Citation: | Binbin Chen, Mengli Liu, Chengzhi Huang. Current diagnostic and therapeutic strategies for COVID-19[J]. Journal of Pharmaceutical Analysis, 2021, 11(2): 129-137. doi: 10.1016/j.jpha.2020.12.001 |
A.E. Gorbalenya, S.C. Baker, R.S. Baric, et al., The species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2, Nat. Microbiol. 5 (2020) 536-544
|
K. Kupferschmidt, J. Cohen, Will novel virus go pandemic or be contained? Science 367 (2020) 610−611
|
M.U. Mirza, M. Froeyen, Structural elucidation of SARS-CoV-2 vital proteins: Computational methods reveal potential drug candidates against main protease, Nsp12 polymerase and Nsp13 helicase, J. Pharm. Anal. 10 (2020) DOI: 10.1016/j.jpha.2020.04.008
|
N. Navas, J. Hermosilla, A. Torrente-Lopez, et al., Use of subcutaneous tocilizumab to prepare intravenous solutions for COVID-19 emergency shortage: Comparative analytical study of physicochemical quality attributes, J. Pharm. Anal. 10 (2020) DOI: 10.1016/j.jpha.2020.06.003
|
M.T. ul Qamar, S.M. Alqahtani, M.A. Alamri, et al., Structural basis of SARS-CoV-2 3CLpro and anti-COVID-19 drug discovery from medicinal plants, J. Pharm. Anal. 10 (2020) 10.1016/j.jpha.2020.03.009
|
X. Xu, P. Chen, J. Wang, et al., Evolution of the novel coronavirus from the ongoing Wuhan outbreak and modeling of its spike protein for risk of human transmission, Sci. China Life Sci. 63 (2020) 457-460
|
W. Dai, B. Zhang, X.M. Jiang, et al., Structure-based design of antiviral drug candidates targeting the SARS-CoV-2 main protease, Science 368 (2020) 1331-1335
|
Weekly epidemiological update-15 December 2020, World Health Organization, https://www.who.int/publications/m/item/weekly-epidemiological-update---15-december-2020.
|
D. Wu, T. Wu, Q. Liu, et al., The SARS-CoV-2 outbreak: What we know, Int. J. Infect. Dis. 94 (2020) 44-48
|
Y. Liu, A.A. Gayle, A. Wilder-Smith, et al., The reproductive number of COVID-19 is higher compared to SARS coronavirus, J. Travel Med. 27 (2020) 1-4
|
C. Liu, Q. Zhou, Y. Li, et al., Research and development on therapeutic agents and vaccines for COVID-19 and related human coronavirus diseases, ACS Cent. Sci. 6 (2020) 315-331
|
B. Udugama, P. Kadhiresan, H.N. Kozlowski, et al., Diagnosing COVID-19: the disease and tools for detection, ACS Nano 14 (2020) 3822-3835
|
A. Zumla, D.S. Hui, E.I. Azhar, et al., Reducing mortality from 2019-nCoV: host-directed therapies should be an option, Lancet 395 (2020) e35-e36
|
X. Cao, COVID-19: Immunopathology and its implications for therapy, Nat. Rev. Immunol. 20 (2020) 269-270
|
A. Banerjee, K. Kulcsar, V. Misra, et al., Bats and coronaviruses, Viruses 11 (2019) 41-55
|
D. Yang, J.L. Leibowitz, The structure and functions of coronavirus genomic 3’ and 5’ ends, Virus Res. (206) 2015 120-133
|
S.R. Weiss, S. Navas-Martin, Coronavirus pathogenesis and the emerging pathogen severe acute respiratory syndrome coronavirus, Microbiol. Mol. Biol. Rev. 69 (2005) 635-664
|
S. Perlman, J. Netland, Coronaviruses post-SARS: update on replication and pathogenesis, Nat. Rev. Microbiol. 7 (2009) 439-450
|
M.M.C. Lai, D. Cavanagh, The molecular biology of coronaviruses, Adv. Virus Res. 48 (1997) 1-100
|
Chinese Center for Disease Control and Prevention, 2020, http://www.chinacdc.cn/jkzt/crb/zl/szkb_11803/jszl_2275/202001/t20200121_211326.html
|
H. Li, S.M. Liu, X.H. Yu, et al., Coronavirus disease 2019 (COVID-19): current status and future perspective, Int. J. Antimicrob. Agents 55 (2020) 105951
|
S. Su, G. Wong, W. Shi, et al., Epidemiology, genetic recombination, and pathogenesis of coronaviruses, Trends Microbiol. 24 (2016) 490-502
|
W. Li, M.J. Moore, N. Vasilieva, et al., Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus, Nature 426 (2003) 450-454
|
R.L. Graham, E.F. Donaldson, R.S. Baric, A decade after SARS: strategies for controlling emerging coronaviruses, Nat. Rev. Microbiol. 11 (2013) 836-848
|
A. Zumla, D.S. Hui, S. Perlman, Middle East respiratory syndrome, Lancet 386 (2015) 995-1007
|
S. Su, G. Wong, Y. Liu, et al., MERS in South Korea and China: a potential outbreak threat? Lancet 385 (2015) 2349-2350
|
C.B. Reusken, B.L. Haagmans, M.A. Muller, et al., Middle East respiratory syndrome coronavirus neutralising serum antibodies in dromedary camels: a comparative serological study, Lancet Infect. Dis. 13 (2013) 859-866
|
E. de Wit, N. van Doremalen, D. Falzarano, et al., SARS and MERS: recent insights into emerging coronaviruses, Nat Rev. Microbiol. 14 (2016) 523-534
|
G. Lu, Q. Wang, G.F. Gao, Bat-to-human: spike features determining ’host jump’ of coronaviruses SARS-CoV, MERS-CoV, and beyond, Trends Microbiol. 23 (2015) 468-478
|
C. Huang, Y. Wang, X. Li, et al., Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China, Lancet 395 (2020) 497-506
|
B. Tang, N.L. Bragazzi, Q. Li, et al., An updated estimation of the risk of transmission of the novel coronavirus (2019-nCov), Infect. Dis. Model 5 (2020) 248-255
|
R. Lu, X. Zhao, J. Li, et al., Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding, Lancet 395 (2020) 565-574
|
J.F.W. Chan, K.H. Kok, Z. Zhu, et al., Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan, Emerg. Microbes Infec. 9 (2020) 221-236
|
M.A. Shereen, S. Khan, A. Kazmi, et al., COVID-19 infection: Origin, transmission, and characteristics of human coronaviruses, J. Adv. Res. 24 (2020) 91-98
|
A. Wu, Y. Peng, B. Huang, et al., Genome composition and divergence of the novel coronavirus (2019-nCoV) originating in China, Cell Host Microbe. 27 (2020) 325-328
|
D. Wrapp, N. Wang, K.S. Corbett, et al., Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation, Science 367 (2020) 1260-1263
|
Y. Yuan, D. Cao, Y. Zhang, et al., Cryo-EM structures of MERS-CoV and SARS-CoV spike glycoproteins reveal the dynamic receptor binding domains, Nat. Commun. 8 (2017) 15092
|
M. Gui, W. Song, H. Zhou, et al., Cryo-electron microscopy structures of the SARS-CoV spike glycoprotein reveal a prerequisite conformational state for receptor binding, Cell Res. 27 (2017) 119-129
|
R.N. Kirchdoerfer, C.A. Cottrell, N. Wang, et al., Prefusion structure of a human coronavirus spike protein, Nature 531 (2016) 118-121
|
A.C. Walls, X. Xiong, Y.J. Park, et al., Unexpected receptor functional mimicry elucidates activation of coronavirus fusion, Cell 176 (2019) 1026-1039
|
I. Glowacka, S. Bertram, M.A. Muller, et al., Evidence that TMPRSS2 activates the severe acute respiratory syndrome coronavirus spike protein for membrane fusion and reduces viral control by the humoral immune response, J. Virol. 85 (2011) 4122-4134
|
Y. Wan, J. Shang, R. Graham, et al., Receptor recognition by the novel coronavirus from Wuhan: an analysis based on decade-long structural studies of SARS, J. Virol. 94 (2020) e00127-20
|
X. Li, M. Geng, Y. Peng, et al., Molecular immune pathogenesis and diagnosis of COVID-19, J. Pharm. Anal. 10 (2020) 102-108
|
C. Shen, N. Yu, S. Cai, et al., Quantitative computed tomography analysis for stratifying the severity of Coronavirus Disease 2019 J. Pharm. Anal. 10 (2020) 123-129
|
W. Guan, Z. Ni, Y. Hu, et al., Clinical characteristics of coronavirus disease 2019 in China, N. Engl. J. Med. 382 (2020) 1708-1720
|
F. Zhou, T. Yu, R. Du, et al., Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study, Lancet 395 (2020) 1054-1062
|
H. Shi, X. Han, N. Jiang, et al., Radiological findings from 81 patients with COVID-19 pneumonia in Wuhan, China: a descriptive study, Lancet 20 (2020) 425-434
|
N. Zhu, D. Zhang, W. Wang, et al., A novel coronavirus from patients with pneumonia in China, 2019, N. Engl. J. Med. 382 (2020) 727-733
|
N. Chen, M. Zhou, X. Dong, et al., Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study, Lancet (395) 2020 507-513
|
J.F.W. Chan, S. Yuan, K.H. Kak, et al., A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster, Lancet 395 (2020) 514-523
|
F. Ufuk, 3D CT of novel coronavirus (COVID-19) pneumonia, Radiology 296 (2020) E180
|
S.H. Yoon, K.H. Lee, J.Y. Kim, et al., Chest radiographic and CT findings of the 2019 novel coronavirus disease (COVID-19): analysis of nine patients treated in Korea, Korean J. Radiol. 21 (2020) 494-500
|
J.P. Kanne, Chest CT findings in 2019 novel coronavirus (2019-nCoV) infections from Wuhan, China: key points for the radiologist, Radiology 295 (2020) 16-17
|
M. Chung, A. Bernheim, X. Mei, et al., CT Imaging Features of 2019 Novel Coronavirus (2019-nCoV), Radiology 295 (2020) 202-207
|
F. Song, N. Shi, F. Shan, et al., Emerging 2019 novel coronavirus (2019-nCoV) pneumonia, Radiology 295 (2020) 210-217
|
S. Bhadra, Y.S. Jiang, M.R. Kumar, et al., Real-time sequence-validated loop-mediated isothermal amplification assays for detection of Middle East respiratory syndrome coronavirus (MERS-CoV), PLoS One 10 (2015) e0123126
|
J.F. Chan, G.K. Choi, A.K. Tsang, et al., Development and evaluation of novel real-time reverse transcription-PCR assays with locked nucleic acid probes targeting leader sequences of human-pathogenic coronaviruses, J. Clin. Microbiol. 53 (2015) 2722-2726
|
P. Zhai, Y. Ding, X. Wu, et al., The epidemiology, diagnosis and treatment of COVID-19, Int. J. Antimicrob. Agents 2020 DOI: 10.1016/j.ijantimicag.2020.105955
|
W.M. Freeman, S.J. Walker, K.E. Vrana, Quantitative RT-PCR: pitfalls and potential, BioTechniques 26 (1999) 112-125
|
T. Kageyama, S. Kojima, M. Shinohara, et al., Broadly reactive and highly sensitive assay for norwalk-like viruses based on real-time quantitative reverse transcription-PCR, J. Clin. Microbiol. 41 (2003) 1548-1557
|
V.M. Corman, M.A. Muller, U. Costabel, et al., Assays for laboratory confirmation of novel human coronavirus (hCoV-EMC) infections, Euro Surveill. 17 (2012) 20334
|
V.M. Corman, M. Eickmann, O. Landt, et al., Specific detection by real-time reverse-transcription PCR assays of a novel avian influenza A(H7N9) strain associated with human spillover infections in China, Euro Surveill. 18 (2013) 20461
|
V.M. Corman, I. Eckerle, T. Bleicker, et al., Detection of a novel human coronavirus by real-time reverse-transcription polymerase chain reaction, Euro Surveill. 17 (2012) 20285
|
V.M. Corman, O. Landt, M. Kaiser, et al., Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR, Euro Surveill. 25 (2020) 2000045
|
M.L. Wong, J. F. Medrano, Real-time PCR for mRNA quantitation, Biotechniques 39 (2005) 75-85
|
W. Zhang, R.H. Du, B. Li, et al., Molecular and serological investigation of 2019-nCoV infected patients: implication of multiple shedding routes, Emerg. Microbes Infec. 9 (2020) 386-389
|
S.K. Elledge, X.X. Zhou, J.R. Byrnes, et al, Engineering luminescent biosensors for point-of-care SARS-CoV-2 antibody detection, Emerg. Microbes Infec. 9 (2020) 1356-1359
|
V. Oldfield, G.L. Plosker, Lopinavir/ritonavir: a review of its use in the management of HIV infection, Drugs 66 (2006) 1275-1299
|
S. Walmsley, B.M. Bernstein, J. Arribas, et al., Lopinavir-ritonavir versus nelfinavir for the initial treatment of HIV infection, New Engl. J. Med. 346 (2002) 2039-2046
|
C. Chu, V. Cheng, I. Hung, et al., Role of lopinavir/ritonavir in the treatment of SARS: initial virological and clinical findings, Thorax. 59 (2004) 252-256
|
Y.M. Arabi, A. Alothman, H.H. Balkhy, et al., Treatment of Middle East respiratory syndrome with a combination of lopinavir-ritonavir and interferon-β1b (MIRACLE trial): study protocol for a randomized controlled trial, Trials 19 (2018) 81
|
Y.H. Jin, L. Cai, Z.S. Cheng, A rapid advice guideline for the diagnosis and treatment of 2019 novel coronavirus (2019-nCoV) infected pneumonia (standard version), Mil. Med. Res. 7 (2020) 4
|
W. Han, B. Quan, Y. Guo, et al., The course of clinical diagnosis and treatment of a case infected with coronavirus disease 2019, J. Med. Virol. 92 (2020) 461-463
|
H. Jiang, H. Deng, Y. Wang, et al., The possibility of using lopinave/litonawe (LPV/r) as treatment for novel coronavirus 2019-nCov pneumonia: a quick systematic review based on earlier coronavirus clinical studies, Chin. J. Emerg. Med. 29 (2020) 182-186
|
T.K. Warren, R. Jordan, M.K. Lo, et al., Therapeutic efficacy of the small molecule GS-5734 against Ebola virus in rhesus monkeys, Nature 531 (2016) 381-385
|
T.P. Sheahan, A.C. Sims, R.L. Graham, et al., Broad-spectrum antiviral GS-5734 inhibits both epidemic and zoonotic coronaviruses, Sci. Transl. Med. 9 (2017) 1-11
|
A. Cho, O.L. Saunders, T. Butler, et al., Synthesis and antiviral activity of a series of 1’-substituted 4-aza-7,9-dideazaadenosine C-nucleosides, Bioorg. Med. Chem. Lett. 22 (2012) 2705-2707
|
T.K. Warren, J. Wells, R.G. Panchal, et al., Protection against filovirus diseases by a novel broad-spectrum nucleoside analogue BCX4430, Nature 508 (2014) 402-405
|
M.L. Agostini, E.L. Andres, A.C. Sims, et al., Coronavirus susceptibility to the antiviral remdesivir (GS-5734) is mediated by the viral polymerase and the proofreading exoribonuclease, Mbio 9 (2018) e00221-18
|
M. Wang, R. Cao, L. Zhang, et al., Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro, Cell Res. 30 (2020) 269-271
|
W. Yin, C. Mao, X. Luan, et al., Structural basis for inhibition of the RNA-dependent RNA polymerase from SARS-CoV-2 by remdesivir, Science 368 (2020) 1499-1504
|
J. Grein, N. Ohmagari, D. Shin, et al., Compassionate use of remdesivir for patients with severe COVID-19, N. Engl. J. Med. 382 (2020) 2327-2336
|
A. Savarino, L. Di Trani, I. Donatelli, et al., New insights into the antiviral effects of chloroquine, Lancet Infect. Dis. 6 (2006) 67-69
|
Y. Yan, Z. Zou, Y. Sun, et al., Anti-malaria drug chloroquine is highly effective in treating avian influenza A H5N1 virus infection in an animal model, Cell Res. 23 (2013) 300-302
|
J.M. Rolain, P. Colson, D. Raoult, Recycling of chloroquine and its hydroxyl analogue to face bacterial, fungal and viral infections in the 21st century, Int. J. Antimicrob. Agents 30 (2007) 297-308
|
M.J. Vincent, E. Bergeron, S. Benjannet, et al., Chloroquine is a potent inhibitor of SARS coronavirus infection and spread, Virol. J. 2 (2005) 69
|
J. Gao, Z. Tian, X. Yang, Breakthrough: Chloroquine phosphate has shown apparent efficacy in treatment of COVID-19 associated pneumonia in clinical studies, Biosci. Trends 14 (2020) 72-73
|
Polycentric collaborative group of chloroquine phosphate in the treatment of new coronavirus pneumonia (Department of Science and Technology of Guangdong Province and Health Committee of Guangdong Province), Expert consensus on chloroquine phosphate for the treatment of novel coronavirus pneumonia, Chin. J. Tubere. Respir. Dis. 43 (2020) 185-188
|
Kauv J., Le M.P., Veyrier M., et al., Failure of hydroxychloroquine pre-exposure prophylaxis in COVID-19 infection? A case report, J. Antimicrob. Chemother 75 (2020) 2706–2707
|
Y.S. Boriskin, I.A. Leneva, E.I. Pecheur, et al., Arbidol: a broad-spectrum antiviral compound that blocks viral eusion, Curr. Med. Chem. 15 (2008) 997-1005
|
Z. Wang, X. Chen, Y. Lu, et al., Clinical characteristics and therapeutic procedure for four cases with 2019 novel coronavirus pneumonia receiving combined Chinese and Western medicine treatment, Biosci. Trends 14 (2020) 64-68
|
J. Zhang, L. Zhou, Y. Yang, et al., Therapeutic and triage strategies for 2019 novel coronavirus disease in fever clinics, Lancet Respir. Med. 8 (2020) 11-12
|
X.W. Xu, X.X. Wu, X.G. Jiang, et al., Clinical findings in a group of patients infected with the 2019 novel coronavirus (SARS-Cov-2) outside of Wuhan, China: retrospective case series, BMJ 368 (2020) m606
|
J.N. Zhang, W.J. Wang, B. Peng, et al., Potential of Arbidol for post-exposure prophylaxis of COVID-19 transmission: A preliminary report of a retrospective cohort study, Curr. Med. Sci. 40 (2020), 480-485
|
Z. Zhu, Z. Lu, T. Xu, et al., Arbidol monotherapy is superior to lopinavir/ritonavir in treating COVID-19, J. Infect. 81 (2020) e21-e23
|
L. Chen, J. Xiong, L. Bao, et al., Convalescent plasma as a potential therapy for COVID-19, Lancet Infect. Dis. 20 (2020) 398-400
|
K. Duan, B. Liu, C. Li, et al., Effectiveness of convalescent plasma therapy in severe COVID-19 patients, Proc. Nat. Acad. Sci. U S A 117 (2020) 9490-9496
|
W. Cao, X. Liu, T. Bai, et al., High-dose intravenous immunoglobulin as a terapeutic option for deteriorating patients with coronavirus disease 2019, Open Forum Infect. Di. (2020) DOI: 10.1093/ofd/ofaa102
|
L. Du, Y. He, Y. Zhou, et al., The spike protein of SARS-CoV-a target for vaccine and therapeutic development, Nat. Rev. Microbiol. 7 (2009) 226-236
|
Q. Gao, L. Bao, H. Mao, et al., Development of an inactivated vaccine candidate for SARS-CoV-2, Science 369 (2020) 77-81
|