Volume 12 Issue 3
Jun.  2022
Turn off MathJax
Article Contents
Rui Ding, Yue Chen, Qiusu Wang, Zhengzhang Wu, Xing Zhang, Bingzhi Li, Lei Lin. Recent advances in quantum dots-based biosensors for antibiotics detection[J]. Journal of Pharmaceutical Analysis, 2022, 12(3): 355-364. doi: 10.1016/j.jpha.2021.08.002
Citation: Rui Ding, Yue Chen, Qiusu Wang, Zhengzhang Wu, Xing Zhang, Bingzhi Li, Lei Lin. Recent advances in quantum dots-based biosensors for antibiotics detection[J]. Journal of Pharmaceutical Analysis, 2022, 12(3): 355-364. doi: 10.1016/j.jpha.2021.08.002

Recent advances in quantum dots-based biosensors for antibiotics detection

doi: 10.1016/j.jpha.2021.08.002
Funds:

This work was supported by grants from the National Key Research and Development Project (Project No.: 2019YFC1605800), the National Natural Science Foundation of China (Grant Nos.: 22006070 and 82103816), the Natural Science Foundation of Jiangsu Province (Grant Nos.: BK20200715, BK20200718, and BK20210538), the Natural Science Foundation of Jiangsu Higher Education Institutions, China (Grant No.: 20KJB350010), and the Natural Science Fund for Colleges and Universities in Jiangsu Province (Grant No.: 19KJB530011).

  • Received Date: Dec. 30, 2020
  • Accepted Date: Aug. 03, 2021
  • Rev Recd Date: Jul. 21, 2021
  • Publish Date: Aug. 04, 2021
  • Antibiotics are a category of chemical compounds used to treat bacterial infections and are widely applied in cultivation, animal husbandry, aquaculture, and pharmacy. Currently, residual antibiotics and their metabolites pose a potential risk of allergic reactions, bacterial resistance, and increased cancer incidence. Residual antibiotics and the resulting bacterial antibiotic resistance have been recognized as a global challenge that has attracted increasing attention. Therefore, monitoring antibiotics is a critical way to limit the ecological risks from antibiotic pollution. Accordingly, it is desirable to devise new analytical platforms to achieve efficient antibiotic detection with excellent sensitivity and specificity. Quantum dots (QDs) are regarded as an ideal material for use in the development of antibiotic detection biosensors. In this review, we characterize different types of QDs, such as silicon, chalcogenide, carbon, and other doped QDs, and summarize the trends in QD-based antibiotic detection. QD-based sensing applications are classified according to their recognition strategies, including molecularly imprinted polymers (MIPs), aptamers, and immunosensors. We discuss the advantages of QD-derived antibiotic sensors, including low cost, good sensitivity, excellent stability, and fast response, and illustrate the current challenges in this field.
  • loading
  • S. Shao, Y. Hu, J. Cheng, et al., Research progress on distribution, migration, transformation of antibiotics and antibiotic resistance genes (ARGs) in aquatic environment, Crit. Rev. Biotechnol. 38(2018)1195-1208
    Q. Wang, W.-M. Zhao, Optical methods of antibiotic residues detections:A comprehensive review, Sensor. Actuat. B-Chem. 269(2018)238-256
    A. Joshi, K.H. Kim, Recent advances in nanomaterial-based electrochemical detection of antibiotics:Challenges and future perspectives, Biosens. Bioelectron. 153(2020), 112046
    Y. Yang, S. Yin, Y. Li, et al., Application of aptamers in detection and chromatographic purification of antibiotics in different matrices, TrAC-Trend. Anal. Chem. 95(2017)1-22
    R. Daghrir, P. Drogui, Tetracycline antibiotics in the environment:a review, Environ. Chem. Letters. 11(2013)209-227
    Z.R. Hopkins, L. Blaney, A novel approach to modeling the reaction kinetics of tetracycline antibiotics with aqueous ozone, Sci. Total. Environ. 468-469(2014)337-344
    V.V. Belakhov, A.V. Garabadzhiu, Polyene macrolide antibiotics:Mechanisms of inactivation, ways of stabilization, and methods of disposal of unusable drugs (Review), Russ. J. Gen. Chem. 85(2016)2985-3001
    M.R. Keskar, R.M. Jugade, Spectrophotometric Investigations of Macrolide Antibiotics:A Brief Review, Anal. Chem. Insights. 10(2015)29-37
    G.V. Sanchez, D.J. Shapiro, A.L. Hersh, et al., Outpatient Macrolide Antibiotic Prescribing in the United States, 2008-2011, Open. Forum. Infect. Dis. 4(2017), ofx220
    L. Jiafeng, X. Fu, Z. Chang, Hypoionic shock treatment enables aminoglycosides antibiotics to eradicate bacterial persisters, Sci. Rep. 5(2015), 14247
    M. Jospe-Kaufman, L. Siomin,M. Fridman, The relationship between the structure and toxicity of aminoglycoside antibiotics, Bioorg. Med. Chem. Lett. 30(2020), 127218
    F. Khan, D.T.N. Pham, Y.M. Kim, Alternative strategies for the application of aminoglycoside antibiotics against the biofilm-forming human pathogenic bacteria, Appl. Microbiol. Biotechnol. 104(2020)1955-1976
    S.W. Kim, J.S. Lee, S.B. Park, et al., The Importance of Porins and beta-Lactamase in Outer Membrane Vesicles on the Hydrolysis of beta-Lactam Antibiotics, Int. J. Mol. Sci. 21(2020), 2822
    D.M. Peters, Jr, J.B. Winter, C.A. Droege, et al., Comparison of Ceftriaxone and Antipseudomonal β-Lactam Antibiotics Utilized for Potential AmpC β-Lactamase-Producing Organisms, Hosp. Pharm.(2020), https://doi.org/10.1177/0018578720931463
    L. Wang, L. Zhang, Y. Wang, et al., Construction of an Electrochemical Receptor Sensor Based on Graphene/Thionine for the Sensitive Determination of beta-Lactam Antibiotics Content in Milk, Int. J. Mol. Sci. 21(2020), 3306
    R.J. Worthington, C. Melander, Overcoming resistance to beta-lactam antibiotics, J. Org. Chem. 78(2013)4207-4213
    M. Juda, B. Chudzik-Rzad, A. Malm, The prevalence of genotypes that determine resistance to macrolides, lincosamides, and streptogramins B compared with spiramycin susceptibility among erythromycin-resistant Staphylococcus epidermidis, Mem. Inst. Oswaldo. Cruz. 111(2016)155-160
    Y. Mast, W. Wohlleben, Streptogramins-two are better than one!, Int. J. Med. Microbiol. 304(2014)44-50
    D.Y. Kormilets, A.D. Polyanovsky, V.A. Dadali, et al., Antibiotic Peptides, J. Evol. Biochem. Phys+. 55(2019)269-276
    H. Mohimani, W.T. Liu, Y.L. Yang, et al., Multiplex de novo sequencing of peptide antibiotics, J. Comput. Biol. 18(2011)1371-1381
    W. Simonson, Antibiotic stewardship:Revisiting quinolone antibiotics, Geriatr. Nurs. 38(2017)152-153
    L. Lan, Y. Yao, J. Ping, et al., Recent advances in nanomaterial-based biosensors for antibiotics detection, Biosens. Bioelectron. 91(2017)504-514
    R. Gothwal, T. Shashidhar, Antibiotic Pollution in the Environment:A Review, CLEAN-Soil. Air. Water. 43(2015)479-489
    T. Meng, W. Cheng, T. Wan, et al., Occurrence of antibiotics in rural drinking water and related human health risk assessment, Environ. Technol. 42(2021)671-681
    Y. Ben, M. Hu, X. Zhang, et al., Efficient detection and assessment of human exposure to trace antibiotic residues in drinking water, Water. Res. 175(2020), 115699
    F. Martin-Laurent, E. Topp, L. Billet, et al., Environmental risk assessment of antibiotics in agroecosystems:ecotoxicological effects on aquatic microbial communities and dissemination of antimicrobial resistances and antibiotic biodegradation potential along the soil-water continuum, Environ. Sci. Pollut. Res. Int. 26(2019)18930-18937
    J. Lyu, L. Yang, L. Zhang, et al., Antibiotics in soil and water in China-a systematic review and source analysis, Environ. Pollut. 266(2020), 115147
    W. Li, L. Gao, Y. Shi, et al., Occurrence, distribution and risks of antibiotics in urban surface water in Beijing, China, Environ. Sci. Proc. Imp. 17(2015)1611-1619
    J.R. Cabrera-Pardo, R. Lood, K. Udekwu, et al., A One Health-One World initiative to control antibiotic resistance:A Chile-Sweden collaboration, One. Health. 8(2019), 100100
    Y. Ortiz-Martinez, C. Galindo-Regino, F. Valdes-Villegas, et al., World Antibiotic Awareness Week 2017 and its influence on digital information seeking on antibiotic resistance:A Google Trends study, J. Hosp. Infect. 100(2018)276-277
    M.Z.H. Khan, Recent Biosensors for Detection of Antibiotics in Animal Derived Food, Crit. Rev. Anal. Chem.(2020)1-11
    A. Mehlhorn, P. Rahimi,Y. Joseph, Aptamer-Based Biosensors for Antibiotic Detection:A Review, Biosensors-Basel. 8(2018), 54
    S. Chen, Y. Li, S. Wu, et al., A phosphorescent probe for cephalexin consisting of mesoporous thioglycolic acid-modified Mn:ZnS quantum dots coated with a molecularly imprinted polymer, Mikrochim. Acta. 187(2019), 40
    K. Rajendiran, Z. Zhao, D.-S. Pei, et al., Antimicrobial Activity and Mechanism of Functionalized Quantum Dots, Polymers. 11(2019), 1670
    P. Li, S. Liu, W. Cao, et al., Low-toxicity carbon quantum dots derived from gentamicin sulfate to combat antibiotic resistance and eradicate mature biofilms, Chem. Commun. 56(2020)2316-2319
    M.A. Jahangir, S.J. Gilani, A. Muheem, et al., Quantum Dots:Next Generation of Smart Nano-Systems, Pharm. Nanotechnol. 7(2019)234-245
    J.W. Zhou, X.M. Zou, S.H. Song, et al., Quantum Dots Applied to Methodology on Detection of Pesticide and Veterinary Drug Residues, J. Agric. Food. Chem. 66(2018)1307-1319
    Z.Y. Yan, Q.Q. Du, J. Qian, et al., Eco-friendly intracellular biosynthesis of CdS quantum dots without changing Escherichia coli's antibiotic resistance, Enzyme. Microb. Tech. 96(2017)96-102
    B. Li, A. Xia, S. Zhang, et al., A CRISPR-derived biosensor for the sensitive detection of transcription factors based on the target-induced inhibition of Cas12a activation, Biosens. Bioelectron. 173(2020), 112619
    T. Suo, M. Sohail, Y. Ma, et al., A versatile turn-on fluorometric biosensing profile based on split aptamers-involved assembly of nanocluster beacon sandwich, Sensor. Actuat. B-Chem. 324(2020), 128586
    T.S. Atabaev, D.W. Han, Editorial:Fluorescent Carbon-Based Nanostructures for Bioimaging Applications, Front. Chem. 8(2020), 587918
    M.L. Yola, N. Atar, Functionalized Graphene Quantum Dots with Bi-Metallic Nanoparticles Composite:Sensor Application for Simultaneous Determination of Ascorbic Acid, Dopamine, Uric Acid and Tryptophan, J. Electrochem. Soc. 163(2016) B718-B725
    M.L. Yola, N. Atar, A Highly Efficient Nanomaterial with Molecular Imprinting Polymer:Carbon Nitride Nanotubes Decorated with Graphene Quantum Dots for Sensitive Electrochemical Determination of Chlorpyrifos, J. Electrochem. Soc. 164(2017) B223-B229
    N. Ozcan, C. Karaman, N. Atar, et al., A Novel Molecularly Imprinting Biosensor Including Graphene Quantum Dots/Multi-Walled Carbon Nanotubes Composite for Interleukin-6 Detection and Electrochemical Biosensor Validation, ECS. J. Solid. State. Sci. Tech. 9(2020), 121010
    M.L. Yola, N. Atar, Development of cardiac troponin-I biosensor based on boron nitride quantum dots including molecularly imprinted polymer, Biosens. Bioelectron. 126(2019)418-424
    O. Akyildirim, F. Kardas, M. Beytur, et al., Palladium nanoparticles functionalized graphene quantum dots with molecularly imprinted polymer for electrochemical analysis of citrinin, J. Mol. Liq. 243(2017)677-681
    G.L. Hong, H.H. Deng, H.L. Zhao, et al., Gold nanoclusters/graphene quantum dots complex-based dual-emitting ratiometric fluorescence probe for the determination of glucose, J. Pharm. Biomed. Anal. 189(2020), 113480
    M. Mehrzad-Samarin, F. Faridbod, A.S. Dezfuli, et al., A novel metronidazole fluorescent nanosensor based on graphene quantum dots embedded silica molecularly imprinted polymer, Biosens. Bioelectron. 92(2017)618-623
    Y. Song, Y. Li, Z. Liu, et al., A novel ultrasensitive carboxymethyl chitosan-quantum dot-based fluorescence"turn on-off "nanosensor for lysozyme detection, Biosens. Bioelectron. 61(2014)9-13
    M. Mou, Y. Wu, H. Zou, et al., The self-assembly of Cu-In-S quantum dots with aggregation-induced emission into 3D network triggered by cation and its application as a novel metal-enhanced fluorescent nanosensor for detecting Zn (Ⅱ), Sensor. Actuat. B-Chem. 284(2019)265-270
    L. Zhang, L. Chen, A New Fluorescence Probe Based on Hybrid Mesoporous Silica/Quantum Dot/Molecularly Imprinted Polymer for Detection of Tetracycline, ACS. Appl. Mater. Inter. 8(2016)16248-16256
    M. Roushani, K. Ghanbari, S. Jafar Hoseini, Designing an electrochemical aptasensor based on immobilization of the aptamer onto nanocomposite for detection of the streptomycin antibiotic, Microchem. J. 141(2018)96-103
    C. Wu, N. Gan, C. Ou, et al., A homogenous" signal-on"aptasensor for antibiotics based on a single stranded DNA binding protein-quantum dot aptamer probe coupling exonuclease-assisted target recycling for signal amplification, RSC. Adv. 7(2017)8381-8387
    Y. Wang, N. Gan, T. Li, et al., A novel aptamer-quantum dot fluorescence probe for specific detection of antibiotic residues in milk, Anal. Methods. 8(2016)3006-3013
    L. Zong, Y. Jiao, X. Guo, et al., Paper-based fluorescent immunoassay for highly sensitive and selective detection of norfloxacin in milk at picogram level, Talanta. 195(2019)333-338
    E. Song, M. Yu, Y. Wang, et al., Multi-color quantum dot-based fluorescence immunoassay array for simultaneous visual detection of multiple antibiotic residues in milk, Biosens. Bioelectron. 72(2015)320-325
    N.A. Taranova, A.N. Berlina, A.V. Zherdev, et al.,'Traffic light'immunochromatographic test based on multicolor quantum dots for the simultaneous detection of several antibiotics in milk, Biosens. Bioelectron. 63(2015)255-261
    G. Muthusankar, R.K. Devi,G. Gopu, Nitrogen-doped carbon quantum dots embedded Co3O4 with multiwall carbon nanotubes:An efficient probe for the simultaneous determination of anticancer and antibiotic drugs, Biosens. Bioelectron. 150(2020), 111947
    X. Xu, Y. Yang, H. Jin, et al., Fungal In Situ Assembly Gives Novel Properties to CdSxSe1-x Quantum Dots for Sensitive Label-Free Detection of Chloramphenicol, ACS. Sustain. Chem. Eng. 8(2020)6806-6814
    Y. Ye, T. Wu, X. Jiang, et al., Portable Smartphone-Based QDs for the Visual Onsite Monitoring of Fluoroquinolone Antibiotics in Actual Food and Environmental Samples, ACS. Appl. Mater. Inter. 12(2020)14552-14562
    C.-X. Chen, Y.-H. Li, Y.-L. Zhou, et al., Rapidly detecting antibiotics with magnetic nanoparticle coated CdTe quantum dots, RSC. Advances. 10(2020)1966-1970
    H.L. Meng, G.H. Chen, X. Guo, et al., Determination of five quinolone antibiotic residues in foods by micellar electrokinetic capillary chromatography with quantum dot indirect laser-induced fluorescence, Anal. Bioanal. Chem. 406(2014)3201-3208
    W. Li, J. Zhu, G. Xie, et al., Ratiometric system based on graphene quantum dots and Eu3+for selective detection of tetracyclines, Anal. Chim. Acta. 1022(2018)131-137
    J. Chen, F. Xu, H. Jiang, et al., A novel quantum dot-based fluoroimmunoassay method for detection of Enrofloxacin residue in chicken muscle tissue, Food. Chem. 113(2009)1197-1201
    A. Das, P.T. Snee, Synthetic Developments of Nontoxic Quantum Dots, Chemphyschem. 17(2016)598-617
    J.K. Choi, S. Jang, H. Sohn, et al., Tuning of refractive indices and optical band gaps in oxidized silicon quantum dot solids, J. Am. Chem. Soc. 131(2009)17894-17900
    D. Ki, H. Sohn, Water Soluble Silicon Quantum Dots Grafted with Amoxicillin as a Drug Delivery System, J. Nanosci. Nanotechnol. 20(2020)4624-4628
    Y. Wang, H. Wang, J. Guo, et al., Water-Soluble Silicon Quantum Dots with Quasi-Blue Emission, Nanoscale. Res. Lett. 10(2015), 1012
    V.P. Sur, M. Kominkova, Z. Buchtova, et al., CdSe QD Biosynthesis in Yeast Using Tryptone-Enriched Media and Their Conjugation with a Peptide Hecate for Bacterial Detection and Killing, Nanomaterials-Basel. 9(2019), 1463
    K.T. Yong, W.C. Law, I. Roy, et al., Aqueous phase synthesis of CdTe quantum dots for biophotonics, J. Biophotonics. 4(2011)9-20
    N.F. Crawford, R.M. Leblanc, CdSe and CdSe (ZnS) quantum dots in 2D:A Langmuir monolayer approach, Coordin. Chem. Rev. 263-264(2014)13-24
    Y. Yulong, P. Xinsheng, Recent advances in carbon-based dots for electroanalysis, Analyst. 141(2016)2619-2628
    X. Gao, C. Du, Z. Zhuang, et al., Carbon quantum dot-based nanoprobes for metal ion detection, J. Mater. Chem. C. 4(2016)6927-6945
    P.G. Luo, F. Yang, S.-T. Yang, et al., Carbon-based quantum dots for fluorescence imaging of cells and tissues, RSC. Advances. 4(2014)10791-10807
    H. Qi, M. Teng, M. Liu, et al., Biomass-derived nitrogen-doped carbon quantum dots:highly selective fluorescent probe for detecting Fe3+ions and tetracyclines, J. Colloid. Interf. Sci. 539(2019)332-341
    K.A. Fernando, S. Sahu, Y. Liu, et al., Carbon quantum dots and applications in photocatalytic energy conversion, ACS. Appl. Mater. Interfaces. 7(2015)8363-8376
    Y. Zhang, Y. Shen, X. Wang, et al., Enhancement of blue fluorescence on the ZnSe quantum dots doped with transition metal ions, Mater. Lett. 78(2012)35-38
    X. Zhang, Y. Ren, Z. Ji, et al., Sensitive detection of amoxicillin in aqueous solution with novel fluorescent probes containing boron-doped carbon quantum dots, J. Mol. Liq. 311(2020), 113278
    J. Patel, A.K. Singh, S.A.C. Carabineiro, Assessing the Photocatalytic Degradation of Fluoroquinolone Norfloxacin by Mn:ZnS Quantum Dots:Kinetic Study, Degradation Pathway and Influencing Factors, Nanomaterials-Basel. 10(2020), 964
    C. Zhong, B. Yang, X. Jiang, et al., Current Progress of Nanomaterials in Molecularly Imprinted Electrochemical Sensing, Crit. Rev. Anal. Chem. 48(2018)15-32
    M. Dinc, C. Esen, B. Mizaikoff, Recent advances on core-shell magnetic molecularly imprinted polymers for biomacromolecules, TrAC-Trend. Anal. Chem. 114(2019)202-217
    K. Haupt, K. Mosbach, Molecularly imprinted polymers and their use in biomimetic sensors, Chem. Rev. 100(2000)2495-2504
    G. Liu, X. Huang, L. Li, et al., Recent Advances and Perspectives of Molecularly Imprinted Polymer-Based Fluorescent Sensors in Food and Environment Analysis, Nanomaterials-Basel. 9(2019), 1030
    K. Haupt, A.V. Linares, M. Bompart, et al., Molecularly imprinted polymers, in:Molecular Imprinting, Topics in Current Chemistry, Vol. 325, Springer, Berlin, Heidelberg,(2012)1-28
    J.L. Markley, T.A. Wencewicz, Tetracycline-Inactivating Enzymes, Front. Microbiol. 9(2018), 1058
    I. Chopra, M. Roberts, Tetracycline antibiotics:mode of action, applications, molecular biology, and epidemiology of bacterial resistance, Microbiol. Mol. Biol. Rev. 65(2001)232-260
    M.C. Roberts, Tetracycline resistance determinants:mechanisms of action, regulation of expression, genetic mobility, and distribution, FEMS. Microbiol. Rev. 19(1996)1-24
    A.B. Kinghorn, L.A. Fraser, S. Lang, et al., Aptamer Bioinformatics, Int. J. Mol. Sci. 18(2017), 2516
    F. Ding, Y. Gao, X. He, Recent progresses in biomedical applications of aptamer-functionalized systems, Bioorg. Med. Chem. Lett. 27(2017)4256-4269
    T. Adachi, Y. Nakamura, Aptamers:A Review of Their Chemical Properties and Modifications for Therapeutic Application, Molecules. 24(2019), 4229
    M. McKeague, R. Velu, K. Hill, et al., Selection and characterization of a novel DNA aptamer for label-free fluorescence biosensing of ochratoxin A, Toxins-Basel. 6(2014)2435-2452
    S. Sharma, R. Raghav, R. O'Kennedy, et al., Advances in ovarian cancer diagnosis:A journey from immunoassays to immunosensors, Enzyme. Microb. Tech. 89(2016)15-30
    A. Pollap, J. Kochana, Electrochemical Immunosensors for Antibiotic Detection, Biosensors-Basel. 9(2019), 61
    B. Li, S. Xie, A. Xia, et al., Recent advance in the sensing of biomarker transcription factors, TrAC. Trend. Anal. Chem. 132(2020), 116039
    Y. Chen, X. Yan, W. Yang, et al., A signal transduction approach for multiplexed detection of transcription factors by integrating DNA nanotechnology, multi-channeled isothermal amplification, and chromatography, J. Chromatogr. A. 1624(2020), 461148
    S. Xie, Z. Ji, T. Suo, et al., Advancing sensing technology with CRISPR:from the detection of nucleic acids to a broad range of analytes-A Review, Anal. Chim. Acta.(2021), 338848
    B. Li, T. Suo, S. Xie, et al., Rational design, synthesis, and applications of carbon dots@metal-organic frameworks (CD@MOF) based sensors, TrAC-Trend. Anal. Chem. 135(2021), 116163
    T. Suo, M. Sohail, S. Xie, et al., DNA nanotechnology:A recent advancement in the monitoring of microcystin-LR, J. Hazard. Mater. 403(2021), 123418
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (214) PDF downloads(8) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return