Volume 12 Issue 2
May  2022
Turn off MathJax
Article Contents
Zahra Hassani Nejad, Fataneh Fatemi, Seyed Ehsan Ranaei Siadat. An outlook on coronavirus disease 2019 detection methods[J]. Journal of Pharmaceutical Analysis, 2022, 12(2): 205-214. doi: 10.1016/j.jpha.2021.11.003
Citation: Zahra Hassani Nejad, Fataneh Fatemi, Seyed Ehsan Ranaei Siadat. An outlook on coronavirus disease 2019 detection methods[J]. Journal of Pharmaceutical Analysis, 2022, 12(2): 205-214. doi: 10.1016/j.jpha.2021.11.003

An outlook on coronavirus disease 2019 detection methods

doi: 10.1016/j.jpha.2021.11.003
Funds:

This work was supported by the Protein Research Center of Shahid Beheshti University.

  • Received Date: Sep. 25, 2020
  • Accepted Date: Nov. 07, 2021
  • Rev Recd Date: Oct. 22, 2021
  • Publish Date: Nov. 10, 2021
  • Diagnostic testing plays a fundamental role in the mitigation and containment of coronavirus disease 2019 (COVID-19), as it enables immediate quarantine of those who are infected and contagious and is essential for the epidemiological characterization of the virus and estimating the number of infected cases worldwide. Confirmation of viral infections, such as COVID-19, can be achieved through two general approaches: nucleic acid amplification tests (NAATs) or molecular tests, and serological or antibody-based tests. The genetic material of the pathogen is detected in NAAT, and in serological tests, host antibodies produced in response to the pathogen are identified. Other methods of diagnosing COVID-19 include radiological imaging of the lungs and in vitro detection of viral antigens. This review covers different approaches available to diagnosing COVID-19 by outlining their advantages and shortcomings, as well as appropriate indications for more accurate testing.
  • loading
  • B. Chen, E.-K. Tian, B. He, et al., Overview of lethal human coronaviruses, Signal Transduct. Target. Ther. 5 (2020), 89
    D. Wang, B. Hu, C. Hu, et al. Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China, JAMA. 323 (2020) 1061-1069
    I.M. Villarreal, M. Morato, M. Martínez-RuizCoello, et al. Olfactory and taste disorders in healthcare workers with COVID-19 infection, Eur. Arch. Otorhinolaryngol. 278 (2021) 2123-2127
    J.A. Backer, D. Klinkenberg, J. Wallinga, Incubation period of 2019 novel coronavirus (2019-nCoV) infections among travellers from Wuhan, China, 20-28 January 2020, Euro Surveill. 25 (2020), 2000062
    G. Qian, N. Yang, A.H.Y. Ma, et al. COVID-19 Transmission Within a Family Cluster by Presymptomatic Carriers in China, Clin. Infect. Dis. 71 (2020) 861-862
    F. Ye, S. Xu, Z. Rong, et al. Delivery of infection from asymptomatic carriers of COVID-19 in a familial cluster, Int. J. Infect. Dis. 94 (2020) 133-138
    B.S. Bleier, M. Ramanathan, A.P. Lane, COVID-19 Vaccines May Not Prevent Nasal SARS-CoV-2 Infection and Asymptomatic Transmission, Otolaryngol. Neck Surg. 164 (2020) 305-307
    A. Premraj, A.G. Aleyas, B. Nautiyal, et al., Nucleic Acid and Immunological Diagnostics for SARS-CoV-2: Processes, Platforms and Pitfalls, Diagnostics (Basel). 10 (2020), 866
    V.M. Corman, O. Landt, M. Kaiser, et al., Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR, Euro. Surveill. 25 (2020), 2000045
    J.F.-W. Chan, C.C.-Y. Yip, K.K.-W. To, et al. Improved Molecular Diagnosis of COVID-19 by the Novel, Highly Sensitive and Specific COVID-19-RdRp/Hel Real-Time Reverse Transcription-PCR Assay Validated In Vitro and with Clinical Specimens, J. Clin. Microbiol. 58 (2020), e00310-e00320
    L. Xiu, R.A. Binder, N.A. Alarja, et al., A RT-PCR assay for the detection of coronaviruses from four genera, J. Clin. Virol. 128 (2020), 104391
    S. Petrillo, G. Carra, P. Bottino, et al., A Novel Multiplex qRT-PCR Assay to Detect SARS-CoV-2 Infection: High Sensitivity and Increased Testing Capacity, Microorganisms. 8 (2020), 1064
    T. Ishige, S. Murata, T. Taniguchi, et al. Highly sensitive detection of SARS-CoV-2 RNA by multiplex rRT-PCR for molecular diagnosis of COVID-19 by clinical laboratories, Clin. Chim. Acta. 507 (2020) 139-142
    J. Wang, K. Cai, R. Zhang, et al. Novel One-Step Single-Tube Nested Quantitative Real-Time PCR Assay for Highly Sensitive Detection of SARS-CoV-2, Anal. Chem. 92 (2020) 9399-9404
    W.-M. Chan, J.D. Ip, A.W.-H. Chu, et al. Identification of nsp1 gene as the target of SARS-CoV-2 real-time RT-PCR using nanopore whole-genome sequencing, J. Med. Virol. 92 (2020) 2725-2734
    C.C.-Y. Yip, C.-C. Ho, J.F.-W. Chan, et al., Development of a Novel, Genome Subtraction-Derived, SARS-CoV-2-Specific COVID-19-nsp2 Real-Time RT-PCR Assay and Its Evaluation Using Clinical Specimens, Int. J. Mol. Sci. 21 (2020), 2574
    Y. Matsumura, T. Shimizu, T. Noguchi, et al. Comparison of 12 Molecular Detection Assays for Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), J. Mol. Diagn. 23 (2021) 164-170
    R. Weissleder, H. Lee, J. Ko, et al., COVID-19 diagnostics in context, Sci. Transl. Med. 12 (2020), eabc1931
    R. Lu, X. Zhao, J. Li, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding, Lancet 395 (2020) 565-574
    T. Notomi, H. Okayama, H. Masubuchi, et al. Loop-mediated isothermal amplification of DNA, Nucleic Acids Res. 28 (2000), E63
    M. Imai, A. Ninomiya, H. Minekawa, et al. Development of H5-RT-LAMP (loop-mediated isothermal amplification) system for rapid diagnosis of H5 avian influenza virus infection, Vaccine 24 (2006) 6679-6682
    T.H.T. Cam, L.M. Quynh, V.C. Duc, et al. Development and Evaluation of a Novel Loop-Mediated Isothermal Amplification Method for Rapid Detection of Severe Acute Respiratory Syndrome Coronavirus, J. Clin. Microbiol. 42 (2004) 1956-1961
    K. Shirato, T. Yano, S. Senba, et al., Detection of Middle East respiratory syndrome coronavirus using reverse transcription loop-mediated isothermal amplification (RT-LAMP), Virol. J. 11 (2014), 139
    L.E. Lamb, S.N. Bartolone, E. Ward, et al., Rapid detection of novel coronavirus/Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) by reverse transcription-loop-mediated isothermal amplification, PLoS One 15 (2020), e0234682
    Y. Zhang, N. Odiwuor, J. Xiong, et al., Rapid molecular detection of SARS-CoV-2 (COVID-19) virus RNA using colorimetric LAMP, medRxiv. https://www.medrxiv.org/content/10.1101/2020.02.26.20028373v1. (Accessed 18 July 2020).
    M. Jiang, W. Pan, A. Arasthfer, et al., Development and Validation of a Rapid, Single-Step Reverse Transcriptase Loop-Mediated Isothermal Amplification (RT-LAMP) System Potentially to Be Used for Reliable and High-Throughput Screening of COVID-19, Front. Cell. Infect. Microbiol. 10 (2020), 331
    M.A. Lalli, X. Chen, S.J. Langmade, et al., Rapid and extraction-free detection of SARS-CoV-2 from saliva with colorimetric LAMP, medRxiv. (2020) https://doi.org/10.1101/2020.05.07.20093542
    C. Amaral, W. Antunes, E. Moe, et al., A molecular test based on RT-LAMP for rapid, sensitive and inexpensive colorimetric detection of SARS-CoV-2 in clinical samples, Sci. Rep. 11 (2021), 16430.
    L. Yu, S. Wu, X. Hao, et al. Rapid Detection of COVID-19 Coronavirus Using a Reverse Transcriptional Loop-Mediated Isothermal Amplification (RT-LAMP) Diagnostic Platform, Clin. Chem. 66 (2020) 975-977
    X. Zhu, X. Wang, L. Han, et al., Multiplex reverse transcription loop-mediated isothermal amplification combined with nanoparticle-based lateral flow biosensor for the diagnosis of COVID-19, Biosens. Bioelectron. 166 (2020), 112437
    A. Ganguli, A. Mostafa, J. Berger, et al. Rapid isothermal amplification and portable detection system for SARS-CoV-2., Proc. Natl. Acad. Sci. U. S. A. 117 (2020) 22727-22735
    Y. Kim, A.B. Yaseen, J.Y. Kishi, et al., Single-strand RPA for rapid and sensitive detection of SARS-CoV-2 RNA, medRxiv. (2020) https://doi.org/10.1101/2020.08.17.20177006
    M. El-Tholoth, H.H. Bau, J. Song, A single and two-stage, closed-tube, molecular test for the 2019 novel coronavirus (COVID-19) at home, clinic, and points of entry, ChemRxiv. https://doi.org/10.26434/chemrxiv.11860137. (Accessed 11 April 2020).
    F. Zhang, O.O. Abudayyeh, J.S. Gootenberg, A protocol for detection of COVID- 19 using CRISPR diagnostics. https://www.broadinstitute.org/files/ publications/special/COVID-19 detection. (Accessed 20 August 2020).
    J. Joung, A. Ladha, M. Saito, Point-of-care testing for COVID-19 using SHERLOCK diagnostics, medRxiv. (2020) https://doi.org/10.1101/2020.05.04.20091231
    T. Hou, W. Zeng, M. Yang, et al. Development and evaluation of a rapid CRISPR-based diagnostic for COVID-19, PLoS Pathog. 16 (2020), e1008705
    C. Lucia, P.-B. Federico, G.C. Alejandra, An ultrasensitive, rapid, and portable coronavirus SARS-CoV-2 sequence detection method based on CRISPR-Cas12, BioRxiv. (2020) https://doi.org/10.1101/2020.02.29.971127
    X. Ding, K. Yin, Z. Li, et al., All-in-One Dual CRISPR-Cas12a (AIOD-CRISPR) Assay: A Case for Rapid, Ultrasensitive and Visual Detection of Novel Coronavirus SARS-CoV-2 and HIV virus, BioRxiv. (2020) https://doi.org/10.1101/2020.03.19.998724
    J.P. Broughton, X. Deng, G. Yu, et al. CRISPR-Cas12-based detection of SARS-CoV-2, Nat. Biotechnol. 38 (2020) 870-874
    Z. Huang, D. Tian, Y. Liu, et al., Ultra-sensitive and high-throughput CRISPR-p owered COVID-19 diagnosis, Biosens. Bioelectron. 164 (2020), 112316
    A. East-Seletsky, M.R. O’Connell, S.C. Knight, et al. Two distinct RNase activities of CRISPR-C2c2 enable guide-RNA processing and RNA detection, Nature 538 (2016) 270-273
    J.S. Gootenberg, O.O. Abudayyeh, J.W. Lee, et al. Nucleic acid detection with CRISPR-Cas13a/C2c2, Science 356 (2017) 438-442
    J.S. Chen, E. Ma, L.B. Harrington, et al. CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity, Science 360 (2018) 436-439
    L. Chen, W. Liu, Q. Zhang, et al. RNA based mNGS approach identifies a novel human coronavirus from two individual pneumonia cases in 2019 Wuhan outbreak, Emerg. Microbes Infect. 9 (2020) 313-319
    M. Wang, A. Fu, B. Hu, et al., Nanopore Targeted Sequencing for the Accurate and Comprehensive Detection of SARS-CoV-2 and Other Respiratory Viruses, Small 16 (2020), 2002169
    H. Huang, M.J. Sikora, S. Islam, et al. Select sequencing of clonally expanded CD8(+) T cells reveals limits to clonal expansion, Proc. Natl. Acad. Sci. U. S. A. 116 (2019) 8995-9001
    C.-M. Chang, P. Feng, T.-H. Wu, et al. Profiling of T Cell Repertoire in SARS-CoV-2-Infected COVID-19 Patients Between Mild Disease and Pneumonia, J. Clin. Immunol. 41 (2021) 1131-1145
    J. Shah, S. Liu, H.-H. Potula, et al., IgG and IgM antibody formation to spike and nucleocapsid proteins in COVID-19 characterized by multiplex immunoblot assays, BMC Infect. Dis. 21 (2021), 325
    I. Mercurio, V. Tragni, F. Busto, et al. Protein structure analysis of the interactions between SARS-CoV-2 spike protein and the human ACE2 receptor: from conformational changes to novel neutralizing antibodies, Cell. Mol. Life Sci. 78 (2021) 1501-1522
    Y. Cong, M. Ulasli, H. Schepers, et al. Nucleocapsid Protein Recruitment to Replication-Transcription Complexes Plays a Crucial Role in Coronaviral Life Cycle, J. Virol. 94 (2020), e01925-19
    M.P. Cheng, C.P. Yansouni, N.E. Basta, et al. Serodiagnostics for Severe Acute Respiratory Syndrome-Related Coronavirus 2 : A Narrative Review, Ann. Intern. Med. 173 (2020) 450-460
    J.K. Louie, J.K. Hacker, J. Mark, et al. SARS and common viral infections, Emerg. Infect. Dis. 10 (2004) 1143-1146
    X. Liu, J. Wang, X. Xu, et al. Patterns of IgG and IgM antibody response in COVID-19 patients, Emerg. Microbes Infect. 9 (2020) 1269-1274
    F. Xiang, X. Wang, X. He, et al. Antibody Detection and Dynamic Characteristics in Patients With Coronavirus Disease 2019, Clin. Infect. Dis. 71 (2020) 1930-1934
    C.Y.-P. Lee, R.T.P. Lin, L. Renia, et al., Serological Approaches for COVID-19: Epidemiologic Perspective on Surveillance and Control, Front. Immunol. 11 (2020), 879
    A.J. Jääskeläinen, S. Kuivanen, E. Kekäläinen, et al., Performance of six SARS-CoV-2 immunoassays in comparison with microneutralisation, J. Clin. Virol. 129 (2020), 104512
    J. Stavnezer, C.E. Schrader, IgH chain class switch recombination: mechanism and regulation, J. Immunol. 193 (2014) 5370-5378
    H. Hou, T. Wang, B. Zhang, et al., Detection of IgM and IgG antibodies in patients with coronavirus disease 2019, Clin. Transl. Immunol. 9 (2020), e01136
    H. Ma, W. Zeng, H. He, et al. Serum IgA, IgM, and IgG responses in COVID-19, Cell. Mol. Immunol. 17 (2020) 773-775
    A. Callegaro, D. Borleri, C. Farina, et al. Antibody response to SARS-CoV-2 vaccination is extremely vivacious in subjects with previous SARS-CoV-2 infection, J. Med. Virol. 93 (2021) 4612-4615
    V. Roy, S. Fischinger, C. Atyeo, et al., SARS-CoV-2-specific ELISA development, J. Immunol. Methods. 484-485 (2020), 112832
    J. Xiang, M. Yan, H. Li, et al., Evaluation of enzyme-linked immunoassay and colloidal gold-immunochromatographic assay kit for detection of novel coronavirus (SARS-Cov-2) causing an outbreak of pneumonia (COVID-19), medRxiv. https://www.medrxiv.org/content/10.1101/2020.02.27.20028787v1. (Accessed 1 August 2020).
    X. Cai, J. Chen, J. Hu, et al. A Peptide-based Magnetic Chemiluminescence Enzyme Immunoassay for Serological Diagnosis of Coronavirus Disease 2019 (COVID-19), J. Infect. Dis. 222 (2020) 189-193
    Z. Li, Y. Yi, X. Luo, et al. Development and clinical application of a rapid IgM-IgG combined antibody test for SARS-CoV-2 infection diagnosis, J. Med. Virol. 92 (2020) 1518-1524
    Y. Pan, X. Li, G. Yang, et al. Serological immunochromatographic approach in diagnosis with SARS-CoV-2 infected COVID-19 patients, J. Infect. 81 (2020) e28-e32
    B. Diao, K. Wen, J. Chen, et al., Diagnosis of acute respiratory syndrome coronavirus 2 infection by detection of nucleocapsid protein, medRxiv. https://www.medrxiv.org/content/10.1101/2020.03.07.20032524v2. (Accessed 20 July 2020).
    Y.-W. Tang, J.E. Schmitz, D.H. Persing, et al. Laboratory Diagnosis of COVID-19: Current Issues and Challenges, J. Clin. Microbiol. 58 (2020), e00512-e00520
    G. Seo, G. Lee, M.J. Kim, et al. Rapid Detection of COVID-19 Causative Virus (SARS-CoV-2) in Human Nasopharyngeal Swab Specimens Using Field-Effect Transistor-Based Biosensor, ACS Nano. 14 (2020) 5135-5142
    S. Mavrikou, G. Moschopoulou, V. Tsekouras, et al., Development of a Portable, Ultra-Rapid and Ultra-Sensitive Cell-Based Biosensor for the Direct Detection of the SARS-CoV-2 S1 Spike Protein Antigen, Sensors (Basel). 20 (2020), 3121
    S. Mahari, A. Roberts, D. Shahdeo, et al., eCovSens-ultrasensitive novel in-house built printed circuit board based electrochemical device for rapid detection of nCovid-19 antigen, a spike protein domain 1 of SARS-CoV-2, bioRxiv. https://www.biorxiv.org/content/10.1101/2020.04.24.059204v3. (Accessed 30 June 2020).
    A.D. Ellington, J.W. Szostak, In vitro selection of RNA molecules that bind specific ligands, Nature 346 (1990) 818-822
    J. Kang, G. Yeom, H. Jang, et al. Development of Replication Protein A-Conjugated Gold Nanoparticles for Highly Sensitive Detection of Disease Biomarkers, Anal. Chem. 91 (2019) 10001-10007
    K. Ghanbari, M. Roushani, A. Azadbakht, Ultra-sensitive aptasensor based on a GQD nanocomposite for detection of hepatitis C virus core antigen, Anal. Biochem. 534 (2017) 64-69
    Z. Xi, Q. Gong, C. Wang, et al., Highly sensitive chemiluminescent aptasensor for detecting HBV infection based on rapid magnetic separation and double-functionalized gold nanoparticles, Sci. Rep. 8 (2018), 9444
    C. Roh, S.K. Jo, Quantitative and sensitive detection of SARS coronavirus nucleocapsid protein using quantum dots-conjugated RNA aptamer on chip, J. Chem. Technol. Biotechnol. 86 (2011) 1475-1479
    L. Zhang, X. Fang, X. Liu, et al. Discovery of sandwich type COVID-19 nucleocapsid protein DNA aptamers, Chem. Commun. 56 (2020) 10235-10238
    G.C. Ooi, P.L. Khong, N.L. Muller, et al. Severe Acute Respiratory Syndrome: Temporal Lung Changes at Thin-Section CT in 30 Patients, Radiology 230 (2004) 836-844
    A. Bernheim, X. Mei, M. Huang, et al., Chest CT findings in coronavirus disease-19 (COVID-19): relationship to duration of infection, Radiology 295 (2020) 200463
    H.X. Bai, B. Hsieh, Z. Xiong, et al. Performance of Radiologists in Differentiating COVID-19 from Non-COVID-19 Viral Pneumonia at Chest CT, Radiology 296 (2020) E46-E54
    M. Liu, W. Zeng, Y. Wen, et al. COVID-19 pneumonia: CT findings of 122 patients and differentiation from influenza pneumonia, Eur. Radiol. 30 (2020) 5463-5469
    X. Xie, Z. Zhong, W. Zhao, et al. Chest CT for Typical Coronavirus Disease 2019 (COVID-19) Pneumonia: Relationship to Negative RT-PCR Testing, Radiology 296 (2020) E41-E45
    H.Y.F. Wong, H.Y.S. Lam, A.H.-T. Fong, et al. Frequency and Distribution of Chest Radiographic Findings in Patients Positive for COVID-19, Radiology 296 (2020) E72-E78
    D. Colombi, M. Petrini, G. Maffi, et al. Comparison of admission chest computed tomography and lung ultrasound performance for diagnosis of COVID-19 pneumonia in populations with different disease prevalence, Eur. J. Radiol. (2020), 109344
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (1541) PDF downloads(6) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return