Citation: | Divya S. Parimi, Yamini Gupta, Sreekar Marpu, Chandra S. Bhatt, Tharun K. Bollu, Anil K. Suresh. Nanomagnet-facilitated pharmaco-compatibility for cancer diagnostics:Underlying risks and the emergence of ultrasmall nanomagnets[J]. Journal of Pharmaceutical Analysis, 2022, 12(3): 365-379. doi: 10.1016/j.jpha.2021.11.002 |
S.A. Kumar, M.I. Khan, Heterofunctional nanomaterials:Fabrication, properties and applications in nanobiotechnology, J. Nanosci. Nanotechnol. 7(2010)4124-4134
|
A.K. Suresh, D.A. Pelletier, M.J. Doktycz, Relating nanomaterial properties and microbial toxicity, Nanoscale 5(2013)463-474
|
S.A. Kumar, M.K. Abyaneh, S.W. Gosavi, et al., Sulfite reductase-mediated synthesis of gold nanoparticles capped with phytochelatin, Biotechnol. Appl. Biochem. 47(2007)191-195
|
A.K. Suresh, D.A. Pelletier, W. Wang, et al., Silver Nanocrystallites:Biofabrication using Shewanella oneidensis, and an Evaluation of Their Comparative Toxicity on Gram-negative and Gram-positive Bacteria, Environ. Sci. Technol. 44(2010)5210-5215
|
E.E. White, A. Pai, Y. Weng, et al., Functionalized iron oxide nanoparticles for controlling the movement of immune cells, Nanoscale 7(2015)7780-7789
|
K. Hola, Z. Markova, G. Zoppellaro, et al., Tailored functionalization of iron oxide nanoparticles for MRI, drug delivery, magnetic separation and immobilization of biosubstances, Biotechnol. Adv. 33(2015)1162-1176
|
S.M. Dadfar, K. Roemhild, N.I. Drude, et al., Iron oxide nanoparticles:Diagnostic, therapeutic and theranostic applications, Adv. Drug Deliv. Rev. 138(2019)302-325
|
Y. Shi, M. Lin, X. Jiang, et al., Recent Advances in FePt Nanoparticles for Biomedicine, J. Nanomater. 2015(2015), 467873
|
L. Mohammed, H.G. Gomaa, D. Ragab, et al., Magnetic nanoparticles for environmental and biomedical applications:A review, Particuology 30(2017)1-14
|
S. Laurent, J.-L. Bridot, L.V. Elst, et al., Magnetic iron oxide nanoparticles for biomedical applications, Future Med. Chem. 2(2010)427-449
|
D.K. Chatterjee, P. Diagaradjane, S. Krishnan, Nanoparticle-mediated hyperthermia in cancer therapy, Ther. Deliv. 2(2011)1001-1014
|
P.D. Sawant, Nano-Theranostics for Cancer Management, J. Nanosci. Nanomed. Nanobio. 1(2016)001-009
|
V. Frantellizzi, M. Conte, M. Pontico, et al., New Frontiers in Molecular Imaging with Superparamagnetic Iron Oxide Nanoparticles (SPIONs):Efficacy, Toxicity, and Future Applications, Nucl. Med. Mol. Imaging. 54(2020)65-80
|
R.V.-Ghartavol, A.A. M.-Borojeni, Z.V.-Ghartavol, et al., Toxicity assessment of superparamagnetic iron oxide nanoparticles in different tissues, Artif. Cells Nanomed. Biotechnol. 48(2020)443-451
|
Y. Xiao, J. Du, Superparamagnetic nanoparticles for biomedical applications, J. Mater. Chem. B. 8(2020)354-367
|
D. Zhi, T. Yang, J. Yang, et al., Targeting strategies for superparamagnetic iron oxide nanoparticles in cancer therapy, Acta Biomater. 102(2020)13-34
|
J. Wallyn, N. Anton, T.F. Vandamme, Synthesis, principles, and properties of magnetite nanoparticles for in vivo imaging applications-A review, Pharmaceutics 11(2019)601-630
|
S. Talluri, R.R. Malla, Superparamagnetic Iron Oxide Nanoparticles (SPIONs) for Diagnosis and Treatment of Breast, Ovarian and Cervical Cancers, Curr. Drug Metab. 20(2020)942-945
|
S. Palanisamy, Y.-M. Wang, Superparamagnetic iron oxide nanoparticulate system:synthesis, targeting, drug delivery and therapy in cancer, Dalton Trans. 48(2019)9490-9515
|
M. Musielak, I. Piotrowski, W.M. Suchorska, Superparamagnetic iron oxide nanoparticles (SPIONs) as a multifunctional tool in various cancer therapies, Rep. Pract. Oncol. Radiother. 24(2019)307-314
|
J.D.-Litewka, A. Lazarczyk, P. Halubiec, et al., Superparamagnetic Iron Oxide Nanoparticles-Current and Prospective Medical Applications, Materials 12(2019)617-643
|
L. Zhu, D. Wang, X. Wei, et al., Multifunctional pH-sensitive superparamagnetic iron-oxide nanocomposites for targeted drug delivery and MR imaging, J. Control. Release 169(2013)228-238
|
K. Fan, C. Cao, Y. Pan, et al., Magnetoferritin nanoparticles for targeting and visualizing tumor tissues, Nat. Nanotechnol. 7(2012)459-464
|
M.K. Yu, D. Kim, I.-H. Lee, et al., Image-guided prostate cancer therapy using aptamer-functionalized thermally cross-linked superparamagnetic iron oxide nanoparticles, Small 7(2011)2241-2249
|
R. Hufschmid, H. Arami, R.M. Ferguson, et al., Synthesis of phase-pure and monodisperse iron oxide nanoparticles by thermal decomposition, Nanoscale 7(2015)11142-11154
|
S. Ge, X. Shi, K. Sun, et al., A Facile Hydrothermal Synthesis of Iron Oxide Nanoparticles with Tunable Magnetic Properties, J. Phys. Chem. C. 113(2009)13593-13599
|
R.P. Blakemore, R.B. Frankel, Magnetic Navigation in Bacteria, Sci. Am. Inc. 245(1981)58-65
|
I. Kolinko, A. Lohsse, S. Borg, et al., Biosynthesis of magnetic nanostructures in a foreign organism by transfer of bacterial magnetosome gene clusters, Nat. Nanotechnol. 9(2014)193-197
|
A. Bharde, D. Rautaray, V. Bansal, et al., Extracellular biosynthesis of magnetite using fungi, Small 2(2006)135-141
|
M. Mahdavi, F. Namvar, M.B. Ahmad, et al., Green Biosynthesis and Characterization of Magnetic Iron Oxide (Fe3O4) Nanoparticles Using Seaweed (Sargassum muticum) Aqueous Extract, Molecules 18(2013)5954-5964
|
A. Miri, M. Khatami, M. Sarani, Biosynthesis, Magnetic and Cytotoxic Studies of Hematite Nanoparticles, J. Inorg. Organomet. Polym. Mater. 30(2019)767-774
|
A. Van de Walle, A.P. Sangnier, A.A.-Hassan, et al., Biosynthesis of magnetic nanoparticles from nano-degradation products revealed in human stem cells, Proc. Natl. Acad. Sci. 116(2019)4044-4053
|
K. Knop, R. Hoogenboom, D. Fischer, et al., Poly (ethylene glycol) in drug delivery:pros and cons as well as potential alternatives, Angew. Chem. Int. Ed. Engl. 49(2010)6288-6308
|
J. Wang, B. Zhang, L. Wang, et al., One-pot synthesis of water-soluble superparamagnetic iron oxide nanoparticles and their MRI contrast effects in the mouse brains, Mater. Sci. Eng. C. 48(2015)416-423
|
M.I. Majeed, Q. Lu, W. Yan, et al., Highly water-soluble magnetic iron oxide (Fe3O4) nanoparticles for drug delivery:enhanced in vitro therapeutic efficacy of doxorubicin and MION conjugates, J. Mater. Chem. B. 1(2013)2874-2884
|
Z. Cheng, Y. Dai, X. Kang, et al., Gelatin-encapsulated iron oxide nanoparticles for platinum (IV) prodrug delivery, enzyme-stimulated release and MRI, Biomaterials 35(2014)6359-6368
|
H. Xu, ZP. Aguilar, L. Yang, et al., Antibody conjugated magnetic iron oxide nanoparticles for cancer cell separation in fresh whole blood, Biomaterials 32(2011)9758-9765
|
D. Smejkalova, K. Nesporova, G.H.-Angeles, et al., Selective in vitro anticancer effect of superparamagnetic iron oxide nanoparticles loaded in hyaluronan polymeric micelles, Biomacromolecules 15(2014)4012-4020
|
S. Sulek, B. Mammadov, D.I. Mahcicek, et al., Peptide functionalized superparamagnetic iron oxide nanoparticles as MRI contrast agents, J. Mater. Chem. 21(2011)15157-15162
|
G. Kandasamy, A. Sudame, T. Luthra, et al., Functionalized Hydrophilic Superparamagnetic Iron Oxide Nanoparticles for Magnetic Fluid Hyperthermia Application in Liver Cancer Treatment, ACS Omega. 3(2018)3991-4005
|
D.K. Kim, M. Mikhaylova, F.H. Wang, et al., Starch-Coated Superparamagnetic Nanoparticles as MR Contrast Agents, Chem. Mater. 15(2003)4343-4351
|
Z. Wang, L. Zhao, P. Yang, et al., Water-soluble amorphous iron oxide nanoparticles synthesized by a quickly pestling and nontoxic method at room temperature as MRI contrast agents, Chem. Eng. J. 235(2014)231-235
|
H.L. Chee, C.R.R. Gan, M. Ng, et al., Biocompatible Peptide-Coated Ultrasmall Superparamagnetic Iron Oxide Nanoparticles for In Vivo Contrast-Enhanced Magnetic Resonance Imaging, ACS Nano. 12(2018)6480-6491
|
H. Gu, K. Xu, Z. Yang, et al., Synthesis and cellular uptake of porphyrin decorated iron oxide nanoparticles-a potential candidate for bimodal anticancer therapy, Chem. Commun.(2005)4270-4272
|
H. Chen, X. Wu, H. Duan, et al., Biocompatible Polysiloxane-Containing Diblock Copolymer PEO-b-PγMPS for Coating Magnetic Nanoparticles, ACS Appl. Mater. Interfaces 1(2009)2134-2140
|
Q. Xia, Y. Zhang, Z. Li, et al., Red blood cell membrane-camouflaged nanoparticles:a novel drug delivery system for antitumor application, Acta Pharm. Sin. B. 9(2019)675-689
|
L. Rao, B. Cai, L.-L. Bu, et al., Microfluidic Electroporation-Facilitated Synthesis of Erythrocyte Membrane-Coated Magnetic Nanoparticles for Enhanced Imaging-Guided Cancer Therapy, ACS Nano. 11(2017)3496-3505
|
Q.-F. Meng, L. Rao, M. Zan, et al., Macrophage membrane-coated iron oxide nanoparticles for enhanced photothermal tumor therapy, Nanotechnology 29(2018), 134004
|
A. Elfick, G. Rischitor, R. Mouras, et al., Biosynthesis of magnetic nanoparticles by human mesenchymal stem cells following transfection with the magnetotactic bacterial gene mms6, Sci. Rep. 7(2017)1-8
|
A. Aires, S.M. Ocampo, B.M. Simoes, et al., Multifunctionalized iron oxide nanoparticles for selective drug delivery to CD44-positive cancer cells, Nanotechnol. 27(2016), 065103
|
W.-J. Hsieh, C.-J. Liang, J.-J. Chieh, et al., In vivo tumor targeting and imaging with anti-vascular endothelial growth factor antibody-conjugated dextran-coated iron oxide nanoparticles, Int. J. Nanomed. 7(2012)2833-2842
|
C.A. Quinto, P. Mohindra, S. Tong, et al., Multifunctional superparamagnetic iron oxide nanoparticles for combined chemotherapy and hyperthermia cancer treatment, Nanoscale 7(2015)12728-12736
|
J. Huang, L. Wang, R. Lin, et al., Casein-Coated Iron Oxide Nanoparticles for High MRI Contrast Enhancement and Efficient Cell Targeting, ACS Appl. Mater. Interfaces 5(2013)4632-4639
|
L. Qi, L. Wu, S. Zheng, et al., Cell-Penetrating Magnetic Nanoparticles for Highly Efficient Delivery and Intracellular Imaging of siRNA, Biomacromolecules 13(2012)2723-2730
|
H.Y. Yang, M.-S. Jang, Y. Li, et al., Hierarchical tumor acidity-responsive self-assembled magnetic nanotheranostics for bimodal bioimaging and photodynamic therapy, J. Control. Release 301(2019)157-165
|
M. Wu, D. Zhang, Y. Zeng, et al., Nanocluster of superparamagnetic iron oxide nanoparticles coated with poly (dopamine) for magnetic field-targeting, highly sensitive MRI and photothermal cancer therapy, Nanotechnology 26(2015), 115102
|
J. Kim, S. Park, J.E. Lee, et al., Designed fabrication of multifunctional magnetic gold nanoshells and their application to magnetic resonance imaging and photothermal therapy, Angew. Chem. Int. Ed. Engl. 45(2006)7754-7758
|
A. Espinosa, R.D Corato, J.K.-Tabi, et al., Duality of Iron Oxide Nanoparticles in Cancer Therapy:Amplification of Heating Efficiency by Magnetic Hyperthermia and Photothermal Bimodal Treatment, ACS Nano. 10(2016)2436-2446
|
T. Sadhuka, T.S. Wiedmann, J. Panyam, Inhalable magnetic nanoparticles for targeted hyperthermia in lung cancer therapy, Biomaterials 34(2013)5163-5171
|
B. Shapiro, Towards dynamic control of magnetic fields to focus magnetic carriers to targets deep inside the body, J. Magn. Magn. Mater. 321(2009)1594
|
H. Xu, L. Cheng, C. Wang, et al., Polymer encapsulated upconversion nanoparticle/iron oxide nanocomposites for multimodal imaging and magnetic targeted drug delivery, Biomaterials 32(2011)9364-9373
|
C.-Y. Wen, L.-L. Wu, Z.-L. Zhang, et al., Quick-Response Magnetic Nanospheres for Rapid, Efficient Capture and Sensitive Detection of Circulating Tumor Cells, ACS Nano. 8(2013)941-949
|
J.-H. Lee, J. Jang, J. Choi, et al., Exchange-coupled magnetic nanoparticles for efficient heat induction, Nat. Nanotechnol. 6(2011)418-422
|
N.K. Verma, K.C.-Staunton, A. Satti, et al., Magnetic core-shell nanoparticles for drug delivery by nebulization, J. Nanobiotechnol. 11(2013)1-12
|
A. Curcio, A.K.A. Silva, S. Cabana, et al., Iron Oxide Nanoflowers@CuS Hybrids for Cancer Tri-Therapy:Interplay of Photothermal Therapy, Magnetic Hyperthermia and Photodynamic Therapy, Theranostics 9(2019)1288-1302
|
M. Gorgizadeh, N. Behzadpour, F. Salehi, et al., A MnFe2O4/C nanocomposite as a novel theranostic agent in MRI, sonodynamic therapy and photothermal therapy of a melanoma cancer model, J. Alloys Compd. 816(2020), 152597
|
G. Kandasamy, A. Sudame, P. Bhati, et al., Systematic magnetic fluid hyperthermia studies of carboxyl functionalized hydrophilic superparamagnetic iron oxide nanoparticles based ferrofluids, J. Colloid. Interface Sci. 514(2018)534-543
|
C.J. Legge, H.E. Colley, M.A. Lawson, et al., Targeted magnetic nanoparticle hyperthermia for the treatment of oral cancer, J. Oral Pathol. Med. 48(2019)803-809
|
P. Guardia, R.D. Corato, L. Lartigue, et al., Water-Soluble Iron Oxide Nanocubes with High Values of Specific Absorption Rate for Cancer Cell Hyperthermia Treatment, ACS Nano. 6(2012)3080-3091
|
Z. Abed, J. Beik, S. Laurent, et al., Iron oxide-gold core-shell nano-theranostic for magnetically targeted photothermal therapy under magnetic resonance imaging guidance, J. Cancer Res. Clin. Oncol. 145(2019)1213-1219
|
M. Baneshi, S. Dadfarnia, A.M.H. Shabani, et al., A novel theranostic system of AS1411 aptamer-functionalized albumin nanoparticles loaded on iron oxide and gold nanoparticles for doxorubicin delivery, Int. J. Pharm. 564(2019)145-152
|
X. Song, H. Gong, S. Yin, et al., Ultra-Small Iron Oxide Doped Polypyrrole Nanoparticles for In Vivo Multimodal Imaging Guided Photothermal Therapy, Adv. Funct. Mater. 24(2014)1194-1201
|
T. Liu, S. Shi, C. Liang, et al., Iron Oxide Decorated MoS2 Nanosheets with Double PEGylation for Chelator-Free Radiolabeling and Multimodal Imaging Guided Photothermal Therapy, ACS Nano. 9(2015)950-960
|
P.J. Sugumaran, X.L. Liu, T.S. Herng, et al., GO-Functionalized Large Magnetic Iron Oxide Nanoparticles with Enhanced Colloidal Stability and Hyperthermia Performance, ACS Appl. Mater. Interfaces 11(2019)22703-22713
|
Y. Cao, J. Min, D. Zheng, eat al., Vehicle-saving theranostic probes based on hydrophobic iron oxide nanoclusters using doxorubicin as a phase transfer agent for MRI and chemotherapy, Chem. Commun. 55(2019)9015-9018
|
P. Wang, Y. Shi, S. Zhang, et al., Hydrogen Peroxide Responsive Iron-Based Nanoplatform for Multimodal Imaging-Guided Cancer Therapy, Small 15(2019), 1803791
|
Z. Fan, M. Shelton, A.K. Singh, et al., Multifunctional Plasmonic Shell-Magnetic Core Nanoparticles for Targeted Diagnostics, Isolation, and Photothermal Destruction of Tumor Cells, ACS Nano. 6(2012)1065-1073
|
N.-H. Cho, T.-C. Cheong, J.H. Min, et al., A multifunctional core-shell nanoparticle for dendritic cell-based cancer immunotherapy, Nat. Nanotechnol. 6(2011)675-682
|
T. Zare, N. Sattarahmady, A Mini-Review of Magnetic Nanoparticles:Applications in Biomedicine., Basic Clin. Cancer Res. 7(2015)29-39
|
J. Terrovitis, M. Stuber, A. Youssef, et al., Magnetic resonance imaging overestimates ferumoxide-labeled stem cell survival after transplantation in the heart, Circulation 117(2008)1555-1562
|
H. Bae, T. Ahmad, I. Rhee, et al., Carbon-coated iron oxide nanoparticles as contrast agents in magnetic resonance imaging, Nanoscale Res. Lett. 7(2012)44-49
|
H. Lee, E. Lee, D.K. Kim, et al., Antibiofouling Polymer-Coated Superparamagnetic Iron Oxide Nanoparticles as Potential Magnetic Resonance Contrast Agents for in Vivo Cancer Imaging, J. Am. Chem. Soc. 128(2006)7383-7389
|
Z. Zhao, Z. Zhou, J. Bao, et al., Octapod iron oxide nanoparticles as high-performance T2 contrast agents for magnetic resonance imaging, Nat. Commun. 4(2013)1-7
|
K.W.-Ciecwierz, M. Wis¨niewski, A.P. Terzyk, et al., The chemistry of bioconjugation in nanoparticles-based drug delivery system, Adv. Condens. Matter Phys. 2015(2015), 198175
|
S.A. Kumar, Y.A. Peter, J.L. Nadeau, Facile biosynthesis, separation and conjugation of gold nanoparticles to doxorubicin, Nanotechnology 19(2008), 495101
|
G.Y. Lee, W.P. Qian, L. Wang, et al., Theranostic Nanoparticles with Controlled Release of Gemcitabine for Targeted Therapy and MRI of Pancreatic Cancer, ACS Nano. 7(2013)2078-2089
|
N. Gao, E.N. Bozeman, W. Qian, et al., Tumor Penetrating Theranostic Nanoparticles for Enhancement of Targeted and Image-guided Drug Delivery into Peritoneal Tumors following Intraperitoneal Delivery, Theranostics 7(2017)1689-1704
|
C. Ansari, G.A. Tikhomirov, S.H. Hong, et al., Development of novel tumor-targeted theranostic nanoparticles activated by membrane-type matrix metalloproteinases for combined cancer magnetic resonance imaging and therapy, Small 10(2014)566-575
|
F.M. Kievit, O. Veiseh, C. Fang, et al., Chlorotoxin Labeled Magnetic Nanovectors for Targeted Gene Delivery to Glioma, ACS Nano. 4(2010)4587-4594
|
I. Gessner, X. Yu, C. Jungst, et al., Selective Capture and Purification of MicroRNAs and Intracellular Proteins through Antisense-vectorized Magnetic Nanobeads, Sci. Rep. 9(2019)1-10
|
G.-Y. Liou, P. Storz, Reactive oxygen species in cancer, Free Radic. Res. 44(2010)479-496
|
E. Paszko, C. Ehrhardt, M.O. Senge, et al., Nanodrug applications in photodynamic therapy, Photodiagnosis Photodyn. Ther. 8(2011)14-29
|
A.B. Seabra, Iron Oxide Magnetic Nanoparticles in Photodynamic Therapy:A Promising Approach against Tumor Cells, Metal Nanoparticles in Pharma, Springer, Cham, 2017, pp. 3-20
|
Z. Zhen, W. Tang, C. Guo, et al., Ferritin Nanocages to Encapsulate and Deliver Photosensitizers for Efficient Photodynamic Therapy against Cancer, ACS Nano. 7(2013)6988-6996
|
D. Wang, B. Fei, L.V. Halig, et al., Targeted Iron-Oxide Nanoparticle for Photodynamic Therapy and Imaging of Head and Neck Cancer, ACS Nano. 8(2014)6620-6632
|
J. Estelrich, M.A. Busquets, Iron Oxide Nanoparticles in Photothermal Therapy, Molecules 23(2018)1567-1593
|
M. Zhang, Y. Cao, L. Wang, et al., Manganese Doped Iron Oxide Theranostic Nanoparticles for Combined T1 Magnetic Resonance Imaging and Photothermal Therapy, ACS Appl. Mater. Interfaces 7(2015)4650-4658
|
X.-D. Li, X.-L. Liang, X.-L. Yue, et al., Imaging guided photothermal therapy using iron oxide loaded poly (lactic acid) microcapsules coated with graphene oxide, J. Mater. Chem. B. 2(2013)217-223
|
H. Chen, J. Burnett, F. Zhang, et al., Highly crystallized iron oxide nanoparticles as effective and biodegradable mediators for photothermal cancer therapy, J. Mater. Chem. B. 2(2014)757-765
|
S. Balivada, R.S. Rachakatla, H. Wang, et al., A/C magnetic hyperthermia of melanoma mediated by iron (0)/iron oxide core/shell magnetic nanoparticles:a mouse study, BMC Cancer 10(2010)1-9
|
F. Mohammad, G. Balaji, A. Weber, et al., Influence of Gold Nanoshell on Hyperthermia of Super Paramagnetic Iron Oxide Nanoparticles (SPIONs), J. Phys. Chem. C. Nanomater. Interfaces 114(2010)19194-19201
|
Z.-Q. Zhang, S.-C. Song, Thermosensitive/superparamagnetic iron oxide nanoparticle-loaded nanocapsule hydrogels for multiple cancer hyperthermia, Biomaterials 106(2016)13-23
|
A.E. Beeran, F.B. Fernandez, P.R.H. Varma, Self-Controlled Hyperthermia& MRI Contrast Enhancement via Iron Oxide Embedded Hydroxyapatite Superparamagnetic particles for Theranostic Application, ACS Biomater. Sci. Eng. 5(2018)106-113
|
S. Kossatz, J. Grandke, P. Couleaud, et al., Efficient treatment of breast cancer xenografts with multifunctionalized iron oxide nanoparticles combining magnetic hyperthermia and anti-cancer drug delivery, Breast Cancer Res. 17(2015)66-83
|
A. Nacev, S.H. Kim, J. R.-Canales, et al., A dynamic magnetic shift method to increase nanoparticle concentration in cancer metastases:a feasibility study using simulations on autopsy specimens, Int. J. Nanomed. 6(2011)2907-2923
|
F. Zhang, Y.-A. Lin, S. Kannan, et al., Targeting specific cells in the brain with nanomedicines for CNS therapies, J. Control. Release 240(2016)212-226
|
B. Chertok, B.A. Moffat, A.E. David, et al., Iron Oxide Nanoparticles as a Drug Delivery Vehicle for MRI Monitored Magnetic Targeting of Brain Tumors, Biomaterials 29(2008)487-496
|
R. Harrison, J. Luckett, S. Marsh, et al., Magnetically Assisted Control of Stem Cells Applied in 2D, 3D and In Situ Models of Cell Migration, Molecules 24(2019)1563-1579
|
X. Ma, H. Tao, K. Yang, et al., A functionalized graphene oxide-iron oxide nanocomposite for magnetically targeted drug delivery, photothermal therapy, and magnetic resonance imaging, Nano. Res. 5(2012)199-212
|
M.H. Chan, M.R. Hsieh, R.S. Liu, et al., Magnetically Guided Theranostics:Optimizing Magnetic Resonance Imaging with Sandwich-Like Kaolinite-Based Iron/Platinum Nanoparticles for Magnetic Fluid Hyperthermia and Chemotherapy, Chem. Mater. 32(2020)697-708
|
M. Wierucka, M. Biziuk, Application of magnetic nanoparticles for magnetic solid-phase extraction in preparing biological, environmental and food samples, TrAC Trends. Analyt. Chem. 59(2014)50-58
|
S. Tong, B. Ren, Z. Zheng, et al., Tiny Grains Give Huge Gains:Nanocrystal-Based Signal Amplification for Biomolecule Detection, ACS Nano. 7(2013)5142-5150
|
I.K. Herrmann, M. Urner, F.M. Koehler, et al., Blood purification using functionalized core/shell nanomagnets, Small 6(2010)1388-1392
|
W. Li, L. Yang, F. Wang, et al., Gas-Assisted Superparamagnetic Extraction for Potential Large-Scale Separation of Proteins, Ind. Eng. Chem. Res. 52(2013)4290-4296
|
S. Mohapatra, D. Pal, S.K. Ghosh, et al., Design of superparamagnetic iron oxide nanoparticle for purification of recombinant proteins, J. Nanosci. Nanotechnol. 7(2007)3193-3199
|
M.K. Moazen, H. A. Panahi, Magnetic iron oxide nanoparticles grafted N-isopropylacrylamide/chitosan copolymer for the extraction and determination of letrozole in human biological samples, J. Sep. Sci. 40(2017)1125-1132
|
L. Sun, D.Y. Joh, A.A.-Zaki, et al., Theranostic Application of Mixed Gold and Superparamagnetic Iron Oxide Nanoparticle Micelles in Glioblastoma Multiforme, J. Biomed. Nanotechnol. 12(2016)347-356
|
A.R.K. Sasikala, R.G. Thomas, A.R. Unnithan, et al., Multifunctional Nanocarpets for Cancer Theranostics:Remotely Controlled Graphene Nanoheaters for Thermo-Chemosensitisation and Magnetic Resonance Imaging, Sci. Rep. 6(2016), 20543
|
Y.-N. Wu, L.-X. Yang, X.-Y. Shi, et al., The selective growth inhibition of oral cancer by iron core-gold shell nanoparticles through mitochondria-mediated autophagy, Biomaterials 32(2011)4565-4573
|
N. Feliu, D. Docter, M. Heine, et al., In vivo degeneration and the fate of inorganic nanoparticles, Chem. Soc. Rev. 45(2016)2440-2457
|
G. Kandasamy, D. Maity, Recent advances in superparamagnetic iron oxide nanoparticles (SPIONs) for in vitro and in vivo cancer nanotheranostics, Int. J. Pharm. 496(2015)191-218
|
J. Oh, M.D. Feldman, J. Kim, et al., Detection of magnetic nanoparticles in tissue using magneto-motive ultrasound, Nanotechnology 17(2006)4183-4190
|
M. Mahmoudi, H. Hofmann, B.R.-Rutishauser, et al., Assessing the In Vitro and In Vivo Toxicity of Superparamagnetic Iron Oxide Nanoparticles, Chem. Rev. 112(2011)2323-2338
|
M. Shi, J. Zhang, J. Li, et al., Polydopamine-coated magnetic mesoporous silica nanoparticles for multimodal cancer theranostics, J. Mater. Chem. B. 7(2019)368-372
|
H. Zhou, J. Tang, J. Li, et al., In vivo aggregation-induced transition between T1 and T2 relaxations of magnetic ultra-small iron oxide nanoparticles in tumor microenvironment, Nanoscale 9(2017)3040-3050
|
Z. Shen, T. Chen, X. Ma, et al., Multifunctional Theranostic Nanoparticles Based on Exceedingly Small Magnetic Iron Oxide Nanoparticles for T1-Weighted Magnetic Resonance Imaging and Chemotherapy, ACS Nano. 11(2017)10992-11004
|
Y. Zou, D. Li, Y. Wang, et al., Polyethylenimine Nanogels Incorporated with Ultrasmall Iron Oxide Nanoparticles and Doxorubicin for MR Imaging-Guided Chemotherapy of Tumors, Bioconjugate Chem. 31(2020)907-915
|
N. Zhang, Y. Wang, C. Zhang, et al., LDH-stabilized ultrasmall iron oxide nanoparticles as a platform for hyaluronidase-promoted MR imaging and chemotherapy of tumors, Theranostics 10(2020)2791-2802
|
X. Hao, B. Xu, H. Chen, et al., Stem cell-mediated delivery of nanogels loaded with ultrasmall iron oxide nanoparticles for enhanced tumor MR imaging, Nanoscale 11(2019)4904-4910
|
N. Denora, C. Lee, R.M. lacobazzi, et al., TSPO-targeted NIR-fluorescent ultra-small iron oxide nanoparticles for glioblastoma imaging, Eur. J. Pharm. Sci. 139(2019), 105047
|
S. Park, J.A. Sherwood, R.M. Hauser et al., Surface Effects of Ultrasmall Iron Oxide Nanoparticles on Cellular Uptake, Proliferation, and Multipotency of Neural Stem Cells, ACS Appl. Nano. Mater. 3(2020)1542-1552
|
J.G.-Fernandez, D. Turiel, J. Bettmer, et al., In vitro and in situ experiments to evaluate the biodistribution and cellular toxicity of ultrasmall iron oxide nanoparticles potentially used as oral iron supplements, Nanotoxicology 14(2020)388-403
|