Citation: | Huixia Zhang, Yan Li, Zheng Li, Christopher Wai-Kei Lam, Peng Zhu, Caiyun Wang, Hua Zhou, Wei Zhang. MTBSTFA derivatization-LC-MS/MS approach for the quantitative analysis of endogenous nucleotides in human colorectal carcinoma cells[J]. Journal of Pharmaceutical Analysis, 2022, 12(1): 77-86. doi: 10.1016/j.jpha.2021.01.001 |
M. Fasullo, L. Endres, Nucleotide salvage deficiencies, DNA damage and neurodegeneration, Int. J. Mol. Sci. 16(2015)9431-9449
|
H. Gad, T. Koolmeister, A.S. Jemth, et al., MTH1 inhibition eradicates cancer by preventing sanitation of the dNTP pool, Nature 508(2014)215-221
|
A. Suomalainen, B.J. Battersby, Mitochondrial diseases:the contribution of organelle stress responses to pathology, Nat. Rev. Mol. Cell Biol. 19(2018)77-92
|
A.K. Berglund, C. Navarrete, M.K. Engqvist, et al., Nucleotide pools dictate the identity and frequency of ribonucleotide incorporation in mitochondrial DNA, Plos Genet. 13(2017) e1006628
|
A. Spiegel, Signal transduction by guanine nucleotide binding proteins, Mol. and Cell. Endocrinol. 49(1987)1-16
|
B.B. Kahn, T. Alquier, D. Carling, et al., AMP-activated protein kinase:Ancient energy gauge provides clues to modern understanding of metabolism, Cell Metab. 1(2005)15-25
|
D. Garcia, R.J. Shaw, AMPK:mechanisms of cellular energy sensing and restoration of metabolic balance, Molecular Cell 66(2017)789-800
|
Z. Kong, S.D. Jia, A.L. Chabes, et al., Simultaneous determination of ribonucleoside and deoxyribonucleoside triphosphates in biological samples by hydrophilic interaction liquid chromatography coupled with tandem mass spectrometry, Nucleic Acids Res. 46(2018) e66
|
E.M. Piall, G.W. Aherne, V. Marks, The quantitative determination of 2'-deoxycytidine-5'-triphosphate in cell extracts by radioimmunoassay, Ana. Biochem. 154(1986)276-281
|
Y. Huo, L. Qi, X.J. Lv, et al., A sensitive aptasensor for colorimetric detection of adenosine triphosphate based on the protective effect of ATP-aptamer complexes on unmodified gold nanoparticles, Biosens. Bioelectron. 78(2016)315-320
|
Y. Guo, S. Li, J. Liu, et al., Double functional aptamer switch probes based on gold nanorods for intracellular ATP detection and targeted drugs transportation, Sensors Actuat. B:Chem. 235(2016)655-662
|
M. Mateos-Vivas, J. Dominguez-Alvarez, E. Rodriguez-Gonzalo, et al., Capillary electrophoresis coupled to mass spectrometry employing hexafluoro-2-propanol for the determination of nucleosides and nucleotide mono-, di-and tri-phosphates in baby foods, Food Chem. 233(2017)38-44
|
C. Zhao, Y. Yang, L. Wei, et al., Simultaneous determination of intracellular nucleotides and coenzymes in Yarrowia lipolytica producing lipid and lycopene by capillary zone electrophoresis, J. Chromatogr. A 1514(2017)120-126
|
A.H. Rageh, U. Pyell, Imidazolium-based ionic liquid-type surfactant as pseu-dostationary phase in micellar electrokinetic chromatography of highly hydrophilic urinary nucleosides, J. Chromatogr. A 1316(2013)135-146
|
E. Fromentin, C. Gavegnano, A. Obikhod, et al., Simultaneous quantification of intracellular natural and antiretroviral nucleosides and nucleotides by liquid chromatography-tandem mass spectrometry, Anal. Chem. 82(2010)1982-1989
|
T. Kamceva, T. Bjanes, A. Svardal, et al., Liquid chromatography/tandem mass spectrometry method for simultaneous quantification of eight endogenous nucleotides and the intracellular gemcitabine metabolite dFdCTP in human peripheral blood mononuclear cells, J. Chromatogr. B 1001(2015)212-220
|
G. Zhang, A.D. Walker, Z. Lin, et al., Strategies for quantitation of endogenous adenine nucleotides in human plasma using novel ion-pair hydrophilic interaction chromatography coupled with tandem mass spectrometry, J. Chromatogr. A 1325(2014)129-136
|
N.L. Padivitage, M.K. Dissanayake, D.W. Armstrong, Separation of nucleotides by hydrophilic interaction chromatography using the FRULIC-N column, Anal. Bioanal. Chem. 405(2013)8837-8848
|
K. Inoue, R. Obara, T. Hino, et al., Development and application of an HILIC-MS/MS method for the quantitation of nucleotides in infant formula, J. Agric. Food Chem. 58(2010)9918-9924
|
E. Johnsen, S. R. Wilson, I. Odsbu, et al., Hydrophilic interaction chromatography of nucleoside triphosphates with temperature as a separation parameter, J. Chromatogr. A 1218(2011)5981-5986
|
J.M. Halket, V.G. Zaikin, Derivatization in mass spectrometry-1. Silylation, Eur. J. Mass Spectrom. 9(2003)1-21
|
L. Zhang, H. Zhang, J. Wang, et al., Determination of trace level of cAMP in Locusta migratoria manilensis Meyen by HPLC with fluorescence derivation, Int. J. Mol. Sci. 7(2006)266-273
|
A. Nordstrom, P. Tarkowski, D. Tarkowska, et al., Derivatization for LC-electrospray ionization-MS:a tool for improving reversed-phase separation and ESI responses of bases, ribosides, and intact nucleotides, Anal. Chem. 76(2004)2869-2877
|
J. Flarakos, W. Xiong, J. Glick, et al., A deoxynucleotide derivatization methodology for improving LC-ESI-MS detection, Anal. Chem. 77(2005)2373-2380
|
H.X. Zhang, Y. Li, Z. Li, etal., Rapid and sensitive determination of four bisphosphonates in rat plasma after MTBSTFA derivatization using liquid chromatography-mass spectrometry, J. Pharm. Biomed. Anal. 190(2020)113579
|
B. Zhu, H. Wei, Q. Wang, et al., A simultaneously quantitative method to profiling twenty endogenous nucleosides and nucleotides in cancer cells using UHPLC-MS/MS, Talanta 179(2018)615-623
|
C. Hellmuth, M. Weber, B. Koletzko, et al., Nonesterified fatty acid determination for functional lipidomics:comprehensive ultrahigh performance liquid chromatography-tandem mass spectrometry quantitation, qualification, and parameter prediction, Anal. Chem. 84(2012)1483-1490
|
U.S. Department of Health and Human Services, Food and Drug Administration, Guidance for Industry, Bioanalytical Method Validation, 2018, May 2018, https://www.fda.gov/regulatory-information/search-fdaguidance-documents/ioanalytical-method-validation-guidance-industry
|
F.B. Rudolph, The biochemistry and physiology of nucleotides. J. Nutrition 124(1994)124S-127S
|
C. Schummer, O. Delhomme, B.M. Appenzeller, et al., Comparison of MTBSTFA and BSTFA in derivatization reactions of polar compounds prior to GC/MS analysis, Talanta 77(2009)1473-1482
|
H.G. Mol, S. Sunarto, O.M. Steijger, Determination of endocrine disruptors in water after derivatization with N-methyl-N-(tert.-butyldimethyltrifluoroacetamide) using gas chromatography with mass spectrometric detection, J. Chromatogr. A 879(2000)97-112
|
H.Y. Zhang, P.P. Zhang, X.X. Tan, et al., Derivatization method for the quantification of lactic acid in cell culture media via gas chromatography and applications in the study of cell glycometabolism, J. Chromatogr. B 1090(2018)1-6
|
T.G. Sobolevsky, A.I. Revelsky, B. Miller, et al., Comparison of silylation and esterification/acylation procedures in GC-MS analysis of amino acids, J. Sep. Sci. 26(2003)1474-1478
|
S. Cohen, L.P. Jordheim, M. Megherbi, et al., Liquid chromatographic methods for the determination of endogenous nucleotides and nucleotide analogs used in cancer therapy:a review, J. Chromatogr. B 878(2010)1912-1928
|
C. Polson, P. Sarkar, B. Incledon, et al., Optimization of protein precipitation based upon effectiveness of protein removal and ionization effect in liquid chromatography-tandem mass spectrometry, J. Chromatogr. B 785(2003)263-275
|
R. Kuskovsky, R. Buj, P. Xu, et al., Simultaneous isotope dilution quantification and metabolic tracing of deoxyribonucleotides by liquid chromatography high resolution mass spectrometry, Anal. Biochem. 568(2019)65-72
|
S.L. Shao, W.W. Zhang, W. Zhao, et al., Apoptosis of human leukemia cell line K562 cells induced by hydroxycamptothecine, Adv. Materials Res. 535(2012)2420-2424
|
B. Liu, J. Grosshans, The role of dNTP metabolites in control of the embryonic cell cycle, Cell Cycle 18(2019)2817-2827
|
C.K. Mathews, DNA precursor metabolism and genomic stability, FASEB J. 20(2006)1300-1314
|
B. Yousefi, N. Samadi, Y. Ahmadi, Akt and p53R2, partners that dictate the progression and invasiveness of cancer, DNA repair 22(2014)24-29
|
Y. Engstrom, S. Eriksson, I. Jildevik, et al., Cell cycle-dependent expression of mammalian ribonucleotide reductase. Differential regulation of the two subunits, J. Biol. Chem. 260(1985)9114-9116
|