Res. 28 (2000), E63
|
M. Imai, A. Ninomiya, H. Minekawa, et al. Development of H5-RT-LAMP (loop-mediated isothermal amplification) system for rapid diagnosis of H5 avian influenza virus infection, Vaccine 24 (2006) 6679-6682
|
T.H.T. Cam, L.M. Quynh, V.C. Duc, et al. Development and Evaluation of a Novel Loop-Mediated Isothermal Amplification Method for Rapid Detection of Severe Acute Respiratory Syndrome Coronavirus, J. Clin. Microbiol. 42 (2004) 1956-1961
|
K. Shirato, T. Yano, S. Senba, et al., Detection of Middle East respiratory syndrome coronavirus using reverse transcription loop-mediated isothermal amplification (RT-LAMP), Virol. J. 11 (2014), 139
|
L.E. Lamb, S.N. Bartolone, E. Ward, et al., Rapid detection of novel coronavirus/Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) by reverse transcription-loop-mediated isothermal amplification, PLoS One 15 (2020), e0234682
|
Y. Zhang, N. Odiwuor, J. Xiong, et al., Rapid molecular detection of SARS-CoV-2 (COVID-19) virus RNA using colorimetric LAMP, medRxiv. https://www.medrxiv.org/content/10.1101/2020.02.26.20028373v1. (Accessed 18 July 2020).
|
M. Jiang, W. Pan, A. Arasthfer, et al., Development and Validation of a Rapid, Single-Step Reverse Transcriptase Loop-Mediated Isothermal Amplification (RT-LAMP) System Potentially to Be Used for Reliable and High-Throughput Screening of COVID-19, Front. Cell. Infect. Microbiol. 10 (2020), 331
|
M.A. Lalli, X. Chen, S.J. Langmade, et al., Rapid and extraction-free detection of SARS-CoV-2 from saliva with colorimetric LAMP, medRxiv. (2020) https://doi.org/10.1101/2020.05.07.20093542
|
C. Amaral, W. Antunes, E. Moe, et al., A molecular test based on RT-LAMP for rapid, sensitive and inexpensive colorimetric detection of SARS-CoV-2 in clinical samples, Sci. Rep. 11 (2021), 16430.
|
L. Yu, S. Wu, X. Hao, et al. Rapid Detection of COVID-19 Coronavirus Using a Reverse Transcriptional Loop-Mediated Isothermal Amplification (RT-LAMP) Diagnostic Platform, Clin. Chem. 66 (2020) 975-977
|
X. Zhu, X. Wang, L. Han, et al., Multiplex reverse transcription loop-mediated isothermal amplification combined with nanoparticle-based lateral flow biosensor for the diagnosis of COVID-19, Biosens. Bioelectron. 166 (2020), 112437
|
A. Ganguli, A. Mostafa, J. Berger, et al. Rapid isothermal amplification and portable detection system for SARS-CoV-2., Proc. Natl. Acad. Sci. U. S. A. 117 (2020) 22727-22735
|
Y. Kim, A.B. Yaseen, J.Y. Kishi, et al., Single-strand RPA for rapid and sensitive detection of SARS-CoV-2 RNA, medRxiv. (2020) https://doi.org/10.1101/2020.08.17.20177006
|
M. El-Tholoth, H.H. Bau, J. Song, A single and two-stage, closed-tube, molecular test for the 2019 novel coronavirus (COVID-19) at home, clinic, and points of entry, ChemRxiv. https://doi.org/10.26434/chemrxiv.11860137. (Accessed 11 April 2020).
|
F. Zhang, O.O. Abudayyeh, J.S. Gootenberg, A protocol for detection of COVID- 19 using CRISPR diagnostics. https://www.broadinstitute.org/files/ publications/special/COVID-19 detection. (Accessed 20 August 2020).
|
J. Joung, A. Ladha, M. Saito, Point-of-care testing for COVID-19 using SHERLOCK diagnostics, medRxiv. (2020) https://doi.org/10.1101/2020.05.04.20091231
|
T. Hou, W. Zeng, M. Yang, et al. Development and evaluation of a rapid CRISPR-based diagnostic for COVID-19, PLoS Pathog. 16 (2020), e1008705
|
C. Lucia, P.-B. Federico, G.C. Alejandra, An ultrasensitive, rapid, and portable coronavirus SARS-CoV-2 sequence detection method based on CRISPR-Cas12, BioRxiv. (2020) https://doi.org/10.1101/2020.02.29.971127
|
X. Ding, K. Yin, Z. Li, et al., All-in-One Dual CRISPR-Cas12a (AIOD-CRISPR) Assay: A Case for Rapid, Ultrasensitive and Visual Detection of Novel Coronavirus SARS-CoV-2 and HIV virus, BioRxiv. (2020) https://doi.org/10.1101/2020.03.19.998724
|
J.P. Broughton, X. Deng, G. Yu, et al. CRISPR-Cas12-based detection of SARS-CoV-2, Nat. Biotechnol. 38 (2020) 870-874
|
Z. Huang, D. Tian, Y. Liu, et al., Ultra-sensitive and high-throughput CRISPR-p owered COVID-19 diagnosis, Biosens. Bioelectron. 164 (2020), 112316
|
A. East-Seletsky, M.R. O’Connell, S.C. Knight, et al. Two distinct RNase activities of CRISPR-C2c2 enable guide-RNA processing and RNA detection, Nature 538 (2016) 270-273
|
J.S. Gootenberg, O.O. Abudayyeh, J.W. Lee, et al. Nucleic acid detection with CRISPR-Cas13a/C2c2, Science 356 (2017) 438-442
|
J.S. Chen, E. Ma, L.B. Harrington, et al. CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity, Science 360 (2018) 436-439
|
L. Chen, W. Liu, Q. Zhang, et al. RNA based mNGS approach identifies a novel human coronavirus from two individual pneumonia cases in 2019 Wuhan outbreak, Emerg. Microbes Infect. 9 (2020) 313-319
|
M. Wang, A. Fu, B. Hu, et al., Nanopore Targeted Sequencing for the Accurate and Comprehensive Detection of SARS-CoV-2 and Other Respiratory Viruses, Small 16 (2020), 2002169
|
H. Huang, M.J. Sikora, S. Islam, et al. Select sequencing of clonally expanded CD8(+) T cells reveals limits to clonal expansion, Proc. Natl. Acad. Sci. U. S. A. 116 (2019) 8995-9001
|
C.-M. Chang, P. Feng, T.-H. Wu, et al. Profiling of T Cell Repertoire in SARS-CoV-2-Infected COVID-19 Patients Between Mild Disease and Pneumonia, J. Clin. Immunol. 41 (2021) 1131-1145
|
J. Shah, S. Liu, H.-H. Potula, et al., IgG and IgM antibody formation to spike and nucleocapsid proteins in COVID-19 characterized by multiplex immunoblot assays, BMC Infect. Dis. 21 (2021), 325
|
I. Mercurio, V. Tragni, F. Busto, et al. Protein structure analysis of the interactions between SARS-CoV-2 spike protein and the human ACE2 receptor: from conformational changes to novel neutralizing antibodies, Cell. Mol. Life Sci. 78 (2021) 1501-1522
|
Y. Cong, M. Ulasli, H. Schepers, et al. Nucleocapsid Protein Recruitment to Replication-Transcription Complexes Plays a Crucial Role in Coronaviral Life Cycle, J. Virol. 94 (2020), e01925-19
|
M.P. Cheng, C.P. Yansouni, N.E. Basta, et al. Serodiagnostics for Severe Acute Respiratory Syndrome-Related Coronavirus 2 : A Narrative Review, Ann. Intern. Med. 173 (2020) 450-460
|
J.K. Louie, J.K. Hacker, J. Mark, et al. SARS and common viral infections, Emerg. Infect. Dis. 10 (2004) 1143-1146
|
X. Liu, J. Wang, X. Xu, et al. Patterns of IgG and IgM antibody response in COVID-19 patients, Emerg. Microbes Infect. 9 (2020) 1269-1274
|
F. Xiang, X. Wang, X. He, et al. Antibody Detection and Dynamic Characteristics in Patients With Coronavirus Disease 2019, Clin. Infect. Dis. 71 (2020) 1930-1934
|
C.Y.-P. Lee, R.T.P. Lin, L. Renia, et al., Serological Approaches for COVID-19: Epidemiologic Perspective on Surveillance and Control, Front. Immunol. 11 (2020), 879
|
A.J. Jääskeläinen, S. Kuivanen, E. Kekäläinen, et al., Performance of six SARS-CoV-2 immunoassays in comparison with microneutralisation, J. Clin. Virol. 129 (2020), 104512
|
J. Stavnezer, C.E. Schrader, IgH chain class switch recombination: mechanism and regulation, J. Immunol. 193 (2014) 5370-5378
|
H. Hou, T. Wang, B. Zhang, et al., Detection of IgM and IgG antibodies in patients with coronavirus disease 2019, Clin. Transl. Immunol. 9 (2020), e01136
|
H. Ma, W. Zeng, H. He, et al. Serum IgA, IgM, and IgG responses in COVID-19, Cell. Mol. Immunol. 17 (2020) 773-775
|
A. Callegaro, D. Borleri, C. Farina, et al. Antibody response to SARS-CoV-2 vaccination is extremely vivacious in subjects with previous SARS-CoV-2 infection, J. Med. Virol. 93 (2021) 4612-4615
|
V. Roy, S. Fischinger, C. Atyeo, et al., SARS-CoV-2-specific ELISA development, J. Immunol. Methods. 484-485 (2020), 112832
|
J. Xiang, M. Yan, H. Li, et al., Evaluation of enzyme-linked immunoassay and colloidal gold-immunochromatographic assay kit for detection of novel coronavirus (SARS-Cov-2) causing an outbreak of pneumonia (COVID-19), medRxiv. https://www.medrxiv.org/content/10.1101/2020.02.27.20028787v1. (Accessed 1 August 2020).
|
X. Cai, J. Chen, J. Hu, et al. A Peptide-based Magnetic Chemiluminescence Enzyme Immunoassay for Serological Diagnosis of Coronavirus Disease 2019 (COVID-19), J. Infect. Dis. 222 (2020) 189-193
|
Z. Li, Y. Yi, X. Luo, et al. Development and clinical application of a rapid IgM-IgG combined antibody test for SARS-CoV-2 infection diagnosis, J. Med. Virol. 92 (2020) 1518-1524
|
Y. Pan, X. Li, G. Yang, et al. Serological immunochromatographic approach in diagnosis with SARS-CoV-2 infected COVID-19 patients, J. Infect. 81 (2020) e28-e32
|
B. Diao, K. Wen, J. Chen, et al., Diagnosis of acute respiratory syndrome coronavirus 2 infection by detection of nucleocapsid protein, medRxiv. https://www.medrxiv.org/content/10.1101/2020.03.07.20032524v2. (Accessed 20 July 2020).
|
Y.-W. Tang, J.E. Schmitz, D.H. Persing, et al. Laboratory Diagnosis of COVID-19: Current Issues and Challenges, J. Clin. Microbiol. 58 (2020), e00512-e00520
|
G. Seo, G. Lee, M.J. Kim, et al. Rapid Detection of COVID-19 Causative Virus (SARS-CoV-2) in Human Nasopharyngeal Swab Specimens Using Field-Effect Transistor-Based Biosensor, ACS Nano. 14 (2020) 5135-5142
|
S. Mavrikou, G. Moschopoulou, V. Tsekouras, et al., Development of a Portable, Ultra-Rapid and Ultra-Sensitive Cell-Based Biosensor for the Direct Detection of the SARS-CoV-2 S1 Spike Protein Antigen, Sensors (Basel). 20 (2020), 3121
|
S. Mahari, A. Roberts, D. Shahdeo, et al., eCovSens-ultrasensitive novel in-house built printed circuit board based electrochemical device for rapid detection of nCovid-19 antigen, a spike protein domain 1 of SARS-CoV-2, bioRxiv. https://www.biorxiv.org/content/10.1101/2020.04.24.059204v3. (Accessed 30 June 2020).
|
A.D. Ellington, J.W. Szostak, In vitro selection of RNA molecules that bind specific ligands, Nature 346 (1990) 818-822
|
J. Kang, G. Yeom, H. Jang, et al. Development of Replication Protein A-Conjugated Gold Nanoparticles for Highly Sensitive Detection of Disease Biomarkers, Anal. Chem. 91 (2019) 10001-10007
|
K. Ghanbari, M. Roushani, A. Azadbakht, Ultra-sensitive aptasensor based on a GQD nanocomposite for detection of hepatitis C virus core antigen, Anal. Biochem. 534 (2017) 64-69
|
Z. Xi, Q. Gong, C. Wang, et al., Highly sensitive chemiluminescent aptasensor for detecting HBV infection based on rapid magnetic separation and double-functionalized gold nanoparticles, Sci. Rep. 8 (2018), 9444
|
C. Roh, S.K. Jo, Quantitative and sensitive detection of SARS coronavirus nucleocapsid protein using quantum dots-conjugated RNA aptamer on chip, J. Chem. Technol. Biotechnol. 86 (2011) 1475-1479
|
L. Zhang, X. Fang, X. Liu, et al. Discovery of sandwich type COVID-19 nucleocapsid protein DNA aptamers, Chem. Commun. 56 (2020) 10235-10238
|
G.C. Ooi, P.L. Khong, N.L. Muller, et al. Severe Acute Respiratory Syndrome: Temporal Lung Changes at Thin-Section CT in 30 Patients, Radiology 230 (2004) 836-844
|
A. Bernheim, X. Mei, M. Huang, et al., Chest CT findings in coronavirus disease-19 (COVID-19): relationship to duration of infection, Radiology 295 (2020) 200463
|
H.X. Bai, B. Hsieh, Z. Xiong, et al. Performance of Radiologists in Differentiating COVID-19 from Non-COVID-19 Viral Pneumonia at Chest CT, Radiology 296 (2020) E46-E54
|
M. Liu, W. Zeng, Y. Wen, et al. COVID-19 pneumonia: CT findings of 122 patients and differentiation from influenza pneumonia, Eur. Radiol. 30 (2020) 5463-5469
|
X. Xie, Z. Zhong, W. Zhao, et al. Chest CT for Typical Coronavirus Disease 2019 (COVID-19) Pneumonia: Relationship to Negative RT-PCR Testing, Radiology 296 (2020) E41-E45
|
H.Y.F. Wong, H.Y.S. Lam, A.H.-T. Fong, et al. Frequency and Distribution of Chest Radiographic Findings in Patients Positive for COVID-19, Radiology 296 (2020) E72-E78
|
D. Colombi, M. Petrini, G. Maffi, et al. Comparison of admission chest computed tomography and lung ultrasound performance for diagnosis of COVID-19 pneumonia in populations with different disease prevalence, Eur. J. Radiol. (2020), 109344
|