Volume 12 Issue 1
Feb.  2022
Turn off MathJax
Article Contents
Abdelhakim Bouyahya, Fatima-Ezzahrae Guaouguaou, Nasreddine El Omari, Naoual El Menyiy, Abdelaali Balahbib, Mohamed El-Shazly, Youssef Bakri. Anti-inflammatory and analgesic properties of Moroccan medicinal plants: Phytochemistry, in vitro and in vivo investigations, mechanism insights, clinical evidences and perspectives[J]. Journal of Pharmaceutical Analysis, 2022, 12(1): 35-57. doi: 10.1016/j.jpha.2021.07.004
Citation: Abdelhakim Bouyahya, Fatima-Ezzahrae Guaouguaou, Nasreddine El Omari, Naoual El Menyiy, Abdelaali Balahbib, Mohamed El-Shazly, Youssef Bakri. Anti-inflammatory and analgesic properties of Moroccan medicinal plants: Phytochemistry, in vitro and in vivo investigations, mechanism insights, clinical evidences and perspectives[J]. Journal of Pharmaceutical Analysis, 2022, 12(1): 35-57. doi: 10.1016/j.jpha.2021.07.004

Anti-inflammatory and analgesic properties of Moroccan medicinal plants: Phytochemistry, in vitro and in vivo investigations, mechanism insights, clinical evidences and perspectives

doi: 10.1016/j.jpha.2021.07.004
Funds:

We thank the Centre National pour la Recherche Scientifique et Technique (CNRST) and l’Agence Nationale des Plantes Médicinales et Aromatiques (ANPMA) for supporitng this study (Grant No.: PMA2019/1).

  • Received Date: Apr. 12, 2020
  • Accepted Date: Jul. 08, 2021
  • Rev Recd Date: Jun. 14, 2021
  • Publish Date: Jul. 13, 2021
  • Moroccan medicinal plants exhibit several pharmacological properties such as antimicrobial, anticancer, antidiabetic, analgesic, and anti-inflammatory effects, which are related to the presence of numerous bioactive compounds, including phenolic acids, flavonoids, and terpenoids. In the present review, we systematically evaluate previously published reports on the anti-inflammatory and analgesic effects of Moroccan medicinal plants. The in vitro investigations revealed that Moroccan medicinal plants inhibit several enzymes related to inflammatory processes, whereas in vivo studies noted significant anti-inflammatory and analgesic effects as demonstrated using different experimental models. Various bioactive compounds exhibiting in vitro and in vivo anti-inflammatory and analgesic effects, with diverse mechanisms of action, have been identified. Some plants and their bioactive compounds reveal specific secondary metabolites that possess important anti-inflammatory effects in clinical investigations. Our review proposes the potential applications of Moroccan medicinal plants as sources of anti-inflammatory and analgesic agents.
  • loading
  • M. Back, A. Yurdagul Jr, I. Tabas, et al., Inflammation and its resolution in atherosclerosis:mediators and therapeutic opportunities, Nat. Rev. Cardiol. 16(2019)389-406
    A. Parker, L. Vaux, A.M. Patterson, et al., Elevated apoptosis impairs epithelial cell turnover and shortens villi in TNF-driven intestinal inflammation, Cell Death Dis. 10(2019)108
    P.H. Braz-Silva, M.L. Bergamini, A.P. Mardegan, et al., Inflammatory profile of chronic apical periodontitis:a literature review, Acta Odontol. Scand. 77(2019)173-180
    N. Arnold, W. Koenig, Atherosklerose als inflammatorische Erkrankung-Pathophysiologie, klinische Relevanz und therapeutische Implikationen, DMW-Dtsch. Med. Wochenschr. 144(2019)315-321
    H. Suleyman, B. Demircan, Y. Karagoz, Anti-inflammatory and side effects of cyclooxygenase inhibitors, Pharmacol. Rep. 59(2007)247-258
    S. Kazemi, H. Shirzad, M. Rafieian-Kopaei, Recent findings in molecular basis of inflammation and anti-inflammatory plants, Curr. Pharm. Des. 24(2018)1551-1562
    P. Ramezannezhad, A. Nouri, E. Heidarian, Silymarin mitigates diclofenac-induced liver toxicity through inhibition of inflammation and oxidative stress in male rats, J. Herbmed Pharmacol. 8(2019)231-237
    F.E. Hermanto, A. Soewondo, H. Tsuboi, et al., The hepatoprotective effect of Cheral as anti-oxidant and anti-inflammation on mice (Mus musculus) with breast cancer, J. Herbmed Pharmacol. 9(2020)153-160
    H. Yaribeygi, S.L. Atkin, M. Pirro, et al., A review of the anti-inflammatory properties of antidiabetic agents providing protective effects against vascular complications in diabetes, J. Cell. Physiol. 234(2019)8286-8294
    J. Hughes, Isolation of an endogenous compound from the brain with pharmacological properties similar to morphine, Brain Res. 88(1975)295-308
    Y. Boucher, Pharmacologie et douleurs, Rev. Orthop. Dento-Faciale. 33(1999)123-138
    el.H. Bouidida, K. Alaoui, Y. Cherrah, et al., Analgesic activity of different nonvolatile extracts of Nepeta atlantica Ball and Nepeta Tuberosa L. ssp. reticulata (Desf.) Maire, Therapie 63(2008)333-338
    A. Bouyahya, J. Abrini, A. Et-Touys, et al., Indigenous knowledge of the use of medicinal plants in the North-West of Morocco and their biological activities, Eur. J. Integr. Med. 13(2017)9-25
    S.K. Nigam, K.T. Bush, V. Bhatnagar, et al., The Systems Biology of Drug Metabolizing Enzymes and Transporters:Relevance to Quantitative Systems Pharmacology, Clin. Pharmacol. Ther. 108(2020)40-53
    M. Miguel, N. Bouchmaa, A. Smail, et al., Antioxidant, anti-inflammatory and anti-acetylcholinesterase activities of eleven extracts of Moroccan plants, Fresenius Environ. Bull. 23(2014)
    S. Aazza, B. Lyoussi, C. Megias, et al., Anti-oxidant, anti-inflammatory and anti-proliferative activities of Moroccan commercial essential oils, Nat. Prod. Commun. 9(2014)587-594
    B. Meddah, G. Mamadou, R. Tiendrebeogo, et al., Analgesic, anti-Inflammatory and antidepressant activities of Triterpene from Meiocarpidium Lepidotum (Annonaceae) Bark, Int. J. Phytopharm. 4(2013)133-140
    H. Hosni, F.Z. Bellaoui, A. Bounihi, et al., Acute toxicity and anti-inflammatory activity of Asphodelus microcarpus, WORLD J. Pharm. Pharm. Sci. 8(2019)1405-1419
    A.A. Abudunia, R. Kamal, N.M. Ziad, et al., In vivo potential anti-inflammatory activity of extracts from Calendula arvensis (CA) flowers, Nonsteroidal Anti-Inflamm. Drugs.(2017). https://doi.org/10.5772/intechopen.68914
    K. Sayah, L. Chemlal, I. Marmouzi, et al., In vivo anti-inflammatory and analgesic activities of Cistus salviifolius (L.) and Cistus monspeliensis (L.) aqueous extracts, South Afr. J. Bot.(2017). http://agris.fao.org/agris-search/search.do?recordID=US201800058824 (accessed December 17, 2019)
    M. El Jemli, R. Kamal, I. Marmouzi, et al., Chemical composition, acute toxicity, antioxidant and anti-inflammatory activities of Moroccan Tetraclinis articulata L, J. Tradit. Complement. Med. 7(2017)281-287
    N. Lachkar, M. Al-Sobarry, H. El-Hajaji, et al., Anti-inflammatory and antioxidant effect of Ceratonia siliqua L. Methanol barks extract, J. Chem. Pharm. Res. 2016(2016)202-210
    I. Marmouzi, E.M. Karym, R. Alami, et al., Modulatory effect of Syzygium aromaticum and Pelargonium graveolens on oxidative and sodium nitroprusside stress and inflammation, Orient. Pharm. Exp. Med. 19(2019)201-210
    P.M. Kanyonga, M.A. Faouzi, B. Meddah, Assessment of methanolic extract of Marrubium vulgare for antiinflammatory, analgesic and anti-microbiologic activities, J. Chem. Pharm. Res. 3(2011)199-204
    A. Bounihi, G. Hajjaj, R. Alnamer, et al., In vivo potential anti-inflammatory activity of Melissa officinalis L. essential oil, Adv. Pharmacol. Sci. 2013(2013),101759. https://doi.org/10.1155/2013/101759
    G. Hajjaj, A. Bahlouli, M. Tajani, et al., Analgesic and Anti-Inflammatory Effects of Papaver Rhoeas L. A Traditional Medicinal Plant of Morocco, 2(2018). 10.23880/jonam-16000150
    B. Faridi, A. Zellou, D. Touati, et al., Toxicite aigue et activite anti-inflammatoire des graines de Delphinium staphysagria, Phytotherapie. 12(2014)175-180. https://doi.org/10.1007/s10298-014-0859-1
    F. El Hachimi, C. Alfaiz, A. Bendriss, et al., Activite anti-inflammatoire de l'huile des graines de Zizyphus lotus (L.) Desf., Phytotherapie. 15(2017)147-154. https://doi.org/10.1007/s10298-016-1056-1
    R. Kamal, M. Kharbach, Y. Vander Heyden, et al., In vivo anti-inflammatory response and bioactive compounds'profile of polyphenolic extracts from edible Argan oil (Argania spinosa L.), obtained by two extraction methods, J. Food Biochem. 43(2019) e13066. https://doi.org/10.1111/jfbc.13066
    M. Ait El Cadi, S. Makram, M. Ansar, et al., Anti-inflammatory activity of aqueous and ethanolic extracts of Zygophyllum gaetulum, Annales Pharmaceutiques Francaises, 70(2012)113-116
    Y. Khabbal, M.A.E. Cadi, K. Alaoui, et al., Activite antiinflammatoire de Zygophyllum gaetulum, Phytotherapie. 4(2006)227-229. https://doi.org/10.1007/s10298-006-0188-0
    A.V. Anand David, R. Arulmoli, S. Parasuraman, Overviews of Biological Importance of Quercetin:A Bioactive Flavonoid, Pharmacogn. Rev. 10(2016)84-89. https://doi.org/10.4103/0973-7847.194044
    R. Pandey, R. Tiwari, S.S. Shukla, Omics:A Newer Technique in Herbal Drug Standardization and Quantification, J. Young Pharm. 8(2016)76-81. https://doi.org/10.5530/jyp.2016.2.4
    M. Markouk, H.B. Lazrek, M. Jana, Analgesic effect of extracts from Cotula cinerea (L), Phytother. Res. PTR. 13(1999)229-230. https://doi.org/10.1002/(SICI)1099-1573(199905)13:3<229::AID-PTR406>3.0.CO;2-B
    K. Elhabazi, R. Aboufatima, A. Benharref, et al., Study on the antinociceptive effects of Thymus broussonetii Boiss extracts in mice and rats, J. Ethnopharmacol. 107(2006)406-411. https://doi.org/10.1016/j.jep.2006.03.029
    T. Belabda, K. Alaoui, E.H. Bouidida, et al., Toxicite aigue et action analgesique de l'extrait global de Nepeta amethystina, Phytotherapie. 13(2015)239-245
    A. Hallal, S. Benali, M. Markouk, et al., Evaluation of the analgesic and antipyretic activities of Chenopodium ambrosioides L., Asian J. Exp. Biol. Sci. 1(2010)189-192. https://www.cabdirect.org/cabdirect/abstract/20103153611(accessed December 17, 2019).[网址存在。请点击这里,自行核对]
    F.-E. Guaouguaou, M. Bebaha, K. Taghzouti, et al., Phytochemical investigation, acute toxicity, central analgesic and antioxidant activities of extracts and essential oil of Cotula cinerea Del (Asteraceae), Curr. Bioact. Compd. 14(2018). https://doi.org/10.2174/1573407214666180821115826
    H. Hanae, K. Taghzouti, A. Bounihi, et al., Analgesic activity of Asphodelus microcarpus leaves extract, 8(2018)297-306. https://doi.org/10.20959/wjpps20191-12945
    K. Yuet Ping, I. Darah, U.K. Yusuf, et al., Genotoxicity of Euphorbia hirta:an Allium cepa assay, Mol. Basel Switz. 17(2012)7782-7791. https://doi.org/10.3390/molecules17077782
    A.P. Attanayake, K.A.P.W. Jayatilaka, C. Pathirana, et al., Efficacy and toxicological evaluation of Coccinia grandis (Cucurbitaceae) extract in male Wistar rats, Asian Pac. J. Trop. Dis. 3(2013)460-466. https://doi.org/10.1016/S2222-1808(13)60101-2
    J. Chao, T.-C. Lu, J.-W. Liao, et al., Analgesic and anti-inflammatory activities of ethanol root extract of Mahonia oiwakensis in mice, J. Ethnopharmacol. 125(2009)297-303. https://doi.org/10.1016/j.jep.2009.06.024
    A. Dhami, A. Singh, D. Palariya, et al., α-Pinene Rich Bark Essential Oils of Zanthoxylum armatum DC. from Three Different Altitudes of Uttarakhand, India and their Antioxidant, in vitro Anti-inflammatory and Antibacterial Activity, J. Essent. Oil Bear. Plants. 22(2019)660-674. https://doi.org/10.1080/0972060X.2019.1630015
    M. Khoshnazar, M.R. Bigdeli, S. Parvardeh, et al., Attenuating effect of α-pinene on neurobehavioural deficit, oxidative damage and inflammatory response following focal ischaemic stroke in rat, J. Pharm. Pharmacol. 71(2019)1725-1733. https://doi.org/10.1111/jphp.13164
    X.-J. Li, Y.-J. Yang, Y.-S. Li, et al., α-Pinene, linalool, and 1-octanol contribute to the topical anti-inflammatory and analgesic activities of frankincense by inhibiting COX-2, J. Ethnopharmacol. 179(2016)22-26. https://doi.org/10.1016/j.jep.2015.12.039
    M.M. Ehrnhofer-Ressler, K. Fricke, M. Pignitter, et al., Identification of 1,8-Cineole, Borneol, Camphor, and Thujone as Anti-inflammatory Compounds in a Salvia officinalis L. Infusion Using Human Gingival Fibroblasts, J. Agric. Food Chem. 61(2013)3451-3459. https://doi.org/10.1021/jf305472t
    N. Han, P. Moon, K. Ryu, et al., β-eudesmol suppresses allergic reactions via inhibiting mast cell degranulation., Clin Exp Pharmacol Physiol 442.(2017)257-265
    K.Y. Kim, Anti-inflammatory and ECM gene expression modulations of β-eudesmol via NF-κB signaling pathway in normal human dermal fibroblasts, Biomed. Dermatol. 2(2018)3. https://doi.org/10.1186/s41702-017-0014-3
    M.-J. Seo, S.-J. Kim, T.-H. Kang, et al., The regulatory mechanism of β-eudesmol is through the suppression of caspase-1 activation in mast cell-mediated inflammatory response, Immunopharmacol. Immunotoxicol. 33(2011)178-185. https://doi.org/10.3109/08923973.2010.491082
    Y.-M. Yu, T.-Y. Chao, W.-C. Chang, et al., Thymol reduces oxidative stress, aortic intimal thickening, and inflammation-related gene expression in hyperlipidemic rabbits, J. Food Drug Anal. 24(2016)556-563. https://doi.org/10.1016/j.jfda.2016.02.004
    Q. Wang, F. Cheng, Y. Xu, et al., Thymol alleviates lipopolysaccharide-stimulated inflammatory response via downregulation of RhoA-mediated NF-κB signalling pathway in human peritoneal mesothelial cells, Eur. J. Pharmacol. 833(2018)210-220. https://doi.org/10.1016/j.ejphar.2018.06.003
    J. Sheorain, M. Mehra, R. Thakur, et al., In vitro anti-inflammatory and antioxidant potential of thymol loaded bipolymeric (tragacanth gum/chitosan) nanocarrier, Int. J. Biol. Macromol. 125(2019)1069-1074. https://doi.org/10.1016/j.ijbiomac.2018.12.095
    T.P. Pivetta, S. Simoes, M.M. Araujo, et al., Development of nanoparticles from natural lipids for topical delivery of thymol:Investigation of its anti-inflammatory properties, Colloids Surf. B Biointerfaces. 164(2018)281-290. https://doi.org/10.1016/j.colsurfb.2018.01.053
    D.-M. Liu, C.-Y. Zhou, X.-L. Meng, et al., Thymol exerts anti-inflammatory effect in dextran sulfate sodium-induced experimental murine colitis, Trop. J. Pharm. Res. 17(2018)1803-1810-1810. https://doi.org/10.4314/tjpr.v17i9.18
    N. Gholijani, M. Gharagozloo, S. Farjadian, et al., Modulatory effects of thymol and carvacrol on inflammatory transcription factors in lipopolysaccharide-treated macrophages, J. Immunotoxicol. 13(2016)157-164. https://doi.org/10.3109/1547691X.2015.1029145
    E.-S.M. El-Sayed, A.M. Mansour, M.S. Abdul-Hameed, Thymol and Carvacrol Prevent Doxorubicin-Induced Cardiotoxicity by Abrogation of Oxidative Stress, Inflammation, and Apoptosis in Rats, J. Biochem. Mol. Toxicol. 30(2016)37-44. https://doi.org/10.1002/jbt.21740
    H. Yang, R. Zhao, H. Chen, et al., Bornyl acetate has an anti-inflammatory effect in human chondrocytes via induction of IL-11, IUBMB Life. 66(2014)854-859. https://doi.org/10.1002/iub.1338
    N. Chen, G. Sun, X. Yuan, et al., Inhibition of lung inflammatory responses by bornyl acetate is correlated with regulation of myeloperoxidase activity, J. Surg. Res. 186(2014)436-445. https://doi.org/10.1016/j.jss.2013.09.003
    R.G. Brito, A.G. Guimaraes, J.S.S. Quintans, et al., Citronellol, a monoterpene alcohol, reduces nociceptive and inflammatory activities in rodents, J. Nat. Med. 66(2012)637-644. https://doi.org/10.1007/s11418-012-0632-4
    R. Jayaganesh, P. Pugalendhi, R. Murali, Effect of citronellol on NF-kB inflammatory signaling molecules in chemical carcinogen-induced mammary cancer in the rat model, J. Biochem. Mol. Toxicol. 34(2020), e22441.
    G. Xie, N. Chen, L.W. Soromou, et al., p-Cymene Protects Mice Against Lipopolysaccharide-Induced Acute Lung Injury by Inhibiting Inflammatory Cell Activation, Molecules. 17(2012)8159-8173. https://doi.org/10.3390/molecules17078159
    J. de Souza Siqueira Quintans, P.P. Menezes, M.R.V. Santos, et al., Improvement of p-cymene antinociceptive and anti-inflammatory effects by inclusion in β-cyclodextrin, Phytomedicine. 20(2013)436-440. https://doi.org/10.1016/j.phymed.2012.12.009
    L.R. Bonjardim, E.S. Cunha, A.G. Guimaraes, et al., Evaluation of the Anti-Inflammatory and Antinociceptive Properties of p-Cymene in Mice, Z. Fur Naturforschung C. 67(2014)15-21. https://doi.org/10.1515/znc-2012-1-203
    A. Zielinska, C. Martins-Gomes, N.R. Ferreira, et al., Anti-inflammatory and anti-cancer activity of citral:Optimization of citral-loaded solid lipid nanoparticles (SLN) using experimental factorial design and LUMiSizer®, Int. J. Pharm. 553(2018)428-440. https://doi.org/10.1016/j.ijpharm.2018.10.065
    Y. Song, H. Zhao, J. Liu, et al., Effects of Citral on Lipopolysaccharide-Induced Inflammation in Human Umbilical Vein Endothelial Cells, Inflammation. 39(2016)663-671. https://doi.org/10.1007/s10753-015-0292-0
    H.B. Martins, N. das N. Selis, v Anti-Inflammatory Activity of the Essential Oil Citral in Experimental Infection with Staphylococcus aureus in a Model Air Pouch, Evid. Based Complement. Alternat. Med. 2017(2017) e2505610. https://doi.org/10.1155/2017/2505610
    L.J. Quintans-Junior, A.G. Guimaraes, M.T. de Santana, et al., Citral reduces nociceptive and inflammatory response in rodents, Rev. Bras. Farmacogn. 21(2011)497-502. https://doi.org/10.1590/S0102-695X2011005000065
    C.A. Campos, B.S. Lima, G.G.G. Trindade, et al., Anti-hyperalgesic and anti-inflammatory effects of citral with β-cyclodextrin and hydroxypropyl-β-cyclodextrin inclusion complexes in animal models, Life Sci. 229(2019)139-148. https://doi.org/10.1016/j.lfs.2019.05.026
    A.T. Rufino, M. Ribeiro, C. Sousa, et al., Evaluation of the anti-inflammatory, anti-catabolic and pro-anabolic effects of E-caryophyllene, myrcene and limonene in a cell model of osteoarthritis, Eur. J. Pharmacol. 750(2015)141-150. https://doi.org/10.1016/j.ejphar.2015.01.018
    R. Hirota, N.N. Roger, H. Nakamura, et al., Anti-inflammatory Effects of Limonene from Yuzu (Citrus junos Tanaka) Essential Oil on Eosinophils, J. Food Sci. 75(2010) H87-H92. https://doi.org/10.1111/j.1750-3841.2010.01541.x
    M.C. de Souza, A.J. Vieira, F.P. Beserra, et al., Gastroprotective effect of limonene in rats:Influence on oxidative stress, inflammation and gene expression, Phytomedicine. 53(2019)37-42. https://doi.org/10.1016/j.phymed.2018.09.027
    P.A. d'Alessio, R. Ostan, J.-F. Bisson, et al., Oral administration of d-Limonene controls inflammation in rat colitis and displays anti-inflammatory properties as diet supplementation in humans, Life Sci. 92(2013)1151-1156. https://doi.org/10.1016/j.lfs.2013.04.013
    S. Chaudhary, M. Siddiqui, M. Athar, et al., d-Limonene modulates inflammation, oxidative stress and Ras-ERK pathway to inhibit murine skin tumorigenesis, Hum. Exp. Toxicol. 31(2012)798-811. https://doi.org/10.1177/0960327111434948
    F. Zecchinati, M.M. Barranco, M.R. Arana, et al., Reversion of down-regulation of intestinal multidrug resistance-associated protein 2 in fructose-fed rats by geraniol and vitamin C:Potential role of inflammatory response and oxidative stress, J. Nutr. Biochem. 68(2019)7-15. https://doi.org/10.1016/j.jnutbio.2019.03.002
    C.-J. Ye, S.-A. Li, Y. Zhang, et al., Geraniol targets KV1.3 ion channel and exhibits anti-inflammatory activity in vitro and in vivo, Fitoterapia. 139(2019)104394. https://doi.org/10.1016/j.fitote.2019.104394
    J. Wang, B. Su, H. Zhu, et al., Protective effect of geraniol inhibits inflammatory response, oxidative stress and apoptosis in traumatic injury of the spinal cord through modulation of NF-κB and p38 MAPK, Exp. Ther. Med. 12(2016)3607-3613. https://doi.org/10.3892/etm.2016.3850
    V. Vinothkumar, S. Manoharan, G. Sindhu, et al., Geraniol modulates cell proliferation, apoptosis, inflammation, and angiogenesis during 7,12-dimethylbenz[a]anthracene-induced hamster buccal pouch carcinogenesis, Mol. Cell. Biochem. 369(2012)17-25. https://doi.org/10.1007/s11010-012-1364-1
    B.F.M.T. Andrade, B.J. Conti, K.B. Santiago, et al., Cymbopogon martinii essential oil and geraniol at noncytotoxic concentrations exerted immunomodulatory/anti-inflammatory effects in human monocytes, J. Pharm. Pharmacol. 66(2014)1491-1496. https://doi.org/10.1111/jphp.12278
    M. Jayachandran, B. Chandrasekaran, N. Namasivayam, Geraniol attenuates fibrosis and exerts anti-inflammatory effects on diet induced atherogenesis by NF-κB signaling pathway, Eur. J. Pharmacol. 762(2015)102-111. https://doi.org/10.1016/j.ejphar.2015.05.039
    M. da S. Lima, L.J. Quintans-Junior, W.A. de Santana, et al., Anti-inflammatory effects of carvacrol:Evidence for a key role of interleukin-10, Eur. J. Pharmacol. 699(2013)112-117. https://doi.org/10.1016/j.ejphar.2012.11.040
    P. Landa, L. Kokoska, M. Pribylova, et al., In vitro anti-inflammatory activity of carvacrol:Inhibitory effect on COX-2 catalyzed prostaglandin E2 biosynthesisb, Arch. Pharm. Res. 32(2009)75-78. https://doi.org/10.1007/s12272-009-1120-6
    M.R. Khazdair, M.H. Boskabady, The effect of carvacrol on inflammatory mediators and respiratory symptoms in veterans exposed to sulfur mustard, a randomized, placebo-controlled trial, Respir. Med. 150(2019)21-29. https://doi.org/10.1016/j.rmed.2019.01.020
    A.L. Chenet, A.R. Duarte, F.J.S. de Almeida, et al., Carvacrol Depends on Heme Oxygenase-1(HO-1) to Exert Antioxidant, Anti-inflammatory, and Mitochondria-Related Protection in the Human Neuroblastoma SH-SY5Y Cells Line Exposed to Hydrogen Peroxide, Neurochem. Res. 44(2019)884-896. https://doi.org/10.1007/s11064-019-02724-5
    K. Arigesavan, G. Sudhandiran, Carvacrol exhibits anti-oxidant and anti-inflammatory effects against 1, 2-dimethyl hydrazine plus dextran sodium sulfate induced inflammation associated carcinogenicity in the colon of Fischer 344 rats, Biochem. Biophys. Res. Commun. 461(2015)314-320. https://doi.org/10.1016/j.bbrc.2015.04.030
    O.T. Somade, B.O. Ajayi, N.O. Tajudeen, et al., Camphor elicits up-regulation of hepatic and pulmonary pro-inflammatory cytokines and chemokines via activation of NF-kB in rats, Pathophysiology. 26(2019)305-313. https://doi.org/10.1016/j.pathophys.2019.07.005
    S.E. Silva-Filho, F. de S. Silva-Comar, L. a. M. Wiirzler, et al., Effect of Camphor on the Behavior of Leukocytes In vitro and In vivo in Acute Inflammatory Response, Trop. J. Pharm. Res. 13(2014)2031-2037-2037. https://doi.org/10.4314/tjpr.v13i12.13
    O.T. Somade, B.O. Ajayi, O.A. Safiriyu, et al., Renal and testicular up-regulation of pro-inflammatory chemokines (RANTES and CCL2) and cytokines (TNF-α, IL-1β, IL-6) following acute edible camphor administration is through activation of NF-kB in rats, Toxicol. Rep. 6(2019)759-767. https://doi.org/10.1016/j.toxrep.2019.07.010
    S.S. Ghori, M.I. Ahmed, A. Mohammed, et al., Evaluation of analgesic and anti-inflammatory activities of formulation containing camphor, menthol and thymol, 8(2016)271-274
    J. Ma, H. Xu, J. Wu, et al., Linalool inhibits cigarette smoke-induced lung inflammation by inhibiting NF-κB activation, Int. Immunopharmacol. 29(2015)708-713. https://doi.org/10.1016/j.intimp.2015.09.005
    X.-J. Li, Y.-J. Yang, Y.-S. Li, et al., α-Pinene, linalool, and 1-octanol contribute to the topical anti-inflammatory and analgesic activities of frankincense by inhibiting COX-2, J. Ethnopharmacol. 179(2016)22-26. https://doi.org/10.1016/j.jep.2015.12.039
    S.-C. Lee, S.-Y. Wang, C.-C. Li, et al., Anti-inflammatory effect of cinnamaldehyde and linalool from the leaf essential oil of Cinnamomum osmophloeum Kanehira in endotoxin-induced mice, J. Food Drug Anal. 26(2018)211-220. https://doi.org/10.1016/j.jfda.2017.03.006
    M.-G. Kim, S.-M. Kim, J.-H. Min, et al., Anti-inflammatory effects of linalool on ovalbumin-induced pulmonary inflammation, Int. Immunopharmacol. 74(2019)105706. https://doi.org/10.1016/j.intimp.2019.105706
    M. Huo, X. Cui, J. Xue, et al., Anti-inflammatory effects of linalool in RAW 264.7 macrophages and lipopolysaccharide-induced lung injury model, J. Surg. Res. 180(2013) e47-e54. https://doi.org/10.1016/j.jss.2012.10.050
    B. Deepa, C.V. Anuradha, Effects of linalool on inflammation, matrix accumulation and podocyte loss in kidney of streptozotocin-induced diabetic rats, Toxicol. Mech. Methods. 23(2013)223-234. https://doi.org/10.3109/15376516.2012.743638
    P.A. Batista, M.F. de Paula Werner, E.C. Oliveira, et al., The Antinociceptive Effect of (-)-Linalool in Models of Chronic Inflammatory and Neuropathic Hypersensitivity in Mice, J. Pain. 11(2010)1222-1229. https://doi.org/10.1016/j.jpain.2010.02.022
    L.J. Juergens, I. Tuleta, M. Stoeber, et al., Regulation of monocyte redox balance by 1,8-cineole (eucalyptol) controls oxidative stress and pro-inflammatory responses in vitro:A new option to increase the antioxidant effects of combined respiratory therapy with budesonide and formoterol?, Synergy. 7(2018)1-9. https://doi.org/10.1016/j.synres.2018.05.001
    U.R. Juergens, U. Dethlefsen, G. Steinkamp, et al., Anti-inflammatory activity of 1.8-cineol (eucalyptol) in bronchial asthma:a double-blind placebo-controlled trial, Respir. Med. 97(2003)250-256. https://doi.org/10.1053/rmed.2003.1432
    E. Kennedy-Feitosa, R.T. Okuro, V. Pinho Ribeiro, et al., Eucalyptol attenuates cigarette smoke-induced acute lung inflammation and oxidative stress in the mouse, Pulm. Pharmacol. Ther. 41(2016)11-18. https://doi.org/10.1016/j.pupt.2016.09.004
    Z. Fazelan, S.M. Hoseini, M. Yousefi, et al., Effects of dietary eucalyptol administration on antioxidant and inflammatory genes in common carp (Cyprinus carpio) exposed to ambient copper, Aquaculture. 520(2020)734988. https://doi.org/10.1016/j.aquaculture.2020.734988
    G. Badr, S. Alwasel, H. Ebaid, et al., Perinatal supplementation with thymoquinone improves diabetic complications and T cell immune responses in rat offspring, Cell. Immunol. 267 (2011) 133-140. https://doi.org/10.1016/j.cellimm.2011.01.002
    P.C. Braga, M. Dal Sasso, M. Culici, et al., Anti-inflammatory activity of thymol: inhibitory effect on the release of human neutrophil elastase, Pharmacology. 77 (2006) 130-136
    Z. Amirghofran, R. Hashemzadeh, K. Javidnia, et al., In vitro immunomodulatory effects of extracts from three plants of the Labiatae family and isolation of the active compound(s), J. Immunotoxicol. 8 (2011) 265-273. https://doi.org/10.3109/1547691X.2011.590828
    M.E. Pascual, K. Slowing, E. Carretero, et al., Lippia: traditional uses, chemistry and pharmacology: a review, J. Ethnopharmacol. 76 (2001) 201-214. https://doi.org/10.1016/s0378-8741(01)00234-3
    M. Hotta, R. Nakata, M. Katsukawa, et al., Carvacrol, a component of thyme oil, activates PPARalpha and gamma and suppresses COX-2 expression, J. Lipid Res. 51 (2010) 132-139. https://doi.org/10.1194/jlr.M900255-JLR200
    W.-J. Yoon, N.H. Lee, C.-G. Hyun, Limonene suppresses lipopolysaccharide-induced production of nitric oxide, prostaglandin E2, and pro-inflammatory cytokines in RAW 264.7 macrophages, J. Oleo Sci. 59 (2010) 415-421. https://doi.org/10.5650/jos.59.415
    Y.-T. Tung, M.-T. Chua, S.-Y. Wang, et al., Anti-inflammation activities of essential oil and its constituents from indigenous cinnamon (Cinnamomum osmophloeum) twigs, Bioresour. Technol. 99 (2008) 3908-3913. https://doi.org/10.1016/j.biortech.2007.07.050
    X. Wu, X. Li, F. Xiao, et al., [Studies on the analgesic and anti-inflammatory effect of bornyl acetate in volatile oil from Amomum villosum], Zhong Yao Cai Zhongyaocai J. Chin. Med. Mater. 27 (2004) 438-439
    X. Wang, A. Ma, W. Shi, et al., Quercetin and Bornyl Acetate Regulate T-Lymphocyte Subsets and INF-γ/IL-4 Ratio In Utero in Pregnant Mice, Evid.-Based Complement. Altern. Med. ECAM. 2011 (2011) 745262. https://doi.org/10.1155/2011/745262
    Y. Zhao, X. Wang, W. Shi, et al., Anti-abortive effect of quercetin and bornyl acetate on macrophages and IL-10 in uterus of mice, Afr. J. Biotechnol. 10 (2011) 8675-8682. [111] N.L. Quintao, G.F. da Silva, C.S. Antonialli, et al., Chemical composition and evaluation of the anti-hypernociceptive effect of the essential oil extracted from the leaves of Ugni myricoides on inflammatory and neuropathic models of pain in mice, Planta Med. 76 (2010) 1411-1418. https://doi.org/10.1055/s-0029-1240891
    N.L. Quintao, G.F. da Silva, C.S. Antonialli, et al., Chemical composition and evaluation of the anti-hypernociceptive effect of the essential oil extracted from the leaves of Ugni myricoides on inflammatory and neuropathic models of pain in mice, Planta Med 76 (2010) 1411-1418.[PubMed]
    I.-Y. Choi, J.H. Lim, S. Hwang, et al., Anti-ischemic and anti-inflammatory activity of (S)-cis-verbenol, Free Radic. Res. 44 (2010) 541-551. https://doi.org/10.3109/10715761003667562
    B.W. Chen, H.H. Wang, J.X. Liu, et al., Zinc sulphate solution enema decreases inflammation in experimental colitis in rats, J. Gastroenterol. Hepatol. 14 (1999) 1088-1092. https://doi.org/10.1046/j.1440-1746.1999.02013.x
    F.A. Santos, R.M. Silva, A.R. Campos, et al., 1,8-cineole (eucalyptol), a monoterpene oxide attenuates the colonic damage in rats on acute TNBS-colitis, Food Chem. Toxicol. Int. J. Publ. Br. Ind. Biol. Res. Assoc. 42 (2004) 579-584. https://doi.org/10.1016/j.fct.2003.11.001
    P. Ji, M. Si, Y. Podnos, et al., Monoterpene geraniol prevents acute allograft rejection, Transplant. Proc. 34 (2002) 1418-1419. https://doi.org/10.1016/s0041-1345(02)02910-x
    A. Marcuzzi, S. Crovella, A. Pontillo, Geraniol rescues inflammation in cellular and animal models of mevalonate kinase deficiency, Vivo Athens Greece. 25 (2011) 87-92
    A.T. Peana, P.S. D’Aquila, F. Panin, et al., Anti-inflammatory activity of linalool and linalyl acetate constituents of essential oils, Phytomedicine Int. J. Phytother. Phytopharm. 9 (2002) 721-726. https://doi.org/10.1078/094471102321621322
    A.E. Gonzalez-Ramirez, M.E. Gonzalez-Trujano, S.A. Orozco-Suarez, et al., Nerol alleviates pathologic markers in the oxazolone-induced colitis model, Eur. J. Pharmacol. 776 (2016) 81-89. https://doi.org/10.1016/j.ejphar.2016.02.036
    S. Abe, N. Maruyama, K. Hayama, et al., Suppression of tumor necrosis factor-alpha-induced neutrophil adherence responses by essential oils, Mediators Inflamm. 12 (2003) 323-328. https://doi.org/10.1080/09629350310001633342
    G. Wei, Y. Wu, Q. Gao, et al., Gallic Acid Attenuates Postoperative Intra-Abdominal Adhesion by Inhibiting Inflammatory Reaction in a Rat Model, Med. Sci. Monit. 24 (2018) 827-838. https://doi.org/10.12659/MSM.908550
    P. Dludla, B. Nkambule, B. Jack, et al., Inflammation and Oxidative Stress in an Obese State and the Protective Effects of Gallic Acid, Nutrients. 11 (2018) 23. https://doi.org/10.3390/nu11010023
    C.-S. Seo, S.-J. Jeong, S.-R. Yoo, et al., Quantitative Analysis and In vitro Anti-inflammatory Effects of Gallic Acid, Ellagic Acid, and Quercetin from Radix Sanguisorbae, Pharmacogn. Mag. 12 (2016) 104-108. https://doi.org/10.4103/0973-1296.177908
    K. Seob Lim, J.-K. Park, M. Ho Jeong, et al., Anti-Inflammatory Effect of Gallic Acid-Eluting Stent in a Porcine Coronary Restenosis Model, Acta Cardiol. Sin. 34 (2018) 224-232. https://doi.org/10.6515/ACS.201805_34(3).20171204A
    O. Karimi-Khouzani, E. Heidarian, S.A. Amini, Anti-inflammatory and ameliorative effects of gallic acid on fluoxetine-induced oxidative stress and liver damage in rats, Pharmacol. Rep. 69 (2017) 830-835. https://doi.org/10.1016/j.pharep.2017.03.011
    M. Tsang, D. Jiao, B. Chan, et al., Anti-Inflammatory Activities of Pentaherbs Formula, Berberine, Gallic Acid and Chlorogenic Acid in Atopic Dermatitis-Like Skin Inflammation, Molecules. 21 (2016) 519. https://doi.org/10.3390/molecules21040519
    L.A. BenSaad, K.H. Kim, C.C. Quah, et al., Anti-inflammatory potential of ellagic acid, gallic acid and punicalagin A&B isolated from Punica granatum, BMC Complement. Altern. Med. 17 (2017) 47. https://doi.org/10.1186/s12906-017-1555-0
    M. Saygin, H. Asci, O. Ozmen, et al., Impact of 2.45 GHz microwave radiation on the testicular inflammatory pathway biomarkers in young rats: The role of gallic acid: Testicular Physiopathology Caused by Wireless Device, Environ. Toxicol. 31 (2016) 1771-1784. https://doi.org/10.1002/tox.22179
    Y. Zhao, J. Liu, Anti-Inflammatory Effects of p-coumaric Acid in LPS-Stimulated RAW264.7 Cells: Involvement of NF-κB and MAPKs Pathways, Med. Chem. 06 (2016). https://doi.org/10.4172/2161-0444.1000365
    M. Lee, H.S. Rho, K. Choi, Anti-inflammatory Effects of a P-coumaric Acid and Kojic Acid Derivative in LPS-stimulated RAW264.7 Macrophage Cells, Biotechnol. Bioprocess Eng. 24 (2019) 653-657. https://doi.org/10.1007/s12257-018-0492-1
    M. Kheiry, M. Dianat, M. Badavi, et al., Does p-coumaric acid improve cardiac injury following LPS-induced lung inflammation through miRNA-146a activity?, 10 (2020) 8
    H. Zhu, Q. Liang, X. Xiong, et al., Anti-Inflammatory Effects of p-Coumaric Acid, a Natural Compound of Oldenlandia diffusa, on Arthritis Model Rats, Evid. Based Complement. Alternat. Med. 2018 (2018) 1-9. https://doi.org/10.1155/2018/5198594
    E.C.O. da Silva, F.M. dos Santos, A.R.B. Ribeiro, et al., Drug-induced anti-inflammatory response in A549 cells, as detected by Raman spectroscopy: a comparative analysis of the actions of dexamethasone and p -coumaric acid, The Analyst. 144 (2019) 1622-1631. https://doi.org/10.1039/C8AN01887A
    W.-C. Chang, J. Wu, C.-W. Chen, et al., Protective Effect of Vanillic Acid against Hyperinsulinemia, Hyperglycemia and Hyperlipidemia via Alleviating Hepatic Insulin Resistance and Inflammation in High-Fat Diet (HFD)-Fed Rats, Nutrients. 7 (2015) 9946-9959. https://doi.org/10.3390/nu7125514
    S.E. Khoshnam, A. Sarkaki, M. Rashno, et al., Memory deficits and hippocampal inflammation in cerebral hypoperfusion and reperfusion in male rats: Neuroprotective role of vanillic acid, Life Sci. 211 (2018) 126-132. https://doi.org/10.1016/j.lfs.2018.08.065
    H.-J. Jeong, S.-Y. Nam, H.-Y. Kim, et al., Anti-allergic inflammatory effect of vanillic acid through regulating thymic stromal lymphopoietin secretion from activated mast cells, Nat. Prod. Res. 32 (2018) 2945-2949. https://doi.org/10.1080/14786419.2017.1389938
    M.-C. Kim, S.-J. Kim, D.-S. Kim, et al., Vanillic acid inhibits inflammatory mediators by suppressing NF-κB in lipopolysaccharide-stimulated mouse peritoneal macrophages, Immunopharmacol. Immunotoxicol. 33 (2011) 525-532. https://doi.org/10.3109/08923973.2010.547500
    C. Calixto-Campos, T.T. Carvalho, M.S.N. Hohmann, et al., Vanillic Acid Inhibits Inflammatory Pain by Inhibiting Neutrophil Recruitment, Oxidative Stress, Cytokine Production, and NFκB Activation in Mice, J. Nat. Prod. 78 (2015) 1799-1808. https://doi.org/10.1021/acs.jnatprod.5b00246
    F. Bai, L. Fang, H. Hu, et al., Vanillic acid mitigates the ovalbumin (OVA)-induced asthma in rat model through prevention of airway inflammation, Biosci. Biotechnol. Biochem. 83 (2019) 531-537. https://doi.org/10.1080/09168451.2018.1543015
    Q. Zhang, J.-X. Hu, X. Kui, et al., Sinapic Acid Derivatives as Potential Anti-Inflammatory Agents: Synthesis and Biological Evaluation, Iran. J. Pharm. Res. IJPR. 16 (2017) 1405-1414
    J.-Y. Lee, Anti-inflammatory effects of sinapic acid on 2,4,6-trinitrobenzenesulfonic acid-induced colitis in mice, Arch. Pharm. Res. 41 (2018) 243-250. https://doi.org/10.1007/s12272-018-1006-6
    X. Huang, Q. Pan, Z. Mao, et al., Sinapic Acid Inhibits the IL-1β-Induced Inflammation via MAPK Downregulation in Rat Chondrocytes, Inflammation. 41 (2018) 562-568. https://doi.org/10.1007/s10753-017-0712-4
    M.A. Ansari, M. Raish, A. Ahmad, et al., Sinapic acid mitigates gentamicin-induced nephrotoxicity and associated oxidative/nitrosative stress, apoptosis, and inflammation in rats, Life Sci. 165 (2016) 1-8. https://doi.org/10.1016/j.lfs.2016.09.014
    Y.-M. Liu, J.-D. Shen, L.-P. Xu, et al., Ferulic acid inhibits neuro-inflammation in mice exposed to chronic unpredictable mild stress, Int. Immunopharmacol. 45 (2017) 128-134. https://doi.org/10.1016/j.intimp.2017.02.007
    H.M. Doss, C. Dey, C. Sudandiradoss, et al., Targeting inflammatory mediators with ferulic acid, a dietary polyphenol, for the suppression of monosodium urate crystal-induced inflammation in rats, Life Sci. 148 (2016) 201-210. https://doi.org/10.1016/j.lfs.2016.02.004
    F. Gerin, H. Erman, M. Erboga, et al., The Effects of Ferulic Acid Against Oxidative Stress and Inflammation in Formaldehyde-Induced Hepatotoxicity, Inflammation. 39 (2016) 1377-1386. https://doi.org/10.1007/s10753-016-0369-4
    Y. Cao, Y. Zhang, J. Qi, R. Liu, et al., Ferulic acid inhibits H2O2-induced oxidative stress and inflammation in rat vascular smooth muscle cells via inhibition of the NADPH oxidase and NF-κB pathway, Int. Immunopharmacol. 28 (2015) 1018-1025. https://doi.org/10.1016/j.intimp.2015.07.037
    P. Chao, C. Hsu, M. Yin, Anti-inflammatory and anti-coagulatory activities of caffeic acid and ellagic acid in cardiac tissue of diabetic mice, Nutr. Metab. 6 (2009) 33. https://doi.org/10.1186/1743-7075-6-33
    G.D. Norata, P. Marchesi, S. Passamonti, et al., Anti-inflammatory and anti-atherogenic effects of cathechin, caffeic acid and trans-resveratrol in apolipoprotein E deficient mice, Atherosclerosis. 191 (2007) 265-271. https://doi.org/10.1016/j.atherosclerosis.2006.05.047
    K.-M. Shin, I.-T. Kim, Y.-M. Park, et al., Anti-inflammatory effect of caffeic acid methyl ester and its mode of action through the inhibition of prostaglandin E2, nitric oxide and tumor necrosis factor-α production, Biochem. Pharmacol. 68 (2004) 2327-2336. https://doi.org/10.1016/j.bcp.2004.08.002
    F.M. da Cunha, D. Duma, J. Assreuy, et al., Caffeic Acid Derivatives: In Vitro and In Vivo Anti-inflammatory Properties, Free Radic. Res. 38 (2004) 1241-1253. https://doi.org/10.1080/10715760400016139
    D. Schroter, S. Neugart, M. Schreiner, et al., Amaranth’s 2-Caffeoylisocitric Acid-An Anti-Inflammatory Caffeic Acid Derivative That Impairs NF-κB Signaling in LPS-Challenged RAW 264.7 Macrophages, Nutrients. 11 (2019) 571. https://doi.org/10.3390/nu11030571
    C. Chao, M. Mong, K. Chan, M. Yin, Anti-glycative and anti-inflammatory effects of caffeic acid and ellagic acid in kidney of diabetic mice, Mol. Nutr. Food Res. 54 (2010) 388-395. https://doi.org/10.1002/mnfr.200900087
    B. Shao, M. Wang, A. Chen, et al., Protective effect of caffeic acid phenethyl ester against imidacloprid-induced hepatotoxicity by attenuating oxidative stress, endoplasmic reticulum stress, inflammation and apoptosis, Pestic. Biochem. Physiol. (2020) S0048357520300018. https://doi.org/10.1016/j.pestbp.2020.01.001
    C. Caddeo, O. Diez-Sales, R. Pons, et al., Topical Anti-Inflammatory Potential of Quercetin in Lipid-Based Nanosystems: In Vivo and In Vitro Evaluation, Pharm. Res. 31 (2014) 959-968. https://doi.org/10.1007/s11095-013-1215-0
    Y.-J. Kim, W. Park, Anti-Inflammatory Effect of Quercetin on RAW 264.7 Mouse Macrophages Induced with Polyinosinic-Polycytidylic Acid, Molecules. 21 (2016) 450. https://doi.org/10.3390/molecules21040450
    M. Lesjak, I. Beara, N. Simin, et al., Antioxidant and anti-inflammatory activities of quercetin and its derivatives, J. Funct. Foods. 40 (2018) 68-75. https://doi.org/10.1016/j.jff.2017.10.047
    R. Penalva, C.J. Gonzalez-Navarro, C. Gamazo, et al., Zein nanoparticles for oral delivery of quercetin: Pharmacokinetic studies and preventive anti-inflammatory effects in a mouse model of endotoxemia, Nanomedicine Nanotechnol. Biol. Med. 13 (2017) 103-110. https://doi.org/10.1016/j.nano.2016.08.033
    J. Dong, X. Zhang, L. Zhang, et al., Quercetin reduces obesity-associated ATM infiltration and inflammation in mice: a mechanism including AMPKα1/SIRT1, J. Lipid Res. 55 (2014) 363-374. https://doi.org/10.1194/jlr.M038786
    C. Gardi, K. Bauerova, B. Stringa, et al., Quercetin reduced inflammation and increased antioxidant defense in rat adjuvant arthritis, Arch. Biochem. Biophys. 583 (2015) 150-157. https://doi.org/10.1016/j.abb.2015.08.008
    H. Wang, Z. Cao, Anti-inflammatory Effects of (-)-Epicatechin in Lipopolysaccharide-Stimulated Raw 264.7 Macrophages, Trop. J. Pharm. Res. 13 (2014) 1415. https://doi.org/10.4314/tjpr.v13i9.6
    D.-J. Yang, S.-C. Liu, Y.-C. Chen, et al., Three Pathways Assess Anti-Inflammatory Response of Epicatechin with Lipopolysaccharide-Mediated Macrophage RAW264.7 Cells: Anti-Inflammatory Activity of Epicatechin, J. Food Biochem. 39 (2015) 334-343. https://doi.org/10.1111/jfbc.12134
    Y.-S. Chiou, Q. Huang, C.-T. Ho, et al., Directly interact with Keap1 and LPS is involved in the anti-inflammatory mechanisms of (-)-epicatechin-3-gallate in LPS-induced macrophages and endotoxemia, Free Radic. Biol. Med. 94 (2016) 1-16. https://doi.org/10.1016/j.freeradbiomed.2016.02.010
    G.N. Quinonez-Bastidas, J.B. Pineda-Farias, F.J. Flores-Murrieta, et al., Antinociceptive effect of (−)-epicatechin in inflammatory and neuropathic pain in rats:, Behav. Pharmacol. (2017) 1. https://doi.org/10.1097/FBP.0000000000000320
    E. Al-Sayed, M.M. Abdel-Daim, Analgesic and anti-inflammatory activities of epicatechin gallate from Bauhinia hookeri, Drug Dev. Res. 79 (2018) 157-164. https://doi.org/10.1002/ddr.21430
    M. Morrison, R. van der Heijden, P. Heeringa,E. et al., Epicatechin attenuates atherosclerosis and exerts anti-inflammatory effects on diet-induced human-CRP and NFκB in vivo, Atherosclerosis. 233 (2014) 149-156. https://doi.org/10.1016/j.atherosclerosis.2013.12.027
    A. Bettaieb, E. Cremonini, H. Kang, et al., Anti-inflammatory actions of (−)-epicatechin in the adipose tissue of obese mice, Int. J. Biochem. Cell Biol. 81 (2016) 383-392. https://doi.org/10.1016/j.biocel.2016.08.044
    A.L. Souto, J.F. Tavares, M.S. da Silva, et al., Anti-inflammatory activity of alkaloids: an update from 2000 to 2010, Mol. Basel Switz. 16 (2011) 8515-8534. https://doi.org/10.3390/molecules16108515
    X.-J. Li, Y.-J. Yang, Y.-S. Li, et al., linalool, and 1-octanol contribute to the topical anti-inflammatory and analgesic activities of frankincense by inhibiting COX-2, J. Ethnopharmacol. 179 (2016) 22-26. https://doi.org/10.1016/j.jep.2015.12.039
    T. Kaimoto, Y. Hatakeyama, K. Takahashi, et al., Involvement of transient receptor potential A1 channel in algesic and analgesic actions of the organic compound limonene, Eur. J. Pain. 20 (2016) 1155-1165. https://doi.org/10.1002/ejp.840
    E. Nazimova, A. Pavlova, O. Mikhalchenko, et al., Discovery of highly potent analgesic activity of isopulegol-derived (2R,4aR,7R,8aR)-4,7-dimethyl-2-(thiophen-2-yl)octahydro-2H-chromen-4-ol, Med. Chem. Res. 25 (2016) 1369-1383. https://doi.org/10.1007/s00044-016-1573-3
    A.G. Guimaraes, F.V. Silva, M.A. Xavier, et al., Orofacial Analgesic-Like Activity of Carvacrol in Rodents, Z. Fur Naturforschung C. 67 (2014) 481-485. https://doi.org/10.1515/znc-2012-9-1006
    X. Wu, F. Xiao, Z. Li , et al., [Research on the analgesic effect and mechanism of bornyl acetate in volatile oil from Amomum villosum]., Zhong Yao Cai Zhongyaocai J. Chin. Med. Mater. 28 (2005) 505-507. https://europepmc.org/article/med/16209271 (accessed February 28, 2020)
    X. Wu, X. Li, F. Xiao, et al., [Studies on the analgesic and anti-inflammatory effect of bornyl acetate in volatile oil from Amomum villosum]., Zhong Yao Cai Zhongyaocai J. Chin. Med. Mater. 27 (2004) 438-439. https://europepmc.org/article/med/15524301 (accessed February 28, 2020)
    S. Schenone, O. Bruno, A. Ranise, et al., O-[2-Hydroxy-3-(dialkylamino)propyl]ethers of (+)-1,7,7-trimethyl bicyclo[2.2.1]heptan-2-one oxime (camphor oxime) with analgesic and antiarrhythmic activities, Il Farm. 55 (2000) 495-498. https://doi.org/10.1016/S0014-827X(00)00065-3
    R. Lehtinen, Analgesic effect of Apernyl® and phenol-camphor solution on alveolitis, Int. J. Oral Surg. 4 (1975) 157-159. https://doi.org/10.1016/S0300-9785(75)80064-0
    B.-W. Song,W. Tian, Y.-X. Liu, et al., Studies on theAnalgesia of Quercetin, (1994) http://en.cnki.com.cn/Article_en/CJFDTotal-YIKE403.003.htm. (Accessed 6 April 2020).
    Z. Zhi-yu, G. Lan, W. Xiao-bo, et al., Symbol Anti-inflammatory and analgesic effects of quercetin chitosan composite solution, J. Clin. Rehabil. Tissue Eng. Res. 16 (2012) 8803-8806. https://doi.org/10.3969/j.issn.2095-4344.2012.47.014
    H. Jing-qun, S. Yang, Z. Peng, et al., Studies on anti-inflammatory and analgesic effects of Quercetin in rats with gouty arthritis, Strait Pharm. J. (2013)
    A. Mondal, T.K. Maity, A. Bishayee, Analgesic and Anti-Inflammatory Activities of Quercetin-3-methoxy-4′-glucosyl-7-glucoside Isolated from Indian Medicinal Plant Melothria heterophylla, Medicines. 6 (2019) 59. https://doi.org/10.3390/medicines6020059
    E. Al-Sayed, M.M. Abdel-Daim, Analgesic and anti-inflammatory activities of epicatechin gallate from Bauhinia hookeri, Drug Dev. Res. 79 (2018) 157-164. https://doi.org/10.1002/ddr.21430
    L. Wh, Z. L, W. Sj, C. Sz, et al., [Analgesic effect of ferulic acid on CCI mice: behavior and neurobiological analysis]., Zhongguo Zhong Yao Za Zhi Zhongguo Zhongyao Zazhi China J. Chin. Mater. Medica. 38 (2013) 3736-3741
    J.I. Dower, J.M. Geleijnse, L. Gijsbers, et al., Supplementation of the Pure Flavonoids Epicatechin and Quercetin Affects Some Biomarkers of Endothelial Dysfunction and Inflammation in (Pre)Hypertensive Adults: A Randomized Double-Blind, Placebo-Controlled, Crossover Trial, J. Nutr. 145 (2015) 1459-1463. https://doi.org/10.3945/jn.115.211888
    F. Ferk, M. Kundi, H. Brath, et al., Gallic Acid Improves Health-Associated Biochemical Parameters and Prevents Oxidative Damage of DNA in Type 2 Diabetes Patients: Results of a Placebo-Controlled Pilot Study, Mol. Nutr. Food Res. 62 (2018) 1700482. https://doi.org/10.1002/mnfr.201700482
    S.R. McAnulty, L.S. McAnulty, D.C. Nieman, et al., Chronic quercetin ingestion and exercise-induced oxidative damage and inflammation, Appl. Physiol. Nutr. Metab. 33 (2008) 254-262. https://doi.org/10.1139/H07-177
    E.L. Abbey, J.W. Rankin, Effect of Quercetin Supplementation on Repeated-Sprint Performance, Xanthine Oxidase Activity, and Inflammation, Int. J. Sport Nutr. Exerc. Metab. 21 (2011) 91-96. https://doi.org/10.1123/ijsnem.21.2.91
    A.W. Boots, M. Drent, V.C.J. de Boer, et al., Quercetin reduces markers of oxidative stress and inflammation in sarcoidosis, Clin. Nutr. 30 (2011) 506-512. https://doi.org/10.1016/j.clnu.2011.01.010
    M. Konrad, D.C. Nieman, D.A. Henson, et al., The Acute Effect of Ingesting a Quercetin-Based Supplement on Exercise-Induced Inflammation and Immune Changes in Runners, Int. J. Sport Nutr. Exerc. Metab. 21 (2011) 338-346. https://doi.org/10.1123/ijsnem.21.4.338
    K.S. O’Fallon, D. Kaushik, B. Michniak-Kohn, et al., Effects of Quercetin Supplementation on Markers of Muscle Damage and Inflammation after Eccentric Exercise, Int. J. Sport Nutr. Exerc. Metab. 22 (2012) 430-437. https://doi.org/10.1123/ijsnem.22.6.430
    L.S. McAnulty, L.E. Miller, P.A. Hosick, et al., Effect of resveratrol and quercetin supplementation on redox status and inflammation after exercise, Appl. Physiol. Nutr. Metab. 38 (2013) 760-765. https://doi.org/10.1139/apnm-2012-0455
    M. Pfeuffer, A. Auinger, U. Bley, et al., Effect of quercetin on traits of the metabolic syndrome, endothelial function and inflammation in men with different APOE isoforms, Nutr. Metab. Cardiovasc. Dis. 23 (2013) 403-409. https://doi.org/10.1016/j.numecd.2011.08.010
    F. Javadi, A. Ahmadzadeh, S. Eghtesadi, et al., The Effect of Quercetin on Inflammatory Factors and Clinical Symptoms in Women with Rheumatoid Arthritis: A Double-Blind, Randomized Controlled Trial, J. Am. Coll. Nutr. 36 (2017) 9-15. https://doi.org/10.1080/07315724.2016.1140093
    Z. Sajadi Hezaveh, A. Azarkeivan, L. Janani, et al., The effect of quercetin on iron overload and inflammation in β-thalassemia major patients: A double-blind randomized clinical trial, Complement. Ther. Med. 46 (2019) 24-28. https://doi.org/10.1016/j.ctim.2019.02.017
    A. Bumrungpert, S. Lilitchan, S. Tuntipopipat, et al., Ferulic Acid Supplementation Improves Lipid Profiles, Oxidative Stress, and Inflammatory Status in Hyperlipidemic Subjects: A Randomized, Double-Blind, Placebo-Controlled Clinical Trial, Nutrients. 10 (2018) 713. https://doi.org/10.3390/nu10060713
    N. Mateo Anson, A.-M. Aura, E. Selinheimo, et al., Bioprocessing of Wheat Bran in Whole Wheat Bread Increases the Bioavailability of Phenolic Acids in Men and Exerts Antiinflammatory Effects ex Vivo, J. Nutr. 141 (2011) 137-143. https://doi.org/10.3945/jn.110.127720
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (365) PDF downloads(5) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return