Volume 11 Issue 6
Dec.  2021
Turn off MathJax
Article Contents
Ningning Tang, Ling Li, Fei Xie, Ying Lu, Zifan Zuo, Hao Shan, Quan Zhang, Lianwen Zhang. A living cell-based fluorescent reporter for high-throughput screening of anti-tumor drugs[J]. Journal of Pharmaceutical Analysis, 2021, 11(6): 808-814. doi: 10.1016/j.jpha.2021.04.001
Citation: Ningning Tang, Ling Li, Fei Xie, Ying Lu, Zifan Zuo, Hao Shan, Quan Zhang, Lianwen Zhang. A living cell-based fluorescent reporter for high-throughput screening of anti-tumor drugs[J]. Journal of Pharmaceutical Analysis, 2021, 11(6): 808-814. doi: 10.1016/j.jpha.2021.04.001

A living cell-based fluorescent reporter for high-throughput screening of anti-tumor drugs

doi: 10.1016/j.jpha.2021.04.001
Funds:

We gratefully appreciate the financial support from the National Natural Science Foundation of China (Grant No.: 31470795), Tianjin Municipal Science and Technology Commission (Grant No.: 15JCYBJC24100), and the “Fundamental Research Funds for the Central Universities”, Nankai University (Grant No.: 63191148).

  • Received Date: Jul. 22, 2020
  • Accepted Date: Apr. 01, 2021
  • Rev Recd Date: Mar. 31, 2021
  • Available Online: Jan. 12, 2022
  • Publish Date: Dec. 15, 2021
  • Suppression of cellular O-linked β-N-acetylglucosaminylation (O-GlcNAcylation) can repress proliferation and migration of various cancer cells, which opens a new avenue for cancer therapy. Based on the regulation of insulin gene transcription, we designed a cell-based fluorescent reporter capable of sensing cellular O-GlcNAcylation in HEK293T cells. The fluorescent reporter mainly consists of a reporter (green fluorescent protein (GFP)), an internal reference (red fluorescent protein), and an operator (neuronal differentiation 1), which serves as a “sweet switch” to control GFP expression in response to cellular O-GlcNAcylation changes. The fluorescent reporter can efficiently sense reduced levels of cellular O-GlcNAcylation in several cell lines. Using the fluorescent reporter, we screened 120 natural products and obtained one compound, sesamin, which could markedly inhibit protein O-GlcNAcylation in HeLa and human colorectal carcinoma-116 cells and repress their migration in vitro. Altogether, the present study demonstrated the development of a novel strategy for anti-tumor drug screening, as well as for conducting gene transcription studies.
  • loading
  • N. E. Zachara, Critical observations that shaped our understanding of the function(s) of intracellular glycosylation (o-glcnac), FEBS Lett. 592 (2018) 3950-3975
    R. Okuyama, S. Marshall, Potential regulation of nuclear udp-n-acetylglucosaminyl transferase (ogt) by substrate availability: Ability of chromatin protein to bind udp-n-acetylglucosamine and reduce ogt-mediated o-linked glycosylation, Biol. Pharm. Bull. 27 (2004) 1293-1296
    L. K. Kreppel, G. W. Hart, Regulation of a cytosolic and nuclear o-glcnac transferase - role of the tetratricopeptide repeats, J. Biol. Chem. 274 (1999) 32015-32022
    E. J. Kim, M. R. Bond, D. C. Love, et al., Chemical tools to explore nutrient-driven o-glcnac cycling, Crit. Rev. Biochem. Mol. Biol. 49 (2014) 327-342
    D. J. Vocadlo, O-glcnac processing enzymes: Catalytic mechanisms, substrate specificity, and enzyme regulation, Curr. Opin. Chem. Biol. 16 (2012) 488-497
    A. Ostrowski, D. M. F. van Aalten, Chemical tools to probe cellular o-glcnac signalling, Biochem. J. 456 (2013) 1-12
    G. W. Hart, Nutrient regulation of signaling and transcription, J. Biol. Chem. 294 (2019) 2211-2231
    C. Slawson, R. J. Copeland, G. W. Hart, O-gicnac signaling: A metabolic link between diabetes and cancer?, Trends Biochem. Sci. 35 (2010) 547-555
    X. Huang, Q. M. Pan, D. N. Sun, et al., O-glcnacylation of cofilin promotes breast cancer cell invasion, J. Biol. Chem. 288 (2013) 36418-36425
    A. Ali, S. H. Kim, M. J. Kim, et al., O-glcnacylation of nf-kappa b promotes lung metastasis of cervical cancer cells via upregulation of cxcr4 expression, Mol. Cells 40 (2017) 476-484
    W. Y. Mi, Y. C. Gu, C. F. Han, et al., O-glcnacylation is a novel regulator of lung and colon cancer malignancy, BBA-Mol. Basis. Dis. 1812 (2011) 514-519
    A. Asthana, P. Ramakrishnan, Y. Vicioso, et al, Hexosamine biosynthetic pathway inhibition leads to aml cell differentiation and cell death, Mol. Cancer Ther. 17 (2018) 2226-2237
    J. A. Hanover, W. P. Chen, M. R. Bond, O-glcnac in cancer: An oncometabolism-fueled vicious cycle, J. Bioenerg. Biomembr. 50 (2018) 155-173
    C. M. Ferrer, T. Y. Lu, Z. A. Bacigalupa, et al., O-glcnacylation regulates breast cancer metastasis via sirt1 modulation of foxm1 pathway, Oncogene 36 (2017) 559-569
    L. A. Walter, Y. H. Lin, C. J. Halbrook, et al., Inhibiting the hexosamine biosynthetic pathway lowers o-glcnacylation levels and sensitizes cancer to environmental stress, Biochemistry (2019)
    S. B. Harosh-Davidovich, I. Khalaila, O-glcnacylation affects beta-catenin and e-cadherin expression, cell motility and tumorigenicity of colorectal cancer, Exp. Cell. Res. 364 (2018) 42-49
    Y. Niu, Y. Xia, J. Wang, et al., O-glcnacylation promotes migration and invasion in human ovarian cancer cells via the rhoa/rock/mlc pathway, Mol. Med. Rep. 15 (2017) 2083-2089
    C. Slawson, G. W. Hart, O-glcnac signalling: Implications for cancer cell biology, Nat. Rev. Cancer 11 (2011) 678-684
    S. Ozcan, S. S. Andrali, J. E. Cantrell, Modulation of transcription factor function by o-glcnac modification, Biochim. Biophys. Acta 1799 (2010) 353-364
    Z. Fu, E. R. Gilbert, D. Liu, Regulation of insulin synthesis and secretion and pancreatic beta-cell dysfunction in diabetes, Curr. Diabetes Rev. 9 (2013) 25-53
    S. S. Andrali, Q. W. Qian, S. Ozcan, Glucose mediates the translocation of neurod1 by o-linked glycosylation, J. Biol. Chem. 282 (2007) 15589-15596
    Y. Gao, J. Miyazaki, G. W. Hart, The transcription factor pdx-1 is post-translationally modified by o-linked n-acetylglucosamine and this modification is correlated with its DNA binding activity and insulin secretion in min6 beta-cells, Arch Biochem. Biophys. 415 (2003) 155-163
    S. A. Caldwell, S. R. Jackson, K. S. Shahriari, et al., Nutrient sensor o-glcnac transferase regulates breast cancer tumorigenesis through targeting of the oncogenic transcription factor foxm1, Oncogene 29 (2010) 2831-2842
    C. H. Zhang, F. Xie, L. Li, et al., Hepatocyte nuclear factor 1 alpha (hnf1a) regulates transcription of o-glcnac transferase in a negative feedback mechanism, FEBS Lett. 593 (2019) 1050-1060
    S. P. Durning, H. Flanagan-Steet, N. Prasad, et al., O-linked beta-n-acetylglucosamine (o-glcnac) acts as a glucose sensor to epigenetically regulate the insulin gene in pancreatic beta cells, J. Biol. Chem. 291 (2016) 2107-2118
    A. L. Szymczak, D. A. A. Vignali, Development of 2a peptide-based strategies in the design of multicistronic vectors, Expert Opin. Biol. Th. 5 (2005) 627-638
    R. F. Ortiz-Meoz, J. Y. Jiang, M. B. Lazarus, et al., A small molecule that inhibits ogt activity in cells, ACS Chem. Biol. 10 (2015) 1392-1397
    H. W. Dou, S. S. Yang, Y. L. Hu, et al., Sesamin induces er stress-mediated apoptosis and activates autophagy in cervical cancer cells, Life Sci. 200 (2018) 87-93
    A. F. Majdalawieh, M. Massri, G. K. Nasrallah, A comprehensive review on the anti-cancer properties and mechanisms of action of sesamin, a lignan in sesame seeds (sesamum indicum), Eur. J. Pharmacol. 815 (2017) 512-521
    D. Wu, X. P. Wang, W. Zhang, Sesamolin exerts anti-proliferative and apoptotic effect on human colorectal cancer cells via inhibition of jak2/stat3 signaling pathway, Cell. Mol. Biol. 65 (2019) 96-100
    T. N. Kuo, C. S. Lin, G. D. Li, et al., Sesamin inhibits cervical cancer cell proliferation by promoting p53/pten-mediated apoptosis, Int. J. Med. Sci. 17 (2020) 2292-2298
    P. Kongtawelert, B. Wudtiwai, T. H. Shwe, et al., Inhibition of programmed death ligand 1 (pd-l1) expression in breast cancer cells by sesamin, Int. Immunopharmacol. 86 (2020) 106759
    J. M. Chen, P. Y. Chen, C. C. Lin, et al., Antimetastatic effects of sesamin on human head and neck squamous cell carcinoma through regulation of matrix metalloproteinase-2, Molecules 25 (2020) 2248
    C. Xu, G. D. Liu, L. Feng, et al., Identification of o-gicnacylation modification in diabetic retinopathy and crosstalk with phosphorylation of stat3 in retina vascular endothelium cells, Cell. Physiol. Biochem. 49 (2018) 1389-1402
    V. Chesnokov, C. Sun, K. Itakura, Glucosamine suppresses proliferation of human prostate carcinoma du145 cells through inhibition of stat3 signaling, Cancer Cell Int. 9 (2009) 25
    A. Krzeslak, P. Jozwiak, A. Lipinska, Down-regulation of beta-n-acetyl-d-glucosaminidase increases akt1 activity in thyroid anaplastic cancer cells, Oncol. Rep. 26 (2011) 743-749
    A. Kasprowicz, C. Spriet, C. Terryn, et al., Exploring the potential of beta-catenin o-glcnacylation by using fluorescence-based engineering and imaging, Molecules 25 (2020) 4501
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (167) PDF downloads(17) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return