Citation: | Yingai Sun, Yuqi Gao, Chunchao Tang, Gaopan Dong, Pei Zhao, Dunquan Peng, Tiantian Wang, Lupei Du, Minyong Li. Multiple rapid-responsive probes for hypochlorite detection based on dioxetane luminophore derivatives[J]. Journal of Pharmaceutical Analysis, 2022, 12(3): 446-452. doi: 10.1016/j.jpha.2021.10.001 |
S.J Klebanoff, Myeloperoxidase:friend and foe, J. Leukoc. Biol. 77(2005)598-625
|
S. Gross, S.T. Gammon, B.L. Moss, et al., Bioluminescence imaging of myeloperoxidase activity in vivo, Nat. Med. 15(2009)455-461
|
M.B. Hampton, A.J. Kettle, C.C. Winterbourn, Inside the neutrophil phagosome:oxidants, Myeloperoxidase, and bacterial killing, Blood 92(1998)3007-3017
|
Y.W. Yap, M. Whiteman, N.S. Cheung, Chlorinative stress:an under appreciated mediator of neurodegeneration?Cell. Signal. 19(2007)219-228
|
S.J. Klebanoff, A.J. Kettle, H. Rosen, et al., Myeloperoxidase:a front-line defender against phagocytosed microorganisms, J. Leukoc. Biol. 93(2013)185-198
|
M.J. Steinbeck, L.J. Nesti, P.F. Sharkey, et al., Myeloperoxidase and chlorinated peptides in osteoarthritis:Potential Biomarkers of the Disease, J. Orthop. Res. 25(2007)1128-1135
|
D.I. Pattison, M.J. Davies, Evidence for rapid inter-and intramolecular chlorine transfer reactions of histamine and carnosine chloramines:implications for the prevention of hypochlorous-acid-mediated damage, Biochemistry 45(2006)8152-8162
|
A.M. Cantin, S.L. North, G.A. Fells, et al., Oxidant-mediated epithelial cell injury in idiopathic pulmonary fibrosis, J. Clin. Invest. 79(1987)1665-1673
|
C.L. Hawkins, M.J. Davies, Degradation of hyaluronic acid, poly-and monosaccharides, and model compounds by hypochlorite:evidence for radical intermediates and fragmentation, Free Radic. Biol. Med. 24(1998)1396-1410
|
E. Malle, T. Buch, H.J. Grone, Myeloperoxidase in kidney disease, Kidney Int. 64(2003)1956-1967
|
O. Ordeig, R. Mas, J. Gonzalo, et al., Continuous detection of hypochlorous acid/hypochlorite for water quality monitoring and control, Electroanalysis 17(2005)1641-1648
|
I. Seymour, B. O'Sullivan, P. Lovera, et al., Electrochemical detection of free-chlorine in Water samples facilitated by in-situ pH control using interdigitated microelectrodes, Sens. Actuators B Chem. 325(2020)128774
|
D.S. Jackson, D.F. Crockett, K.A. Wolnik, The indirect detection of bleach (sodium hypochlorite) in beverages as evidence of product tampering, J. Forensic Sci. 51(2006)827-831
|
A. Gallina, P. Pastore, F. Magno, The use of nitrite ion in the chromatographic determination of large amounts of hypochlorite ion and of traces of chlorite and chlorate ions, Analyst 124(1999)1439-1442
|
A. Chaurasia, K.K. Verma, Flow-injection spectrophotometric determination of residual free chlorine and chloramine, Fresen. J. Anal. Chem. 351(1995)335-337
|
N.O. Soto, B. Horstkotte, J.G. March, et al., An environmental friendly method for the automatic determination of hypochlorite in commercial products using multisyringe flow injection analysis, Anal. Chim. Acta 611(2008)182-186
|
A.P. Soldatkin, D.V. Gorchkov, C. Martelet, et al., New enzyme potentiometric sensor for hypochlorite species detection, Sens. Actuators B Chem. 43(1997)99-104
|
T. Zhang, Y. Li, Z. Zheng, et al., In situ monitoring apoptosis process by a self-reporting photosensitizer, J. Am. Chem. Soc. 141(2019)5612-5616
|
Y.L. Pak, S.J. Park, D. Wu, et al., N-Heterocyclic carbene boranes as reactive oxygen species-responsive materials:application to the two-photon imaging of hypochlorous acid in living cells and tissues, Angew. Chem. Int. Ed. 57(2018)1567-1571
|
M. Li, T. Xiong, J. Du, et al., Superoxide radical photogenerator with amplification effect:surmounting the Achilles'heels of photodynamic oncotherapy, J. Am. Chem. Soc. 141(2019)2695-2702
|
X Liu., H. Lai, J. Peng, et al., Chromophore-modified highly selective ratiometric upconversion nanoprobes for detection of ONOO-related hepatotoxicity in vivo, Small 15(2019)1902737
|
R. Zhang, B. Song, J. Yuan, Bioanalytical methods for hypochlorous acid detection:recent advances and challenges, TrAC-Trends Anal. Chem. 99(2018)1-33
|
H. Xiao, K. Xin, H. Dou, et al., A fast-responsive mitochondria-targeted fluorescent probe detecting endogenous hypochlorite in living RAW 264.7 cells and nude mouse, Chem Comm 51(2015)1442-1445
|
Q. Xu, C.H. Heo, J.A. Kim, et al., A selective imidazoline-2-thione-bearing two-photon fluorescent probe for hypochlorous acid in mitochondria, Anal. Chem. 88(2016)6615-6620
|
B. Zhu, P. Li, W. Shu, et al., Highly specific and ultrasensitive two-photon fluorescence imaging of native HOCl in lysosomes and tissues based on thiocarbamate derivatives, Anal. Chem. 88(2016)12532-12538
|
C. Tang, Y. Gao, T. Liu, et al., Bioluminescent probe for detecting endogenous hypochlorite in living mice, Org. Biomol. Chem. 16(2018)645-651
|
A.P. Schaap, T.S. Chen, R.S. Handley, et al., Cheminform abstract:chemical and enzymatic triggering of 1,2-dioxetanes. Part 2. Fluoride-induced chemiluminescence from tert-butyldimethylsilyloxy-substituted dioxetanes, Cheminform 18(1987)1155-1158
|
A.P. Schaap, M.D. Sandison, R.S. Handley, Cheminform abstract:chemical and enzymatic triggering of 1,2-dioxetanes. Part 3. Alkaline phosphatase-catalyzed chemiluminescence from an aryl phosphate-substituted dioxetane, Cheminform 18(1987)1159-1162
|
A.P. Schaap, T.S. Chen, R.S. Handley, et al., Chemical and enzymatic triggering of 1,2-dioxetanes. 2. Fluoride-induced chemiluminescence from tert-butyldimethylsilyloxy-substituted dioxetanes, Tetrahedron Lett. 28(1987)1155-1158
|
N. Hananya, D. Shabat, A glowing trajectory between bio-and chemiluminescence:from luciferin-based probes to triggerable dioxetanes, Angew. Chem. Int. Ed. 56(2017)16454-16463
|
M. Matsumoto, Advanced chemistry of dioxetane-based chemiluminescent substrates originating from bioluminescence, J. Photoch. Photobio. C 5(2004)27-53
|
M. Matsumoto, N. Watanabe, N. Hoshiya, et al., Color modulation for intramolecular charge-transfer-induced chemiluminescence of 1,2-dioxetanes, Chem. Rec. 8(2008)213-228
|
N. Hananya, D. Shabat, Recent advances and challenges in luminescent imaging:bright outlook for chemiluminescence of dioxetanes in water, ACS Central Science 5(2019)949-959
|
I.S. Turan, E.U. Akkaya, Chemiluminescence sensing of fluoride ions using a self-immolative amplifier, Org. Lett. 16(2014)1680-1683
|
J. Cao, R. Lopez, J.M. Thacker, et al., Chemiluminescent probes for imaging H2S in living animals, Chem. Sci. 6(2015)1979-1985
|
J. Cao, J. Campbell, L. Liu, et al., In vivo chemiluminescent imaging agents for nitroreductase and tissue oxygenation, Anal. Chem. 88(2016)4995-5002
|
I.S. Turan, O. Yilmaz, B. Karatas, et al., A sensitive and selective chemiluminogenic probe for palladium, RSC Adv. 5(2015)34535-34540
|
I.S. Turan, O. Seven, S. Ayan, et al., Amplified chemiluminescence signal for sensing fluoride ions, ACS Omega 2(2017)3291-3295
|
O. Green, S. Gnaim, R. Blau, et al., Near-infrared dioxetane luminophores with direct chemiluminescence emission mode, J. Am. Chem. Soc. 139(2017)13243-13248
|
O. Green, T. Eilon, N. Hananya, et al., Opening a gateway for chemiluminescence cell imaging:distinctive methodology for design of bright chemiluminescent dioxetane probes, ACS Cent. Sci. 3(2017)349-358
|
N. Hananya, A.E. Boock, C.R. Bauer, et al., Remarkable enhancement of chemiluminescent signal by dioxetane-fluorophore conjugates:turn-ON chemiluminescence probes with color modulation for sensing and imaging, J. Am. Chem. Soc. 138(2016)13438-13446
|
M. Matsumoto, Y. Mizoguchi, T. Motoyama, et al., Base-induced chemiluminescence of 5-tert-butyl-1-(4-hydroxybenz[d]oxazol-6-yl)-4,4-dimethyl-2,6,7-trioxabicyclo[3.2.0] heptanes:chemiluminescence-chemiexcitation profile in aqueous medium, Tetrahedron Lett. 42(2001)8869-8872
|
I. Bronstein, B. Edwards, J.C. Voyta, 1,2-Dioxetanes:novel chemiluminescent enzyme substrates. Applications to immunoassays, J. Biolum. Chemilum. 4(1989)99-111
|
B. Gu, C. Dong, R. Shen, et al., Dioxetane-based chemiluminescent probe for fluoride ion-sensing in aqueous solution and living imaging. Sens. Actuators B Chem. 301(2019)127111
|
L.S. Ryan, J. Gerberich, J. Cao, et al., Kinetics-based measurement of hypoxia in living cells and animals using an acetoxymethyl ester chemiluminescent probe, ACS Sens. 4(2019)1391-1398
|
Y. Adachi, A.L. Kindzelskii, A.R. Petty, et al., IFN-γ primes RAW264 macrophages and human monocytes for enhanced oxidant production in response to CpG DNA via metabolic signaling:roles of TLR9 and myeloperoxidase trafficking, J. Immunol. 176(2006)5033-5040
|