Citation: | Anqi Huang, Wenwen Deng, Xiao Li, Qutong Zheng, Xuanxuan Wang, Yuxiu Xiao. Long-chain alkanol–alkyl carboxylic acid-based low-viscosity hydrophobic deep eutectic solvents for one-pot extraction of anthraquinones from Rhei Radix et Rhizoma[J]. Journal of Pharmaceutical Analysis, 2022, 12(1): 87-95. doi: 10.1016/j.jpha.2021.03.002 |
M.H. Zainal-Abidin, M. Hayyan, A. Hayyan, et al., New horizons in the extraction of bioactive compounds using deep eutectic solvents:A review, Anal. Chim. Acta 979(2017)1-23
|
D. Zhang, K. Wu, X. Zhang, et al., In silico screening of Chinese herbal medicines with the potential to directly inhibit 2019 novel coronavirus, J. Integr. Med. 18(2020)152-158
|
S.K. Sinha, A. Shakya, S.K. Prasad, et al., An in-silico evaluation of different Saikosaponins for their potency against SARS-CoV-2 using NSP15 and fusion spike glycoprotein as targets, J. Biomol. Struct. Dyn.(2020)1-13
|
J. Morone, A. Alfeus, V. Vasconcelos, et al., Revealing the potential of cyanobacteria in cosmetics and cosmeceuticals-A new bioactive approach, Algal Res. 41(2019)101541
|
S. Maqsood, O. Adiamo, M. Ahmad, et al., Bioactive compounds from date fruit and seed as potential nutraceutical and functional food ingredients, Food Chem. 308(2020)125522
|
W. Kukula-Koch, W. Koch, N. Stasiak, et al., Quantitative standarization and CPC-based recovery of pharmacologically active components from Polygonum tinctorium Ait. leaf extracts, Ind. Crop. Prod. 69(2015)324-328
|
J. Kubola, N. Meeso, S. Siriamornpun, Lycopene and beta carotene concentration in aril oil of gac (Momordica cochinchinensis Spreng) as influenced by aril-drying process and solvents extraction, Food. Res. Int. 50(2013)664-669
|
M. Wojciak-Kosior, I. Sowa, R. Kocjan, et al., Effect of different extraction techniques on quantification of oleanolic and ursolic acid in Lamii albi flos, Ind. Crop. Prod. 44(2013)373-377
|
R. Goyeneche, K. Di Scala, C.L. Ramirez, et al., Recovery of bioactive compounds from beetroot leaves by supercritical CO2 extraction as a promising bioresource, J. Supercrit. Fluid. 155(2020)104658
|
M. Rouhani, Modeling and optimization of ultrasound-assisted green extraction and rapid HPTLC analysis of stevioside from Stevia Rebaudiana, Ind. Crop. Prod. 132(2019)226-235
|
K. Hou, M. Bao, L. Wang, et al., Aqueous enzymatic pretreatment ionic liquid-lithium salt based microwave-assisted extraction of essential oil and procyanidins from pinecones of Pinus koraiensis, J. Clean. Prod. 236(2019)117581
|
T. Tsiaka, C. Fotakis, D. Z. Lantzouraki, et al., Expanding the Role of Sub-Exploited DOE-High Energy Extraction and Metabolomic Profiling towards Agro-Byproduct Valorization:The Case of Carotenoid-Rich Apricot Pulp, Molecules 25(2020)2702
|
M. Agnieszka, S. Michal, K. Robert, Selection of Conditions of Ultrasound-Assisted, Three-Step Extraction of Ellagitannins from Selected Berry Fruit of the Rosaceae Family Using the Response Surface Methodology, Food Anal. Method. 13(2020)1650-1665
|
M.W. Nam, J. Zhao, M.S. Lee, et al., Enhanced extraction of bioactive natural products using tailor-made deep eutectic solvents:application to flavonoid extraction from Flos sophorae, Green Chem. 17(2015)1718-1727
|
D.E. Yoo, K.M. Jeong, S.Y. Han, et al., Deep eutectic solvent-based valorization of spent coffee grounds, Food Chem. 255(2018)357-364
|
J. Liang, Y. Zeng, H. Wang, et al., Extraction, purification and antioxidant activity of novel polysaccharides from Dendrobium officinale by deep eutectic solvents, Nat. Prod. Res. 33(2019)3248-3253
|
L. Benvenutti, A. A. F. Zielinski, S. R. S. Ferreira, Which is the best food emerging solvent:IL, DES or NADES?Trends Food Sci. Tech. 90(2019)133-146
|
M. Ruesgas-Ramon, M. C.Figueroa-Espinoza, E. Durand, Application of Deep Eutectic Solvents (DES) for Phenolic Compounds Extraction:Overview, Challenges, and Opportunities, J. Agric. Food Chem. 65(2017)3591-3601
|
Y. Dai, J. van Spronsen, G.J. Witkamp, et al., Natural deep eutectic solvents as new potential media for green technology, Anal. Chim. Acta. 766(2013)61-68
|
L.T. Wang, Q. Yang, Q. Cui, et al., Recyclable menthol-based deep eutectic solvent micellar system for extracting phytochemicals from Ginkgo biloba leaves, J. Clean. Prod. 244(2020)118648
|
Q. Zhang, K. De Oliveira Vigier, S. Royer, et al., Deep eutectic solvents:syntheses, properties and applications, Chem. Soc. Rev. 41(2012)7108-7146
|
Y. Dai, G.J. Witkamp, R. Verpoorte, et al., Tailoring properties of natural deep eutectic solvents with water to facilitate their applications, Food Chem. 187(2015)14-19
|
B.D. Ribeiro, C. Florindo, L.C. Iff, et al., Menthol-based Eutectic Mixtures:Hydrophobic Low Viscosity Solvents, ACS Sustain. Chem. Eng. 3(2015)2469-2477
|
C. Florindo, L.C. Branco, I.M. Marrucho, Quest for Green-Solvent Design:From Hydrophilic to Hydrophobic (Deep) Eutectic Solvents, ChemSusChem 12(2019)1549-1559
|
D.J.G.P. van Osch, L.F. Zubeir, A. van den Bruinhorst, et al., Hydrophobic deep eutectic solvents as water-immiscible extractants, Green Chem. 17(2015)4518-4521
|
T. Krizek, M. Bursova, R. Horsley, et al., Menthol-based hydrophobic deep eutectic solvents:Towards greener and efficient extraction of phytocannabinoids, J. Clean. Prod. 193(2018)391-396
|
Y.P.A. Silva, T. Ferreira, G. Jiao, et al., Sustainable approach for lycopene extraction from tomato processing by-product using hydrophobic eutectic solvents, J. Food Sci. Technol. 56(2019)1649-1654
|
J. Cao, L. Chen, M. Li, et al., Two-phase systems developed with hydrophilic and hydrophobic deep eutectic solvents for simultaneously extracting various bioactive compounds with different polarities, Green Chem. 20(2018)1879-1886
|
J. Cao, M. Yang, F. Cao, et al., Well-Designed Hydrophobic Deep Eutectic Solvents As Green and Efficient Media for the Extraction of Artemisinin from Artemisia annua Leaves, ACS Sustain. Chem. Eng. 5(2017)3270-3278
|
J. Cao, M. Yang, F. Cao, et al., Tailor-made hydrophobic deep eutectic solvents for cleaner extraction of polyprenyl acetates from Ginkgo biloba leaves, J. Clean. Prod. 152(2017)399-405
|
C. Florindo, F. Lima, L.C. Branco, et al., Hydrophobic Deep Eutectic Solvents:A Circular Approach to Purify Water Contaminated with Ciprofloxacin, ACS Sustain. Chem. Eng. 7(2019)14739-14746
|
A.U. Arvindekar, K.S. Laddha, An efficient microwave-assisted extraction of anthraquinones from Rheum emodi:Optimisation using RSM, UV and HPLC analysis and antioxidant studies, Ind. Crop. Prod. 83(2016)587-595
|
Chinese Pharmacopoeia Commission, Pharmacopoeia of the People's Republic of China, China Medical Science Press, Beijing, China, 2020
|
L. Duan, L.L. Dou, L. Guo, et al., Comprehensive Evaluation of Deep Eutectic Solvents in Extraction of Bioactive Natural Products, ACS Sustain. Chem. Eng. 4(2016)2405-2411
|
W.W. Deng, Y. Zong, Y.X. Xiao, Hexafluoroisopropanol-Based Deep Eutectic Solvent/Salt Aqueous Two-Phase Systems for Extraction of Anthraquinones from Rhei Radix et Rhizoma Samples, ACS Sustain. Chem. Eng. 5(2017)4267-4275
|
Noweck K., Grafahrend W., Fatty alcohols, in:Ullmann's Encyclopedia of Industrial Chemistry, John Wiley& Sons, Inc., 2006
|
C. Florindo, L. Romero, I. Rintoul, et al., From Phase Change Materials to Green Solvents:Hydrophobic Low Viscous Fatty Acid-Based Deep Eutectic Solvents, ACS Sustain. Chem. Eng. 6(2018)3888-3895
|
M. Gilmore, E.N. McCourt, F. Connolly, et al., Hydrophobic Deep Eutectic Solvents Incorporating Trioctylphosphine Oxide:Advanced Liquid Extractants, ACS Sustain. Chem. Eng. 6(2018)17323-17332
|
A. Pandey, R. Rai, M. Pal, et al., How polar are choline chloride-based deep eutectic solvents?Phys. Chem. Chem. Phys. 16(2014)1559-1568
|
X.Q. Fu, N. Ma, W.P. Sun, et al., Microwave and enzyme co-assisted aqueous two-phase extraction of polyphenol and lutein from marigold (Tagetes erecta L.) flower, Ind. Crop. Prod. 123(2018)296-302
|
M.A.R. Martins, E.A. Crespo, P.V.A. Pontes, et al., Tunable Hydrophobic Eutectic Solvents Based on Terpenes and Monocarboxylic Acids, ACS Sustain. Chem. Eng. 6(2018)8836-8846
|
C. Florindo, L.G. Celia-Silva, L.F.G. Martins, et al., Supramolecular hydrogel based on a sodium deep eutectic solvent, Chem. Commun. 54(2018)7527-7530
|
B.Y. Zhao, P. Xu, F.X. Yang, et al., Biocompatible Deep Eutectic Solvents Based on Choline Chloride:Characterization and Application to the Extraction of Rutin from Sophora japonica, ACS Sustain. Chem. Eng. 3(2015)2746-2755
|
C. Florindo, F.S. Oliveira, L.P.N. Rebelo, et al., Insights into the Synthesis and Properties of Deep Eutectic Solvents Based on Cholinium Chloride and Carboxylic Acids, ACS Sustain. Chem. Eng. 2(2014)2416-2425
|
W.M.A. Wan Mahmood, A. Lorwirachsutee, C. Theodoropoulos, M. Gonzalez-Miquel, Polyol-Based Deep Eutectic Solvents for Extraction of Natural Polyphenolic Antioxidants from Chlorella vulgaris, ACS Sustain. Chem. Eng. 7(2019)5018-5026
|
M.Puri, D.Sharma, C.J. Barrow, Enzyme-assisted extraction of bioactives from plants, Trends Biotechnol. 30(2012)37-44
|
W. Jin, Q. Yang, B. Huang, et al., Enhanced solubilization and extraction of hydrophobic bioactive compounds using water/ionic liquid mixtures, Green Chem. 18(2016)3549-3557
|