Citation: | Süleyman Bodur, Sezin Erarpat, Ömer Tahir Günkara, Sezgin Bakırdere. Accurate and sensitive determination of hydroxychloroquine sulfate used on COVID-19 patients in human urine, serum and saliva samples by GC-MS[J]. Journal of Pharmaceutical Analysis, 2021, 11(3): 278-283. doi: 10.1016/j.jpha.2021.01.006 |
M. Costanzo, M.A.R. De Giglio, G.N. Roviello, SARS-CoV-2: Recent Reports on Antiviral Therapies Based on Lopinavir/Ritonavir, Darunavir/Umifenovir, Hydroxychloroquine, Remdesivir, Favipiravir and other Drugs for the Treatment of the New Coronavirus, Curr. Med. Chem. 27 (2020) 4536-4541
|
M. Tarek, A. Savarino, Pharmacokinetic Basis of the Hydroxychloroquine Response in COVID-19: Implications for Therapy and Prevention, Eur. J. Drug Metab. Pharmacokinet. 45 (2020) 715-723
|
A. Della Porta, K. Bornstein, A. Coye, et al., Acute chloroquine and hydroxychloroquine toxicity: A review for emergency clinicians, Am. J. Emerg. Med. 38 (2020) 2209-2217
|
J. Bajpai, A. Pradhan, A. Singh, et al., Hydroxychloroquine and COVID-19 - A narrative review, Indian J. Tuberc. 67 (2020) S147-S154
|
C. Wright, C. Ross, N. Mc Goldrick, Are hydroxychloroquine and chloroquine effective in the treatment of SARS-COV-2 (COVID-19)?, Evid. Based. Dent. 21 (2020) 64-65
|
X. Yao, F. Ye, M. Zhang, et al., In Vitro Antiviral Activity and Projection of Optimized Dosing Design of Hydroxychloroquine for the Treatment of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), Clin. Infect. Dis. 71 (2020) 732-739
|
J.K. Aronson, Chloroquine and hydroxychloroquine, in: Meyler’s Side Eff. Drugs, Elsevier, 2016, pp. 253-267
|
F. Parvinizadeh, A. Daneshfar, Fabrication of a magnetic metal-organic framework molecularly imprinted polymer for extraction of anti-malaria agent hydroxychloroquine, New J. Chem. 43 (2019) 8508-8516
|
Y. Qu, G. Noe, A.R. Breaud, et al., Development and validation of a clinical HPLC method for the quantification of hydroxychloroquine and its metabolites in whole blood, Future Sci. OA. 1 (2015), FSO26
|
L.-Z. Wang, R.Y.-L. Ong, T.-M. Chin, et al., Method development and validation for rapid quantification of hydroxychloroquine in human blood using liquid chromatography-tandem mass spectrometry, J. Pharm. Biomed. Anal. 61 (2012) 86-92
|
H. Carlsson, K. Hjorton, S. Abujrais, et al., Measurement of hydroxychloroquine in blood from SLE patients using LC-HRMS-evaluation of whole blood, plasma, and serum as sample matrices, Arthritis Res. Ther. 22 (2020), 125
|
M.M. Khalil, Y.M. Issa, G.A. El Sayed, Modified carbon paste and polymeric membrane electrodes for determination of hydroxychloroquine sulfate in pharmaceutical preparations and human urine, RSC Adv. 5 (2015) 83657-83667
|
M.L.P.M. Arguelho, J.F. Andrade, N.R. Stradiotto, Electrochemical study of hydroxychloroquine and its determination in plaquenil by differential pulse voltammetry, J. Pharm. Biomed. Anal. 32 (2003) 269-275
|
P.B. Deroco, F.C. Vicentini, G.G. Oliveira, et al., Square-wave voltammetric determination of hydroxychloroquine in pharmaceutical and synthetic urine samples using a cathodically pretreated boron-doped diamond electrode, J. Electroanal. Chem. 719 (2014) 19-23
|
I. Ali, M. Suhail, Z.A. Alothman, et al., Drug analyses in human plasma by chromatography, in: Handb. Anal. Sep., Elsevier B.V., 2020, pp. 15-46
|
A. Saitman, Overview of analytical methods in drugs of abuse analysis: Gas chromatography/mass spectrometry, liquid chromatography combined with tandem mass spectrometry and related methods, in: Crit. Issues Alcohol Drugs Abus. Test., Elsevier, 2019, pp. 157-171
|
C.F. Poole, Gas chromatography | Detectors, in: Encycl. Anal. Sci., Elsevier, 2019, pp. 135-147
|
E. Stauffer, Gas Chromatography-Mass Spectrometry, in: Encycl. Forensic Sci. Second Ed., Elsevier Inc., 2013, pp. 596-602
|
M.A. Farajzadeh, S.E. Seyedi, M.S. Shalamzari, et al., Dispersive liquid-liquid microextraction using extraction solvent lighter than water, J. Sep. Sci. 32 (2009) 3191-3200
|
M. Hassan, U. Alshana, Switchable-hydrophilicity solvent liquid-liquid microextraction of non-steroidal anti-inflammatory drugs from biological fluids prior to HPLC-DAD determination, J. Pharm. Biomed. Anal. 174 (2019) 509-517
|
W.A. Khan, M.B. Arain, Y. Yamini, et al., Hollow fiber-based liquid phase microextraction followed by analytical instrumental techniques for quantitative analysis of heavy metal ions and pharmaceuticals, J. Pharm. Anal. 10 (2020) 109-122
|
M.R. Khalili Zanjani, Y. Yamini, S. Shariati, et al., A new liquid-phase microextraction method based on solidification of floating organic drop, Anal. Chim. Acta. 585 (2007) 286-293
|
M. Ghorbani, M. Aghamohammadhassan, M. Chamsaz, et al., Dispersive solid phase microextraction, TrAC - Trends Anal. Chem. 118 (2019) 793-809
|
V. Jalili, A. Barkhordari, A. Ghiasvand, Solid-phase microextraction technique for sampling and preconcentration of polycyclic aromatic hydrocarbons: A review, Microchem. J. 157 (2020), 104967
|
J.M. Kokosa, Recent trends in using single-drop microextraction and related techniques in green analytical methods, TrAC - Trends Anal. Chem. 71 (2015) 194-204
|
Y. Dikmen, A. Guleryuz, B. Metin, et al., A novel and rapid extraction protocol for sensitive and accurate determination of prochloraz in orange juice samples: Vortex-assisted spraying-based fine droplet formation liquid-phase microextraction before gas chromatography-mass spectrometry, J. Mass Spectrom. 55 (2020), e4622
|
B.M. King, Analysis of variance, in: Int. Encycl. Educ., Elsevier Ltd, 2010, pp. 32-36
|
A.M. Brown, A new software for carrying out one-way ANOVA post hoc tests, Comput. Methods Programs Biomed. 79 (2005) 89-95
|
D.S. Chormey, S. Bakirdere, Principles and Recent Advancements in Microextraction Techniques, Compr. Anal. Chem. 81 (2018) 257-294
|
WHO Reginal Publications, European Series, No. 91, Air quality guidelines for Europe. https://www.euro.who.int/en/publications/abstracts/air-quality-guidelines-for-europe. Accessed on 09.01.2021
|
F. Aydin, E. Yilmaz, E. Olmez, et al., Cu2O-CuO ball like/multiwalled carbon nanotube hybrid for fast and effective ultrasound-assisted solid phase extraction of uranium at ultra-trace level prior to ICP-MS detection, Talanta. 207 (2020), 120295
|
C. Almeida, J.O. Fernandes, S.C. Cunha, A novel dispersive liquid-liquid microextraction (DLLME) gas chromatography-mass spectrometry (GC-MS) method for the determination of eighteen biogenic amines in beer, Food Control. 25 (2012) 380-388
|
M.M. Sanagi, S.L. Ling, Z. Nasir, et al., Comparison of signal-to-noise, blank determination, and linear regression methods for the estimation of detection and quantification limits for volatile organic compounds by gas chromatography, J. AOAC Int. 92 (2009) 1833-1838
|
A.R.M. de Oliveira, C.D. Cardoso, P.S. Bonato, Stereoselective determination of hydroxychloroquine and its metabolites in human urine by liquid-phase microextraction and CE, Electrophoresis. 28 (2007) 1081-1091
|