Citation: | Jericha Mill, Vihar Patel, Ozioma Okonkwo, Lingjun Li, Thomas Raife. Erythrocyte sphingolipid species as biomarkers of Alzheimer's disease[J]. Journal of Pharmaceutical Analysis, 2022, 12(1): 178-185. doi: 10.1016/j.jpha.2021.07.005 |
2021 Alzheimer's disease facts and figures, Alzheimers Dement 17(2021)327-406
|
J.M. Wilkins, E. Trushina, Application of metabolomics in Alzheimer's disease, Front. Neurol. 8(2017)719
|
Y.F. Wang, J.L. Fuh, J.F. Lirng, et al., Cerebrospinal fluid leakage and headache after lumbar puncture:a prospective non-invasive imaging study, Brain 138(2015)1492-1498
|
H.M. Snyder, M.C. Carrillo, F. Grodstein, et al., Developing novel blood-based biomarkers for Alzheimer's disease, Alzheimers Dement 10(2014)109-114
|
R. Gonzalez-Dominguez, A. Garcia, T. Garcia-Barrera, et al., Metabolomic profiling of serum in the progression of Alzheimer's disease by capillary electrophoresis-mass spectrometry, Electrophoresis 35(2014)3321-3330
|
B.T. Hyman, C.H. Phelps, T.G. Beach, et al., National Institute on Aging-Alzheimer's Association guidelines for the neuropathologic assessment of Alzheimer's disease, Alzheimers Dement 8(2012)1-13
|
J. Chong, M. Yamamoto, and J.G. Xia, MetaboAnalystR 2.0:From Raw Spectra to Biological Insights, Metabolites 9(2019)57
|
J. Chong, J.G. Xia, MetaboAnalystR:An R package for flexible and reproducible analysis of metabolomics data, Bioinformatics 34(2018)4313-4314
|
R. Iyer, C.P. Jenkinson, J.G. Vockley, et al., The human arginases and arginase deficiency, J. Inherit. Metab. Dis. 21 Suppl 1(1998)86-100
|
L.C. Burrage, L. Thistlethwaite, B.M. Stroup, et al., Untargeted metabolomic profiling reveals multiple pathway perturbations and new clinical biomarkers in urea cycle disorders, Genet. Med. 21(2019)1977-1986
|
A.T. Wyse, C.S. Bavaresco, M.E. Hagen, et al., In vitro stimulation of oxidative stress in cerebral cortex of rats by the guanidino compounds accumulating in hyperargininemia, Brain Res. 923(2001)50-57
|
C. Diez-Fernandez, V. Rufenacht, C. Gemperle, et al., Mutations and common variants in the human arginase 1(ARG1) gene:Impact on patients, diagnostics, and protein structure considerations, Hum. Mutat. 39(2018)1029-1050
|
D. Delwing-de Lima, L.F. Wollinger, A.C. Casagrande, et al., Guanidino compounds inhibit acetylcholinesterase and butyrylcholinesterase activities:effect neuroprotector of vitamins E plus C, Int. J. Dev. Neurosci. 28(2010)465-473
|
F. Hansmannel, A. Sillaire, M.I. Kamboh, et al., Is the urea cycle involved in Alzheimer's disease?, J. Alzheimers Dis. 21(2010)1013-1021
|
M.A. Smith, C.A. Rottkamp, A. Nunomura, et al., Oxidative stress in Alzheimer's disease, Biochim. et Biophys. Acta BBA-Mol. Basis Dis. 1502(2000)139-144
|
Y. Shi, Z.S. Liu, Y. Shen, et al., A novel perspective linkage between kidney function and Alzheimer's disease, Front. Cell Neurosci. 12(2018)384
|
E.B. Spector, S.C. Rice, R.M. Kern, et al., Comparison of arginase activity in red blood cells of lower mammals, primates, and man:evolution to high activity in primates, Am. J. Hum. Genet. 37(1985)1138
|
P.S. Kim, R.K. Iyer, K.N. Lu, et al., Expression of the liver form of arginase in erythrocytes, Mol. Genet. Metab. 76(2002)100-110
|
V. van der Velpen, T. Teav, H. Gallart-Ayala, et al., Systemic and central nervous system metabolic alterations in Alzheimer's disease, Alzheimers Res. Ther. 11(2019)93
|
F.A. de Leeuw, C.F.W. Peeters, M.I. Kester, et al., Blood-based metabolic signatures in Alzheimer's disease, Alzheimers Dement (Amst)8(2017)196-207
|
Y.Q. Zhang, Y.B. Tang, E. Dammer, et al., Dysregulated urinary arginine metabolism in older adults with amnestic mild cognitive impairment, Front. Aging Neurosci. 11(2019)90
|
R.W. Caldwell, P.C. Rodriguez, H.A. Toque, et al., Arginase:a multifaceted enzyme important in health and disease, Physiol. Rev. 98(2018)641-665
|
W.J. Strittmatter, A.M. Saunders, D. Schmechel, et al., Apolipoprotein E:high-avidity binding to beta-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease, Proc. Natl. Acad. Sci. USA 90(1993)1977-1981
|
E.H. Corder, A.M. Saunders, W.J. Strittmatter, et al., Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer's disease in late onset families, Science 261(1993)921-923
|
S.M. Hammad, J.S. Pierce, F. Soodavar, et al., Blood sphingolipidomics in healthy humans:impact of sample collection methodology, J. Lipid Res. 51(2010)3074-3087
|
G. Lin, L.P. Wang, P.C. Marcogliese, et al., Sphingolipids in the pathogenesis of Parkinson's disease and Parkinsonism, Trends Endocrinol. Metab. 30(2019)106-117
|
M.T. Vanier, Biochemical studies in Niemann-Pick disease. I. Major sphingolipids of liver and spleen, Biochim. Biophys. Acta 750(1983)178-184
|
R.O. Brady, Enzymatic abnormalities in diseases of sphingolipid metabolism, Clin. Chem. 13(1967)565-577
|
V. France-Lanord, B. Brugg, P.P. Michel, et al., Mitochondrial free radical signal in ceramide-dependent apoptosis:a putative mechanism for neuronal death in Parkinson's disease, J. Neurochem. 69(1997)1612-1621
|
R.G. Cutler, J. Kelly, K. Storie, et al., Involvement of oxidative stress-induced abnormalities in ceramide and cholesterol metabolism in brain aging and Alzheimer's disease, Proc. Natl. Acad. Sci. USA 101(7)(2004)2070-2075
|
N.J. Haughey, R.G. Cutler, A. Tamara, et al., Perturbation of sphingolipid metabolism and ceramide production in HIV-dementia, Ann. Neurol. 55(2004)257-267
|
M.M. Mielke, C.G. Lyketsos, Alterations of the sphingolipid pathway in Alzheimer's disease:new biomarkers and treatment targets?, Neuromolecular Med. 12(2010)331-340
|
M. Kosicek, H. Zetterberg, N. Andreasen, et al., Elevated cerebrospinal fluid sphingomyelin levels in prodromal Alzheimer's disease, Neurosci. Lett. 516(2012)302-305
|
R. Sender, S. Fuchs, R. Milo, Revised estimates for the number of human and bacteria cells in the body, PLoS Biol. 14(2016), e1002533
|
E.M. Weisenhorn, T.J. van't Erve, N.M. Riley, et al., Multi-omics evidence for inheritance of energy pathways in red blood cells, Mol. Cell Proteomics 15(12)(2016)3614-3623
|
T.E. Gilroy, G.J. Brewer, C.F. Sing, Genetic control of glycolysis in human erythrocytes, Genetics 94(1980)719-732
|
T.J. van't Erve, B.A. Wagner, K.K. Ryckman, et al., The concentration of glutathione in human erythrocytes is a heritable trait, Free Radic. Biol. Med. 65(2013)742-749
|
T.J. van't Erve, C.M. Doskey, B.A. Wagner, et al., Heritability of glutathione and related metabolites in stored red blood cells, Free Radic. Biol. Med. 76(2014)107-113
|
T.J. van't Erve, B.A. Wagner, S.M. Martin, et al., The heritability of hemolysis in stored human red blood cells, Transfusion 55(2015)1178-1185
|
T.J. van't Erve, B.A. Wagner, S.M. Martin, et al., The heritability of metabolite concentrations in stored human red blood cells, Transfusion 54(2014)2055-2063
|
G.J. Hooghwinkel, H.H. van Gelderen, A. Staal, Sphingomyelin of red blood cells in lipidosis and in dementia of unknown origin in children, Arch. Dis. Child 44(1969)197-202
|
M. Baranowski, M. Charmas, B. Dlugolecka, et al., Exercise increases plasma levels of sphingoid base-1 phosphates in humans, Acta Physiol.(Oxf)203(2011)373-380
|
A. Di Pardo, V. Maglione, Sphingolipid metabolism:a new therapeutic opportunity for brain degenerative disorders, Front. Neurosci. 12(2018)249
|