Citation: | Gen Liu, Pei-Long Wang, Hui Gao. Visualization analysis of lecithin in drugs based on electrochemiluminescent single gold microbeads[J]. Journal of Pharmaceutical Analysis, 2021, 11(4): 515-522. doi: 10.1016/j.jpha.2021.02.002 |
L.K. Cole, J.E. Vance, D.E. Vance, Lecithin biosynthesis and lipoprotein metabolism, Biochim. Biophys. Acta 1821 (2012) 754-761
|
M.C. Huang, C.C. Douillet, M. Styblo, Knockout of arsenic (+3 oxidation state) methyltransferase results in sex-dependent changes in lecithin metabolism in mice, Arch. Toxicol. 90 (2016) 3125-3128
|
H.Z. Zhang, Y.T. Wang, L.H. Guan, et al., Lipidomics reveals carnitine palmitoyltransferase 1C protects cancer cells from lipotoxicity and senescence, J. Pharm. Anal. 2020, in press, https://doi.org/10.1016/j.jpha.2020.04.004
|
Z. Wang, E. Klipfell, B.J. Bennett, et al., Gut flora metabolism of lecithin promotes cardiovascular disease, Nature 472 (2011) 57-63
|
R.T. Dufford, D. Nightingale, L.W. Gaddum, Luminescence of grignard compounds in electric and magnetic fields, and related electrical phenomena, J. Am. Chem. Soc. 49 (1927) 1858-1864
|
W.W. Zhao, J. Wang, Y.C. Zhu, et al., Quantum dots: electrochemiluminescent and photoelectrochemical bioanalysis, Anal. Chem. 87 (2015) 9520-9531
|
E. Rampazzo, S. Bonacchi, D. Genovese, et al., Nanoparticles in metal complexes-based electrogenerated chemiluminescence for highly sensitive applications, Coordin. Chem. Rev. 256 (2012) 1664-1681
|
N. Cao, F. Zhao, B. Zeng, A novel ratiometric molecularly imprinted electrochemiluminescence sensor for sensitive and selective detection of sialic acid based on PEI-CdS quantum dots as anodic coreactant and cathodic luminophore, Sensor. Actuat. B-Chem. 313 (2020) 128042
|
Y. Wang, W. Guo, Q. Yang, et al., Electrochemiluminescence self-interference spectroscopy with vertical nanoscale resolution, J. Am. Chem. Soc. 142 (2020) 1222-1226
|
J. Zhang, R. Jin, D. Jiang, et al., Electrochemiluminescence-based capacitance microscopy for label-free imaging of antigens on the cellular plasma membrane, J. Am. Chem. Soc. 141 (2019) 10294-10299
|
N. Liao, J.L. Liu, Y.Q. Chai, et al., DNA structure transition-induced affinity switch for biosensing based on the strong electrochemiluminescence platform from organic microcrystals, Anal. Chem. 92 (2020) 3940-3948
|
P. Li, J. Yu, K. Zhao, Efficient enhancement of electrochemiluminescence from tin disulfide quantum dots by hollow titanium dioxide spherical shell for highly sensitive detection of chloramphenicol, Biosens. Bioelectron. 147 (2020) 111790
|
M.J. Zhu, J.B. Pan, Z.Q. Wu, et al., Electrogenerated Chemiluminescence Imaging of Electrocatalysis ata Single Au-Pt Janus Nanoparticle, Angew. Chem. Int. Ed. 130 (2018) 4074-4078
|
M. Liu, D. Wang, C. Liu, et al., Battery-triggered open wireless electrochemiluminescence in a microfluidic cloth-based bipolar device, Sensor. Actuat. B-Chem. 246 (2017) 327-335
|
J.J. Zhang, S. Arbault, N. Sojic, et al., Electrochemiluminescence imaging for bioanalysis, Annu. Rev. Anal. Chem. 12 (2019) 275-295
|
A. Zanut, A. Fiorani, S. Rebeccani, et al., Electrochemiluminescence as emerging microscopy techniques, Anal. Bioanal. Chem. 411 (2019) 4375-4382
|
C. Ma, Y. Cao, X. Gou, et al., Recent progress in electrochemiluminescence sensing and imaging, Anal. Chem. 92, (2020) 431-454
|
T.J. Anderson, P.A. Defnet, B. Zhang, Electrochemiluminescence (ECL)-based electrochemical imaging using a massive array of bipolar ultramicroelectrodes, Anal. Chem. 92 (2020) 6748-6755
|
J. Tan, L. Xu, T. Li, et al., Image-contrast technology based on the electrochemiluminescence of porous silicon and its application in fingerprint visualization, Angew. Chem. Int. Ed. 53 (2014) 9822-9826
|
G. Liu, B.K. Jin, C. Ma, et al., Potential-Resolved Electrochemiluminescence nanoprobes for visual apoptosis evaluation at single-cell level, Anal. Chem. 91 (2019) 6363-6370
|
L. Qi, Y. Xia, W. Qi, et al., Increasing electrochemiluminescence intensity of a wireless electrode array chip by thousands of times using a diode forsensitive visual detection by a digital camera, Anal. Chem. 88 (2016) 1123-1127
|
C. Ma, W. Wu, L. Li, et al., Dynamically imaging collision electrochemistry of single electrochemiluminescence nano-emitters, Chem. Sci. 9 (2018) 6167-6375
|
A. Zanut, A. Fiorani, S. Canola, et al., Insights into the mechanism of coreactant electrochemiluminescence facilitating enhanced bioanalytical performance, Nat. Commun. 11 (2020) 2668
|
R.C. Engstrom, K.W. Johnson, S. DesJarlais, Characterization of electrode heterogeneity with electrogenerated chemiluminescence, Anal. Chem. 59 (1987) 670-673
|
M. Sentic, M. Milutinovic, F. Kanoufi, et al., Mapping electrogenerated chemiluminescence reactivity in space: mechanistic insight into model systems used in immunoassays, Chem. Sci. 5 (2014) 2568-2572
|
W. Gao, M. Saqib, L. Qi, et al., Recent advances in electrochemiluminescence devices for point-of-care testing, Curr. Opin. Electroche. 3 (2017) 4-10
|
H.J. Kwon, E.C. Rivera, M.R.C. Neto, et al., Development of smartphone-based ECL sensor for dopamine detection: Practical approaches, Results in Chemistry 2 (2020) 100029
|
E.C. Rivera, J.J. Swerdlow, R.L. Summerscales, et al., Data-driven modeling of smartphone-based electrochemiluminescence sensor data using artificial intelligence, Sensors 20 (2020) 625
|
Y. Yao, H. Li, D. Wang, et al., An electrochemiluminescence cloth-based biosensor with smartphone-based imaging for detection of lactate in saliva, Analyst 142 (2017) 3715-3724
|
S. Pan, J. Liu, C.M. Hill, Observation of local redox events at individual Au nanoparticles using electrogenerated chemiluminescence microscopy, J. Phys. Chem. C 119 (2015) 27095-27103
|
V. Sundaresan, J.W. Monaghan, K.A. Willets, Monitoring simultaneous electrochemical reactions with single particle imaging, ChemElectroChem 5 (2018) 3052-3058
|
T. Li, X. Wu, F. Liu, et al., Analytical methods based on the light-scattering of plasmonic nanoparticles at the single particle level with dark-field microscopy imaging, Analyst 142 (2017) 248-256
|
Y. Chen, D. Zhao, J. Fu, et al., In situ imaging facet-induced spatial heterogeneity of electrocatalytic reaction activity at the subparticle level via electrochemiluminescence microscopy, Anal. Chem. 91 (2019) 6829-6835
|
P. Dutta, D. Han, B. Goudeau, et al., Reactivity mapping of luminescence in space: Insights into heterogeneous electrochemiluminescence bioassays, Biosens. Bioelectron. 165 (2020) 112372
|
J. Zhao, Z.T. Jiang, G.R. Lu, et al., Determination of phosphatidylcholine in soybean lecithin samples by high performance liquid chromatography on titania, Anal. Method. 2 (2010) 1779-1783
|
A. Girelli, A. Apriceno, G. Esposito, Phosphatidylcholine determination in dietary supplement by coupled enzymes immobilized in a single bioreactor, Biocatalysis and Agricultural Biotechnology 12 (2017) 142-147
|
L. Zhou, Y. Wang, X. Wang, et al., Determination of phosphatidylcholine in shrimp by high-resolution mass spectrometry, Anal. Lett. 52 (2019) 308-319
|
D. Yu, D. Zou, D. Li, et al., Detection of Phosphatidylcholine Content in Crude Oil with Bio-Enzyme Screen-Printed Electrode, Food Anal. Method. 12 (2019) 229-238
|
N. Divecha, R.F. Irvine, Phospholipid signaling, Cell, 80 (1995) 269-278
|
M.M. Billah, J.C. Anthes, The regulation and cellular functions of lecithin hydrolysis, Biochem J. 269 (1900) 281-291
|
X.M. Chen, B.Y. Su, X.H. Song, Recent advances in electrochemiluminescent enzyme biosensors, Trend. Anal. Chem. 30 (1900) 665-676
|
Q. Zhou, H. Chen , Y. Wang, Region-selective electroless gold plating on polycarbonate sheets by UV-patterning in combination with silver activating, Electrochim. Acta 55 (2010) 2542-2549
|
S. Zhang, G. Leem, L. Srisombat, et al., Rationally designed ligands that inhibit the aggregation of large gold nanoparticles in solution, J. Am. Chem. Soc. 130 (2008) 113-120
|
R.G. Nuzzo, D.L. Allara, Adsorption of bifunctional organic disulfides on gold surfaces, J. Am. Chem. Soc. 105 (1983) 4481-4483
|
Y. Wang, J. Deng, J. Di, et al., Electrodeposition of large size gold nanoparticles on indium tin oxide glass and application as refractive index sensor, Electrochem. Commun. 11 (2009) 1034-1037
|
J. Li, J. Xie, L. Gao, et al., Au nanoparticles - 3d graphene hydrogel nanocomposite to boost synergistically in situ detection sensitivity toward cell-released nitric oxide, ACS Appl. Mater. Interfaces 7 (2015) 2726-2734
|
H. Cui, Y. Xu, Z.F. Zhang, Multichannel electrochemiluminescence of luminol in neutral and alkaline aqueous solutions on a gold nanoparticle self-assembled electrode, Anal. Chem. 76 (2004) 4002-4010
|
M. Yang, C. Liu, K. Qian, et al., Study on the electrochemiluminescence behavior of ABEI and its application in DNA hybridization analysis, Analyst 127 (2002) 1267-1271
|
J. Hong, L. Ming, Y. Tu, Intensifi cation of the electrochemiluminescence of luminol on hollowTiO 2 nanoshell-modified indium tin oxide electrodes, Talanta 128 (2014) 242-247
|
Z. Zhou, L. Xu, S. Wu, et al., A novel biosensor array with a wheel-like pattern for glucose, lactate and choline based on electrochemiluminescence imaging, Analyst 139 (2014) 4934-4939
|
J. Zhou, G. Ma, Y. Chen, et al., Electrochemiluminescence imaging for parallel single-cell analysis of active membrane cholesterol, Anal. Chem. 87 (2015) 8138-8143
|