Citation: | Agnieszka Potęga, Michał Kosno, Zofia Mazerska. Novel insights into conjugation of antitumor-active unsymmetrical bisacridine C-2028 with glutathione: Characteristics of non-enzymatic and glutathione S-transferase-mediated reactions[J]. Journal of Pharmaceutical Analysis, 2021, 11(6): 791-798. doi: 10.1016/j.jpha.2021.03.014 |
J.K. Konopa, B. Horowska, E.M. Paluszkiewicz, et al., Inventors; Asymmetric bis-acridines with antitumour activity and use thereof, European patent: EP 3070078 A1. 4 October 2017.
|
J.K. Konopa, B. Horowska, E.M. Paluszkiewicz, et al., Asymmetric bis-acridines with antitumour activity and their uses, United States patent: US10202349B2. 2 December 2019.
|
J. Pilch, E. Matysiak-Brynda, A. Kowalczyk, et al., New unsymmetrical bisacridine derivatives non-covalently attached to quaternary quantum dots improve cancer therapy via enhancing cytotoxicity towards cancer cells and protecting normal cells, ACS Appl. Mater. Interfaces 12 (2020) 17276-17289
|
E. Paluszkiewicz, B. Horowska, B. Borowa-Mazgaj, et al., Design, synthesis and high antitumor potential of new unsymmetrical bisacridine derivatives towards human solid tumors, specifically pancreatic cancers and their unique ability to stabilize DNA G-quadruplexes, Eur. J. Med. Chem. 204 (2020) 112599
|
Z. Zhang, W. Tang, Drug metabolism in drug discovery and development, Acta Pharm. Sin. B 8 (2018) 721-732
|
A. Mieszkowska, A. Potega, Z. Mazerska, Metabolism of antitumor unsymmetrical bis-acridines in liver microsomes and cytosol: Identification of the metabolites and metabolic pathways of the compounds, Acta Biochim. Pol., Abstracts of the 3rd Bio 2018 Congress, Gdansk, Poland, 2018, p. 80 (P13.1)
|
A. Potega, A. Robakowska, M. Swieczkowska, et al., Electrochemistry/liquid chromatography/mass spectrometry for the simulation of in vitro metabolism of unsymmetrical bis-acridines with antitumor properties, Acta Biochim. Pol., Abstracts of the 3rd Bio 2018 Congress, Gdansk, Poland, 2018, p. 61 (O9.1)
|
V. I. Lushchak, Glutathione homeostasis and functions: potential targets for medical interventions, J. Amino Acids. (2012), https://doi.org/10.1155/2012/736837
|
M. Deponte, Glutathione catalysis and the reaction mechanisms of glutathione-dependent enzymes, Biochim. Biophys. Acta 1830 (2013) 3217-3266
|
M. Romanski, F. K. Glowka, In vitro study of the enzymatic and nonenzymatic conjugation of treosulfan with glutathione, Eur. J. Drug Metab. Pharmacokinet. 44 (2019) 653-657
|
P. J. van Bladere, Glutathione conjugation as a bioactivation reaction, Chem.-Biol. Interact. 129 (2000) 61-76
|
J. D. Hayes, J. U. Flanagan, I. R. Jowsey, Glutathione transferases. Annu. Rev. Pharmacol, Toxicol. 45 (2005) 51-88
|
G. Di Pietro, V. LA Magno, F. Rios-Santos, Glutathione S-transferases: an overview in cancer research, Expert Opin. Drug Metab. Toxicol. 6 (2010) 153-170
|
K. D. Tew, A. Monks, L. Barone, et al., Glutathione-associated enzymes in the human cell lines of the National Cancer Institute Drug Screening Program, Mol. Pharmacol. 50 (1996) 149-159
|
H. Bulus, S. Oguztuzun, G. Guler Simsek, et al., Expression of CYP and GST in human normal and colon tumor tissues, Biotech. Histochem. 94 (2019) 1-9
|
C. Kural, A. Kaya Kocdogan, G. G. Simsek, et al., Glutathione S-transferases and cytochrome P450 enzyme expression in patients with intracranial tumors: preliminary report of 55 patients, Med. Princ. Pract. 28 (2019) 56-62
|
T. B. Hughes, G. P. Miller, S. J. Swamidass, Site of reactivity models predict molecular reactivity of diverse chemicals with glutathione, Chem. Res. Toxicol. 28 (2015) 797-809
|
J. H. Ploemen, B. van Ommen, P. J. van Bladeren, Inhibition of rat and human glutathione S-transferase isoenzymes by ethacrynic acid and its glutathione conjugate, Biochem. Pharmacol. 40 (1990) 1631-1635
|
C. Emoto, S. Murase, Y. Sawada, et al., In vitro inhibitory effect of 1-aminobenzotriazole on drug oxidations catalyzed by human cytochrome P450 enzymes: a comparison with SKF-525A and ketoconazole, Drug Metab. Pharmacokinet. 18 (2003) 287-295
|
N. T. Issa, H. Wathieu, A. Ojo, et al., Drug metabolism in preclinical drug development: a survey of the discovery process, toxicology, and computational tools, Curr. Drug Metab. 18 (2017) 556-565
|
G. Aldini, A. Altomare, G. Baron, et al., N-Acetylcysteine as an antioxidant and disulphide breaking agent: the reasons why, Free Radical Research 52 (2018) 751-762
|
N. Allocati, M. Masulli, C. di Ilio, et al., Glutathione transferases: substrates, inihibitors and pro-drugs in cancer and neurodegenerative diseases, Oncogenesis 7 (2018) 8
|
C. C. McIlwain, D. M. Townsend, K. D. Tew, Glutathione S-transferase polymorphisms: cancer incidence and therapy, Oncogene 25 (2006) 1639-1648
|
M. W. den Braver, Y. Zhang, H. Venkataraman, et al., Simulation of interindividual differences in inactivation of reactive para-benzoquinone imine metabolites of diclofenac by glutathione S-transferases in human liver cytosol, Toxicol. Lett. (2016) 255, 52-62
|
J. D. Hayes, R. C. Strange, Glutathione S-transferase polymorphisms and their biological consequences, Pharmacology 61 (2000) 154-166
|
Z. Okat, Clinical importance of glutathione-S-transferase enzyme polymorphisms in cancer, Int. Phys. Med. Rehab. J. 23 (2016) 491-493
|
A. Bocedi, A. Noce, G. Marrone, et al., Glutathione transferase P1-1 an enzyme useful in biomedicine and as biomarker in clinical practice and in environmental pollution, Nutrients 11 (2019) 1741
|
M. A. Keller, G. Piedrafita, M. Ralser, The widespread role of non-enzymatic reactions in cellular metabolism, Curr. Opin. Biotech. 34 (2015) 153-161
|
H. R. Kolm, H. U. Danielson, Y. Zhang, et al., Isothiocyanates as substrates for human glutathione transferases: structure-activity studies, Biochem. J. 311 (1995) 453-459
|
S. Baez, J. Segura-Aguilar, M. Widersten, et al., Glutathione transferases catalyse the detoxication of oxidized metabolites (o-quinones) of catecholamines and may serve as an antioxidant system preventing degenerative cellular processes, Biochem. J. 324 (1997) 25-
|
K. Gorlewska, Z. Mazerska, P. Sowinski, et al., Products of metabolic activation of the antitumor drug Ledakrin (Nitracrine) in vitro, Chem. Res. Toxicol. 14 (2001) 1-10
|
D. Olender, J. Zwawiak, L. Zaprutko, Multidirectional efficacy of biologically active nitro compounds included in medicines, Pharmaceuticals 11 (2018) 54
|
Oakley, Glutathione transferases: a structural perspective, Drug Metab. Rev. 43 (2011) 138-151
|
F. Angelucci, P. Baiocco, M. Brunori, et al., Insights into the catalytic mechanism of glutathione S-transferase: the lesson from Schistosoma haematobium, Structure 13 (2005) 1241-1246
|
X. Ji, A. Pal, R. Kalathur, et al., Structure-based design of anticancer prodrug PABA/NO, Drug Des. Devel. Ther. 2 (2008) 123-130
|
A. J. Oakley, M. L. Bello, M. Nuccetelli, et al., The ligandin (non-substrate) binding site of human pi class glutathione transferase is located in the electrophile binding site (H-site), J. Mol. Biol. 291 (1999) 913-926
|
D. E. Rickert, Metabolism of nitroaromatic compounds, Drug Metab. Rev. 18 (1987) 23-53
|
V. L. Rusinov, I. M. Sapozhnikova, E. N. Ulomskii, et al., Nucleophilic substitution of nitro group in nitrotriazolotriazines as a model of potential interaction with cysteine-containing proteins, Chem. Heterocycl. Compd. 51 (2015) 275-280
|
V. M. Vlasov, Nucleophilic substitution of the nitro group, fluorine and chlorine in aromatic compounds, Russ. Chem. Rev. 72 (2003) 681-703
|