Citation: | Shiya Liu, Zhiyuan Wang, Daoqi Zhu, Jiabin Yang, Dandan Lou, Ruijiao Gao, Zetai Wang, Aiwu Li, Ying Lv, Qin Fan. Effect of Shengmai Yin on the DNA methylation status of nasopharyngeal carcinoma cell and its radioresistant strains[J]. Journal of Pharmaceutical Analysis, 2021, 11(6): 783-790. doi: 10.1016/j.jpha.2020.11.010 |
M.L.K. Chua, J.T.S. Wee, E.P. Hui, et al., Nasopharyngeal carcinoma, Lancet. 387 (2016) 1012-1024
|
Y. Chen, A.T.C. Chan, Q. Le, et al., Nasopharyngeal carcinoma, Lancet. 394 (2019) 64-80
|
X. Sun, X. Li, Q. Chen, et al., Future of radiotherapy in nasopharyngeal carcinoma, Br. J. Radiol. 92 (2019) 20190209
|
H. Chi, C. Tsai, M. Tsai, et al., Impact of DNA and RNA methylation on radiobiology and cancer progression, Int. J. Mol. Sci. 19 (2018) 555
|
X. Zhu, Y. Wang, L. Tan, et al., The pivotal role of DNA methylation in the radio-sensitivity of tumor radiotherapy, Cancer Med. 7 (2018) 3812-3819
|
I.R. Miousse, K.R. Kutanzi, I. Koturbash, Effects of ionizing radiation on DNA methylation: From experimental biology to clinical applications, Int. J. Radiat. Biol. 93 (2017) 457-469
|
W. Dai, H. Zheng, A.K.L. Cheung, et al., Genetic and epigenetic landscape of nasopharyngeal carcinoma, Chin.Clin.Oncol. 5 (2016)16
|
W. Jiang, Y. Li, N. Liu, et al., 5-Azacytidine enhances the radiosensitivity of CNE2 and SUNE1 cells in vitro and in vivo possibly by altering DNA methylation, PLoS One. 9 (2014) e93273
|
X. Ming, S. Qiu, X. Liu, et al., Prognostic role of Tenascin-C for cancer outcome: A Meta-Analysis, Technol. Cancer Res. T. 18 (2019)
|
C.M. Lowy, T. Oskarsson, Tenascin C in metastasis: A view from the invasive front, Cell Adhes. Migr. 9 (2015) 112-124
|
I.F. Goncalves, E. Acar, S. Costantino, et al., Epigenetic modulation of tenascin C in the heart: Implications on myocardial ischemia, hypertrophy and metabolism, J. Hypertens. (2019)
|
C. Spenle, F. Saupe, K. Midwood, et al., Tenascin-C: Exploitation and collateral damage in cancer management, Cell Adhes. Migr. 9 (2015) 141-153
|
H. Wang, X. Mu, H. He, et al., Cancer radiosensitizers, Trends Pharmacol. Sci. 39 (2018) 24-48
|
P. Hsu, S. Yang, N. Tsang, et al., Efficacy of traditional chinese medicine in xerostomia and quality of life during radiotherapy for head and neck cancer: A prospective pilot study, Evid.-based Complement Altern. Med. 2016 (2016) 8359251
|
J. Wang, L. Chang, X. Lai, et al., Tetrandrine enhances radiosensitivity through the CDC25C/CDK1/cyclin B1 pathway in nasopharyngeal carcinoma cells, Cell cycle. 17 (2018) 671-680
|
S. Chen, T. Lee, T. Tsai, et al., The traditional chinese medicine DangguiBuxue tang sensitizes colorectal cancer cells to chemoradiotherapy, Molecules. 21 (2016) 1677
|
T. Liu, L. Duo, P. Duan, Ginsenoside rg3 sensitizes colorectal cancer to radiotherapy through downregulation of proliferative and angiogenic biomarkers, Evid.-based Complement Altern. Med. 2018 (2018) 1580427
|
L. Wang, X. Li, Y.Z. Song, et al., Ginsenoside Rg3 sensitizes human non-small cell lung cancer cells to γ-radiation by targeting the nuclear factor-κB pathway, Mol. Med. Rep. 12 (2015) 609-614
|
X. Ge, F. Zhen, B. Yang, et al., Ginsenoside Rg3 enhances radiosensitization of hypoxic oesophageal cancer cell lines through vascular endothelial growth factor and hypoxia inducible factor Iα, J. Int. Med. Res. 42 (2014) 628-640
|
D. Zhu, M. Huang, M. Fang, et al., Induction of radioresistant nasopharyngeal carcinoma cell line CNE-2R by repeated high-dose X-ray irradiation, Iranian Journal of Radiation Research. 17 (2019) 47-55
|
J.G. Herman, J.R. Graff, S. Myohanen, et al., Methylation-specific PCR: A novel PCR assay for methylation status of CpG islands, P. Natl. Acad. Sci. Usa. 93 (1996) 9821-9826
|
P.A. Jones, S.B. Baylin, The epigenomics of cancer, Cell. 128 (2007) 683-692
|
A. Erazooliveras, N.R. Fuentes, R.C. Wright, et al., Functional link between plasma membrane spatiotemporal dynamics, cancer biology, and dietary membrane-altering agents, Cancer Metast. Rev. 37 (2018) 519-544
|
C.T. Mierke, The matrix environmental and cell mechanical properties regulate cell migration and contribute to the invasive phenotype of cancer cells, Rep. Prog. Phys. 82 (2019) 64602
|
Q. Zhou, Q. Zhu, H. Wang, et al., Traditional Chinese Medicine Containing Arsenic Treated MDS Patients Effectively through Regulating Aberrant Hypomethylation, Evid.-based Complement Altern. Med. 2020 (2020) 1-9
|
T. Yoshida, T. Akatsuka, K. Imanakayoshida, Tenascin-C and integrins in cancer, Cell Adhes. Migr. 9 (2015) 96-104
|
G. Orend, R. Chiquetehrismann, Tenascin-C induced signaling in cancer, Cancer Lett. 244 (2006) 143-163
|
K. Skvortsova, C. Stirzaker, P.C. Taberlay, The DNA methylation landscape in cancer, Essays Biochem. 63 (2019) 797-811
|
J. Yu, R. Hua, Y. Zhang, et al., DNA hypomethylation promotes invasion and metastasis of gastric cancer cells by regulating the binding of SP1 to the CDCA3 promoter, J. Cell. Biochem. 121(2020) 142-151
|
Z. Zhang, R. Lu, P. Wang, et al., Structural basis for DNMT3A-mediated de novo DNA methylation, Nature. 554 (2018) 387-391
|