Citation: | Yang-Yang Wang, Liang Li, Xiu-Jun Liu, Qing-Fang Miao, Yi Li, Meng-Ran Zhang, Yong-Su Zhen. Development of a novel multi-functional integrated bioconjugate effectively targeting K-Ras mutant pancreatic cancer[J]. Journal of Pharmaceutical Analysis, 2022, 12(2): 232-242. doi: 10.1016/j.jpha.2021.07.001 |
T. Kamisawa, L.D. Wood, T. Itoi, et al., Pancreatic cancer, The Lancet 388 (2016) 73-85
|
H. Thomas, Pancreatic cancer: Infiltrating macrophages support liver metastasis, Nat. Rev. Gastroenterol. Hepatol. 13 (2016), 313
|
E. Costello, W. Greenhalf, J.P. Neoptolemos, New biomarkers and targets in pancreatic cancer and their application to treatment, Nat. Rev. Gastroenterol. Hepatol. 9 (2012) 435-444
|
J.B. Fleming, G.L. Shen, S.E. Holloway, et al., Molecular Consequences of Silencing Mutant K-ras in Pancreatic Cancer Cells: Justification for K-ras- Directed Therapy, Mol. Cancer Res. 3 (2005) 413-423
|
H. Jung, S. Park, G.R. Gunassekaran, et al., A Peptide Probe Enables Photoacoustic-Guided Imaging and Drug Delivery to Lung Tumors in K-ras(LA2) Mutant Mice, Cancer Res. 79 (2019) 4271-4282
|
E. Rozengurt, G. Eibl, Central role of Yes-associated protein and WW-domain-containing transcriptional co-activator with PDZ-binding motif in pancreatic cancer development, World J. Gastroenterol. 25 (2019) 1797-1816
|
K.L. Bryant, J.D. Mancias, A.C. Kimmelman, et al., KRAS: feeding pancreatic cancer proliferation, Trends Biochem. Sci. 39 (2014) 91-100
|
X. Wang, W. Sheng, Y. Wang, et al., A Macropinocytosis-Intensifying Albumin Domain-Based scFv Antibody and Its Conjugate Directed against K-Ras Mutant Pancreatic Cancer, Mol. Pharm. 15 (2018) 2403-2412
|
P.M. Thu, Z.G. Zheng, Y.P. Zhou, et al., Phellodendrine chloride suppresses proliferation of KRAS mutated pancreatic cancer cells through inhibition of nutrients uptake via macropinocytosis, Eur. J. Pharmacol. 850 (2019) 23-34
|
C. Commisso, S.M. Davidson, R.G. Soydaner-Azeloglu, et al., Macropinocytosis of protein is an amino acid supply route in Ras-transformed cells, Nature 497 (2013) 633-637
|
H. Ying, A.C. Kimmelman, C.A. Lyssiotis, et al., Oncogenic Kras maintains pancreatic tumors through regulation of anabolic glucose metabolism, Cell 149 (2012) 656-670
|
D. Gaglio, C.M. Metallo, P.A. Gameiro, et al., Oncogenic K-Ras decouples glucose and glutamine metabolism to support cancer cell growth, Mol. Syst. Biol. 7 (2011), 523
|
H. Shi, J. Guo, C. Li, et al., A current review of folate receptor alpha as a potential tumor target in non-small-cell lung cancer, Drug Des. Devel. Ther. 9 (2015) 4989-4996
|
H. Kurahara, S. Takao, T. Kuwahata, et al., Clinical Significance of Folate Receptor β-expressing Tumor-associated Macrophages in Pancreatic Cancer, Annals of Surgical Oncology 19 (2012) 2264-2271
|
R.C. Lynn, M. Poussin, A. Kalota, et al., Targeting of folate receptor beta on acute myeloid leukemia blasts with chimeric antigen receptor-expressing T cells, Blood 125 (2015) 3466-3476
|
Y.G. Assaraf, C.P. Leamon, J.A. Reddy, The folate receptor as a rational therapeutic target for personalized cancer treatment, Drug Resist. Updat. 17 (2014) 89-95
|
M. Fernández, F. Javaid, V. Chudasama, Advances in targeting the folate receptor in the treatment/imaging of cancers, Chem. Sci. 9 (2018) 790-810
|
S. Chittiboyina, Z. Chen, E.G. Chiorean, et al., The role of the folate pathway in pancreatic cancer risk, PLoS One 13 (2018), e0193298
|
J. Wang, J. Shen, K. Zhao, et al., STIM1 overexpression in hypoxia microenvironment contributes to pancreatic carcinoma progression, Cancer Biol. Med. 16 (2019) 100-108
|
T.A. Beerman, L.S. Gawron, S. Shin, et al., C-1027, a radiomimetic enediyne anticancer drug, preferentially targets hypoxic cells, Cancer Res. 69 (2009) 593-598
|
X.F. Guo, X.F. Zhu, Y. Shang, et al., A bispecific enediyne-energized fusion protein containing ligand-based and antibody-based oligopeptides against epidermal growth factor receptor and human epidermal growth factor receptor 2 shows potent antitumor activity, Clin. Cancer Res. 16 (2010) 2085-2094
|
L. Li, B. Shang, L. Hu, et al., Site-specific PEGylation of lidamycin and its antitumor activity, Acta Pharm. Sin. B. 5 (2015) 264-269
|
R. Wang, L. Li, S. Zhang, et al., A novel enediyne-integrated antibody-drug conjugate shows promising antitumor efficacy against CD30(+) lymphomas, Mol. Oncol. 12 (2018) 339-355
|
Y.H. Huang, B.Y. Shang, Y.S. Zhen, Antitumor efficacy of lidamycin on hepatoma and active moiety of its molecule, World J. Gastroenterology 11 (2005) 3980-3984
|
L. Li, L. Hu, C.Y. Zhao, et al., The Recombinant and Reconstituted Novel Albumin-Lidamycin Conjugate Shows Lasting Tumor Imaging and Intensively Enhanced Therapeutic Efficacy, Bioconjug. Chem. 29 (2018) 3104-3112
|
J. Yun, C. Rago, I. Cheong, et al., Glucose deprivation contributes to the development of KRAS pathway mutations in tumor cells, Science 325 (2009) 1555-1559
|
D.M. Moran, P.B. Trusk, K. Pry, et al., KRAS mutation status is associated with enhanced dependency on folate metabolism pathways in non-small cell lung cancer cells, Mol. Cancer Ther. 13 (2014) 1611-1624
|
E.S. Schernhammer, E. Giovannuccci, C.S. Fuchs, et al., A prospective study of dietary folate and vitamin B and colon cancer according to microsatellite instability and KRAS mutational status, Cancer Epidemiol Biomarkers Prev. 17 (2008) 2895-2898
|
N. Santana-Codina, A.A. Roeth, Y. Zhang, et al., Oncogenic KRAS supports pancreatic cancer through regulation of nucleotide synthesis, Nat. Commun. 9 (2018), 4945
|
Y. Du, B.Y. Shang, W.J. Sheng, et al., A recombinantly tailored β-defensin that displays intensive macropinocytosis-mediated uptake exerting potent efficacy against K-Ras mutant pancreatic cancer, Oncotarget 7 (2016) 58418-58434
|
H. Liu, M. Sun, Z. Liu, et al., KRAS-enhanced macropinocytosis and reduced FcRn-mediated recycling sensitize pancreatic cancer to albumin-conjugated drugs, J. Control. Release 296 (2019) 40-53
|
F. Islami, J. Ferlay, J. Lortet-Tieulent, et al., International trends in anal cancer incidence rates, Int. J. Epidemiol. 46 (2017) 924-938
|
H. Chen, R. He, X. Shi, et al., Meta-analysis on resected pancreatic cancer: a comparison between adjuvant treatments and gemcitabine alone, BMC Cancer 18 (2018), 1034
|
L.C. Hartmann, G.L. Keeney, W.L. Lingle, et al., Folate receptor overexpression is associated with poor outcome in breast cancer, Int. J. Cancer 121 (2007) 938-942
|
S. Omote, K. Takata, T. Tanaka, et al., Overexpression of folate receptor alpha is an independent prognostic factor for outcomes of pancreatic cancer patients, Med. Mol. Morphol. 51 (2018) 237-243
|
D.H. Josephs, H.J. Bax, T. Dodev, et al., Anti-Folate Receptor-α IgE but not IgG Recruits Macrophages to Attack Tumors via TNFα/MCP-1 Signaling, Cancer Research 77 (2017) 1127-1141
|
Z. Liu, X. Jin, W. Pi, et al., Folic acid inhibits nasopharyngeal cancer cell proliferation and invasion via activation of FRalpha/ERK1/2/TSLC1 pathway, Biosci. Rep. 37 (2017), BSR20170772
|
K. Cheung-Ong, G. Giaever, C. Nislow, DNA-damaging agents in cancer chemotherapy: serendipity and chemical biology, Chem. Biol. 20 (2013) 648-659
|
A. Adhikari, B. Shen, C. Rader, Challenges and Opportunities to Develop Enediyne Natural Products as Payloads for Antibody-Drug Conjugates, Antib. Ther. 4 (2021) 1-15
|
E. Fahrländer, S. Schelhaas, A.H. Jacobs, et al., PEGylated human serum albumin (HSA) nanoparticles: preparation, characterization and quantification of the PEGylation extent, Nanotechnology 26 (2015), 145103
|
T. Yin, H. Cai, J. Liu, et al., Biological evaluation of PEG modified nanosuspensions based on human serum albumin for tumor targeted delivery of paclitaxel, Eur. J. Pharm. Sci. 83 (2016) 79-87
|
P. Akbarzadehlaleh, M. Mirzaei, M. Mashahdi-Keshtiban, et al., PEGylated Human Serum Albumin: Review of PEGylation, Purification and Characterization Methods, Adv. Pharm. Bull. 6 (2016) 309-317
|
T. Zhao, Y.N. Cheng, H.N. Tan, et al., Site-Specific Chemical Modification of Human Serum Albumin with Polyethylene Glycol Prolongs Half-life and Improves Intravascular Retention in Mice, Biol. Pharm. Bull. 35 (2012) 280-288
|
J.K. Dozier, M.D. Distefano, Site-Specific PEGylation of Therapeutic Proteins, Int. J. Mol. Sci. 16 (2015) 25831-25864
|
H. Kang, S. Rho, W.R. Stiles, et al., Size-Dependent EPR Effect of Polymeric Nanoparticles on Tumor Targeting, Adv. Healthc. Mater. 9 (2020), e1901223
|
Y. Yang, W. Zhu, L. Cheng, et al., Tumor microenvironment (TME)-activatable circular aptamer-PEG as an effective hierarchical-targeting molecular medicine for photodynamic therapy, Biomaterials 246 (2020), 119971
|