Citation: | Dumei Ma, Libo Zhang, Yingwu Yin, Yuxing Gao, Qian Wang. Spectroscopic studies of the interaction between phosphorus heterocycles and cytochrome P450[J]. Journal of Pharmaceutical Analysis, 2021, 11(6): 757-763. doi: 10.1016/j.jpha.2020.12.004 |
F. H. Westheimer, Why nature chose phosphates, Science 235 (1987) 1173−1178
|
H. Seto, T. Kuzuyama, Bioactive natural products with carbon-phosphorus bonds and their biosynthesis, Nat. Prod. Rep. 16 (1999) 589−596
|
G. Zon, Cyclophosphamide analogues, Prog. Med. Chem. 19 (1982) 205−246
|
W. J. Stec, Cyclophosphamide and its congeners, Organophosphorus Chem. 13 (1982) 145−174
|
P. Kafarski, B. Lejczak, Biological activity of aminophosphonic acids, Phosphorus, sulfur, and silicon and the related, Elements 63 (1991) 193−215
|
O. M. Colvin, An overview of cyclophosphamide development and clinical applications, Curr. Pharm. Des. 5 (1999) 555−560
|
P. Kafarski, B. Lejczak, Aminophosphonic acids of potential medical importance, Curr. Med. Chem. 1 (2001) 301−312
|
S. Demkowicz, J. Rachon, M. Daskoa, et al., Selected organophosphorus compounds with biological activity. Applications in medicine, RSC Adv. 6 (2016) 7101−7112
|
J. B. Rodriguez, C. Gallo-Rodriguez, The role of the phosphorus atom in drug design, ChemMedChem. 14 (2019) 190−216
|
R. J. Richardson, Assessment of the neurotoxic potential of chlorpyrifos relative to other organophosphorus compounds: A critical review of the literature, J. Toxicol. Environ. Health, 44 (1995) 135−165
|
C. N. Pope, S. Brimijoin, Cholinesterases and the fine line between poison and remedy, Biochem. Pharmacol. 153 (2018) 205−216
|
V. Gilard, R. Martino, M. Malet-Martino, et al., Chemical stability and fate of the cytostatic drug ifosfamide and its N-dechloroethylated metabolites in acidic aqueous solutions, J. Med. Chem. 42 (1999) 2542−2560
|
E. Budzisz, E. Brzezinska, U. Krajewska, et al., Cytotoxic effects, alkylating properties and molecular modelling of coumarin derivatives and their phosphonic analogues, Eur. J. Med. Chem. 38 (2003) 597−603
|
M. D. Soerensen, L. K. A. Blaehr, M. K. Christensen, et al., Cyclic phosphinamides and phosphonamides, novel series of potent matrix metalloproteinase inhibitors with antitumour activity, Bioorg. Med. Chem. 11 (2003) 5461−5484
|
A. B. krishna, K. S. Kumar, K. Ramesh, et al., Synthesis, antibacterial and antioxidant properties of newer 1,2-benzoxaphosphol-2-ones, Der Pharma Chemica 1 (2009) 40−49
|
L. Clarion, C. Jacquard, O. Sainte-Catherine, et al., Oxaphosphinanes: new therapeutic perspectives for glioblastoma, J. Med. Chem. 55 (2012) 2196−2211
|
S. Roy, R. K. Nandi, S. Ganai, et al., Binding interaction of phosphorus heterocycles with bovine serum albumin: a biochemical study, J. Pharm. Anal. 7 (2017) 19−26
|
S. Roy, S. K. Saxena, S. Mishra, et al., Spectroscopic evidence of phosphorous heterocycle-DNA interaction and its verification by docking approach, J. Fluoresc. 28 (2018) 373−380
|
I. G. Denisov, T. M. Makris, S. G. Sligar, Structure and chemistry of cytochrome P450, Chem. Rev. 105 (2005) 2253−2277
|
F. P. Guengerich, Characterization of human cytochrome P450 enzyme. FASEB J. 6 (1992) 745−748
|
P. Anzenbacher, E. Anzenbacherova, Cytochromes P450 and metabolism of xenobiotics, Cell. Mol. Life Sci. 58 (2001) 737−747
|
D. C. Lamb, M. R. Waterman, S. L. Kelly, Cytochromes P450 and drug discovery, Curr. Opin. Biotech. 18 (2007) 504−512
|
A. Veith, B. Moorthy, Role of cytochrome P450s in the generation and metabolism of reactive oxygen species, Cytochromes P450 and drug discovery, Curr. Opin. Toxicol. 7 (2018) 44−51
|
M. Foroozesh, J. Sridhar, N. Goyal, et al., Coumarins and P450s, studies reported to-date, Molecules 24 (2019) 1620−1636
|
E. Stjernschantz, N. P. E. Vermeulen, C. Oostenbrink, Computational prediction of drug binding and rationalisation of selectivity towards cytochromes P450, Expert. Opin. Drug Metab. Toxicol. 4 (2008) 513−527
|
C. C. Ogu, J. L. Maxa, Drug Interactions due to cytochrome P450, BUMC Proc. 13 (2000) 421−423
|
S. Prasad, S. Mazumdar, S. Mitra, Binding of camphor to pseudomonas putida cytochrome P450cam: steady-state and picosecond time-resolved fluorescence studies, FEBS Lett. 477 (2000) 157−160
|
V. V. Shumyantseva, T. V. Bulko, N. A. Petushkova, et al., Fluorescent assay for riboflavin binding to cytochrome P450 2B4, J. Inorg. Biochem. 98 (2004) 365−370
|
J. Shao, J. Chen, T. Li, et al., Spectroscopic and molecular docking studies of the in vitro interaction between puerarin and cytochrome P450, Molecules 19 (2014) 4760-4769
|
G. A. Marsch, B. T. Carlson, F. P. Guengerich, 7,8-benzoflavone binding to human cytochrome P450 3A4 reveals complex fluorescence quenching, suggesting binding at multiple protein sites, J. Biomal. Struct. Dyn. 36 (2017) 841−860
|
D. Ma, J. Pan, L. Yin, et al., Copper-catalyzed direct oxidative C−H functionalization of unactivated cycloalkanes into cycloalkyl benzo[b]phosphole oxides, Org. Lett. 20 (2018) 3455−3459
|
M. A. Rude, T. S. Baron, S. Brubaker, et al., Terminal olefin (1-Alkene) biosynthesis by a novel P450 fatty acid decarboxylase from Jeotgalicoccus species, Appl. Environ. Microb. 77 (2011) 1718−1727
|
C. H. Hsieh, X. Huang, J. A. Amaya, et al., The enigmatic P450 decarboxylase OleT is Capable of, but evolved to frustrate, oxygen rebound chemistry, Biochemistry 56 (2017) 3347−3357
|
C. Lu, F. Shen, S. Wang, et al., An engineered self-sufficient biocatalyst enables scalable production of linear alpha olefins from carboxylic acids, ACS Catal. 8 (2018) 5794−5798
|
C. E. Wise, C. H. Hsieh, N. L. Poplin, Dioxygen activation by the biofuel-generating cytochrome P450 OleT, ACS Catal. 8 (2018) 9342−9352
|
J. A. Amaya, C. D. Rutland, T. M. Makris, Mixed regiospecificity compromises alkene synthesis by a cytochrome P450 peroxygenase from Methylobacterium populi, J. Inorg. Biochem. 158 (2016) 11−16
|
J. A. Amaya, Mechanisms of decarboxylation in the CYP152 family of cytochrome P450s (Dissertation), University of South Carolina, 2018
|
Y. Chen, M. D. Barkley, Toward understanding tryptophan fluorescence in proteins, Biochemistry 37 (1998) 9976−9982
|
A. Sharma, S. G. Schulman, Introduction to Fluorescence Spectroscopy, Wiley Press, New York, 1999
|
C. Pontremoli, N. Barbero, G. Viscardi, et al., Insight into the interaction of inhaled corticosteroids with human serum albumin: A spectroscopic-based study, J. Pharm. Anal. 8 (2018) 37−44
|
P. Sindrewicz, X. Li, E. Yates, Intrinsic tryptophan fluorescence spectroscopy reliably determines galectin-ligand interactions, Scientific Reports 9 (2019) 11851−11862
|
J. R. Lakowicz, Principle of Fluorescence Spectroscopy, Springer, New York, 1999
|
J. R. Lakowica, G. Weber, Quenching of fluorescence by oxygen. A probe for structural fluctuations in macromolecules, Biochemistry 12 (1973) 4161−4170
|
A. T. Buddanavar, S. T. Nandibewoor, Multi-spectroscopic characterization of bovine serum albumin upon interaction with atomoxetine, J. Pharm. Anal. 7 (2017) 148−155
|
V, Anbazhagan, R. Renganathan, Study on the binding of 2,3-diazabicyclo[2.2.2]oct-2-ene with bovine serum albumin by fluorescence spectroscopy, J. Lumin. 128 (2008) 1454−1458
|
J. Min, X. Meng-Xia, Z. Dong, et al., Spectroscopic studies on the interaction of cinnamic acid and its hydroxyl derivatives with human serum albumin, J. Mol. Struct. 692 (2004) 71−80
|
P. D. Ross, S. Subramanian, Thermodynamics of protein association reactions: forces contributing to stability, Biochemistry 20 (1981) 3096−3102
|
G. Nemethy, H. A. Scheraga, Structure of water and hydrophobic bonding in proteins. I. A model for the thermodynamic properties of Liquid Water, J. Phys. Chem. 66 (1962) 1773−1789
|
N, Shahabadi, A. Fatahi, Multispectroscopic DNA-binding studies of a tris-chelate nickel(II) complex containing 4,7-diphenyl 1,10-phenanthroline ligands, J. Mol. Struct. 970 (2010) 90−95
|
A. Luthra, I. G. Denisov, S. G. Sligar, Spectroscopic features of cytochrome P450 reaction intermediates, Arch. Biochem. Biophys. 507 (2011) 26−35
|
A. W. Munro, K. J. McLean, J. L. Grant, Structure and function of the cytochrome P450 peroxygenase enzymes, Biochem. Soc. Trans. 46 (2018) 183−196
|