Volume 11 Issue 1
Feb.  2021
Turn off MathJax
Article Contents
Sumin Bian, Bowen Zhu, Guoguang Rong, Mohamad Sawan. Towards wearable and implantable continuous drug monitoring: A review[J]. Journal of Pharmaceutical Analysis, 2021, 11(1): 1-14. doi: 10.1016/j.jpha.2020.08.001
Citation: Sumin Bian, Bowen Zhu, Guoguang Rong, Mohamad Sawan. Towards wearable and implantable continuous drug monitoring: A review[J]. Journal of Pharmaceutical Analysis, 2021, 11(1): 1-14. doi: 10.1016/j.jpha.2020.08.001

Towards wearable and implantable continuous drug monitoring: A review

doi: 10.1016/j.jpha.2020.08.001
Funds:

This work was supported by the start-up funds from Westlake University to CenBRAIN lab and Bright Dream Joint Institute for Intelligent Robotics.

  • Received Date: May 14, 2020
  • Accepted Date: Aug. 05, 2020
  • Rev Recd Date: Aug. 05, 2020
  • Available Online: Jan. 24, 2022
  • Publish Date: Feb. 15, 2021
  • Continuous drug monitoring is a promising alternative to current therapeutic drug monitoring strategies and has a strong potential to reshape our understanding of pharmacokinetic variability and to improve individualised therapy. This review highlights recent advances in biosensing technologies that support continuous drug monitoring in real time. We focus primarily on aptamer-based biosensors, wearable and implantable devices. Emphasis is given to the approaches employed in constructing biosensors. We pay attention to sensors’ biocompatibility, calibration performance, long-term characteristics stability and measurement quality. Last, we discuss the current challenges and issues to be addressed in continuous drug monitoring to make it a promising, future tool for individualised therapy. The ongoing efforts are expected to result in fully integrated implantable drug biosensing technology. Thus, we may anticipate an era of advanced healthcare in which wearable and implantable biochips will automatically adjust drug dosing in response to patient health conditions, thus enabling the management of diseases and enhancing individualised therapy.
  • loading
  • R. Hodson, Precision medicine, Nature 537 (2016) S49, https://doi.org/10.1038/537S49a
    D.J. Birkett, Therapeutic drug monitoring, Aust. Prescr. 20 (1977) 9-11, https://www.nps.org.au/australian-prescriber/articles/therapeutic-drug-monitoring
    A.S. Gross, Best practice in therapeutic drug monitoring, Br. J. Clin. Pharmacol. 46 (2002) 95-99, https://doi.org/10.1046/j.1365-2125.2001.0520s1005.x
    A. Figueras, Review of the evidence to include TDM in the essential in vitro diagnostics list and prioritization of medicines to be monitored, Fundacio Institut Catala de Farmacologia: Barcelona, Spain, 2019, https://www.who.int/medical_devices/diagnostics/selection_in-vitro/selection_in-vitro-meetings/sage-ivd-2nd-meeting/Report-on-TherapeuticDrugMonitoring-tests.pdf
    J.D. Feuerstein, G.C. Nguyen, S.S. Kupfer, et al., American Gastroenterological Association Institute guideline on therapeutic drug monitoring in inflammatory bowel disease, Gastroenterology 153 (2017) 827-834, https://doi.org/10.1053/j.gastro.2017.07.032
    N. Vande Casteele, H. Herfarth, J. Katz, et al., American Gastroenterological Association Institute technical review on the role of therapeutic drug monitoring in the management of inflammatory bowel diseases, Gastroenterology 153 (2017) 835-857.e6, https://doi.org/10.1053/j.gastro.2017.07.031
    E. Eliasson, J.D. Lindh, R.E. Malmstrom, et al., Therapeutic drug monitoring for tomorrow, Eur. J. Clin. Pharmacol. 69 (2013) Suppl 1:25-32, https://doi.org/10.1007/s00228-013-1504-x
    C. Hiemke, Clinical utility of drug measurement and pharmacokinetics: therapeutic drug monitoring in psychiatry, Eur. J. Clin. Pharmacol. 64 (2008) 159-166, https://doi.org/10.1007/s00228-007-0430-1
    J.E. Adaway, B.G. Keevil, Therapeutic drug monitoring and LC-MS/MS, J. Chromatogr. B 883-884 (2012) 33-49, https://doi.org/10.1016/j.jchromb.2011.09.041
    S. Bian, T. Van Stappen, F. Baert, et al., Generation and characterization of a unique panel of anti-adalimumab specific antibodies and their application in therapeutic drug monitoring assays, J. Pharm. Biomed. Anal. 125 (2016) 62-67, https://doi.org/10.1016/j.jpba.2016.03.029
    B. Verstockt, G. Moors, S. Bian, et al., Influence of early adalimumab serum levels on immunogenicity and long-term outcome of anti-TNF naive Crohn’s disease patients: the usefulness of rapid testing, Aliment. Pharmacol. Ther. 48 (2018) 731-739, https://doi.org/10.1111/apt.14943
    A. Boyer, D. Gruson, S. Bouchet, et al., Aminoglycosides in septic shock: an overview, with specific consideration given to their nephrotoxic risk, Drug Saf. 36 (2013) 217-230, https://doi.org/10.1007/s40264-013-0031-0
    X. Li, M. Geng, Y. Peng, et al., Molecular immune pathogenesis and diagnosis of COVID-19, J. Pharm. Anal. 10 (2020) 102-108, https://doi.org/10.1016/j.jpha.2020.03.001
    M.Z. Shen, Y. Zhou, J.W. Ye, et al., Recent advances and perspectives of nucleic acid detection for coronavirus, J. Pharm. Anal. 10 (2020) 97-101, https://doi.org/10.1016/j.jpha.2020.02.010
    S. Bian, J. Lu, F. Delport, et al., Development and validation of a device for rapid monitoring of adalimumab in serum of patients with Crohn’s disease, Drug Test Anal. 10 (2018) 592-596, https://doi.org/10.1002/dta.2250
    M.G. Aspinall, R.G. Hamermesh, Realizing the promise of personalized medicine, Harv. Bus Rev. 85 (2007) 108-117, 165, https://hbr.org/2007/10/realizing-the-promise-of-personalized-medicine
    J. Wang, Amperometric biosensors for clinical and therapeutic drug monitoring: a review, J. Pharm. Biomed. Anal. 19 (1999) 47-53, https://doi.org/10.1016/S0731-7085(98)00056-9
    C.J. Landmark, S.I. Johannessen, T. Tomson, Dosing strategies for antiepileptic drugs: from a standard dose for all to individualised treatment by implementation of therapeutic drug monitoring, Epileptic Disord. 18 (2016) 367-383, https://doi.org/10.1684/epd.2016.0880
    Fantana A.L., Cella G.M., Benson C.T., et al., The future of drug trials Is better data and continuous monitoring, Harv. Bus. Rev., 2019. https://hbr.org/2019/05/the-future-of-drug-trials-is-better-data-and-continuous-monitoring
    H.C. Ates, J.A. Roberts, J. Lipman, et al., On-Site Therapeutic drug monitoring, Trends Biotechnol. in press (2020), https://doi.org/10.1016/j.tibtech.2020.03.001
    S. Vozeh, J.L. Steimer, Feedback control methods for drug dosage optimisation. Concepts, classification and clinical application, Clin. Pharmacokinet. 10 (1985) 457-476, https://doi.org/10.2165/00003088-198510060-00001
    S. Jakka, M. Rossbach, An economic perspective on personalized medicine, Hugo J. 7 (2013) 1. https://doi.org/10.1186/1877-6566-7-1
    A. Hammoud, D.K. Khoa Nguyen, M. Sawan, Detection methods and tools of administered anti-epileptic drugs - a review, Biosens. Bioelectron. Open Acc. 2019; DOI: 10.29011/2577-2260. 100046, https://doi.org/10.29011/2577-2260.100046
    N.J. Ronkainen, H.B. Halsall, W.R. Heineman, Electrochemical biosensors, Chem. Soc. Rev., 39 (2010) 1747-1763, https://doi.org/10.1039/B714449K
    Database of Market Research Report: "Biosensors market size, share & trends analysis report by application by technology by end use and segment forecasts, 2019 - 2026". Grand View Research, https://www.reportlinker.com/p05807287/Biosensors-Market-Size-Share-Trends-Analysis-Report-By-Application-By-Technology-By-End-Use-And-Segment-Forecasts.html
    S.Y. Kwak, M.H. Wong, T.T.S. Lew, et al., Nanosensor technology applied to living plant systems, Annu. Rev. Anal. Chem. (Palo Alto Calif) 10 (2017) 113-140, https://doi.org/10.1146/annurev-anchem-061516-045310
    G. Rong, E.E. Tuttle, A. Neal Reilly, et al., Recent developments in nanosensors for imaging applications in biological systems, Annu. Rev. Anal. Chem. (Palo Alto Calif) 12 (2019) 109-128, https://doi.org/10.1146/annurev-anchem-061417-125747
    G. Rong, S.R. Corrie, H.A. Clark, In vivo biosensing: progress and perspectives, ACS Sens. 2 (2017) 327-338, https://doi.org/10.1021/acssensors.6b00834
    M.A. Yokus, T. Songkakul, V.A. Pozdin, et al., Wearable multiplexed biosensor system toward continuous monitoring of metabolites, Biosens. Bioelectron. 153 (2020) 112038, https://doi.org/10.1016/j.bios.2020.112038
    H. Lee, C. Song, Y. Hong, et al., Wearable/disposable sweat-based glucose monitoring device with multistage transdermal drug delivery module, Sci. Adv. 3 (2017) e1601314, https://doi.org/10.1126/sciadv.1601314
    M. Majdinasab, K. Mitsubayashi, J.L. Marty, Optical and electrochemical sensors and biosensors for the detection of quinolones, Trends Biotechnol. 37 (2019) 898-915, https://doi.org/10.1016/j.tibtech.2019.01.004
    D. Grieshaber, R. MacKenzie, J. Voros, et al., Electrochemical biosensors - sensor principles and architectures, Sensors (Basel). 8 (2008) 1400-1458, https://doi.org/10.3390/s80314000
    S. Carrara, Bio/CMOS interfaces and co-design, Springer, New York, 2013, pp.185-205, https://doi.org/10.1007/978-1-4614-4690-3
    G. Maduraiveeran, M. Sasidharan, V. Ganesan, Electrochemical sensor and biosensor platforms based on advanced nanomaterials for biological and biomedical applications, Biosens. Bioelectron. 103 (2018):113-129, https://doi.org/10.1016/j.bios.2017.12.031
    C. Baj-Rossi, T. Rezzonico Jost, A. Cavallini, et al., Continuous monitoring of naproxen by a cytochrome P450-based electrochemical sensor, Biosens. Bioelectron. 53 (2014):283-287, https://doi.org/10.1016/j.bios.2013.09.058
    F. Stradolini, T. Kilic, A. Di Consiglio, et al., Long-term monitoring of propofol and fouling effect on pencil graphite electrodes, Electroanalysis 30 (2018), 1363- 1369, https://doi.org/10.1002/elan.201700834
    S. Francesca, T. Abuduwaili, K. Tugba, et al., An IoT solution for online monitoring of anesthetics in human serum based on an integrated fluidic bioelectronic system, IEEE Trans. Biomed. Circuits Syst. 12 (2018) 1056-1064, https://doi.org/10.1109/TBCAS.2018.2855048
    M.N. Sweilam, J.R. Varcoe, C. Crean, Fabrication and optimization of fiber-based lithium sensor: a step toward wearable sensors for lithium drug monitoring in interstitial fluid, ACS Sens. 3 (2018) 1802-1810, https://doi.org/10.1021/acssensors.8b00528
    A.D. Ellington, J.W. Szostak, In vitro selection of RNA molecules that bind specific ligands, Nature 346 (1990) 818-822, https://doi.org/10.1038/346818a0
    C. Tuerk, L. Gold, Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase, Science 249 (1990) 505-510, https://doi.org/10.1126/science.2200121
    Y. Xiao, R.Y. Lai, K.W. Plaxco, Preparation of electrode-immobilized, redox-modified oligonucleotides for electrochemical DNA and aptamer-based sensing, Nat. Protoc. 2 (2007) 2875-2880, https://doi.org/10.1038/nprot.2007.413
    S.M. Nimjee, R.R. White, R.C. Becker, et al., Aptamers as therapeutics, Annu. Rev. Pharmacol. Toxicol. 57 (2017) 61-79, https://doi.org/10.1146/annurev-pharmtox-010716-104558
    S. Dehghani, R. Nosrati, M. Yousefi, et al., Aptamer-based biosensors and nanosensors for the detection of vascular endothelial growth factor (VEGF): a review, Biosens. Bioelectron. 110 (2018) 23-37, https://doi.org/10.1016/j.bios.2018.03.037
    J.S. Swensen, Y. Xiao, B.S. Ferguson, et al., Continuous, real-time monitoring of cocaine in undiluted blood serum via a microfluidic, electrochemical aptamer-based sensor, J. Am. Chem. Soc. 131 (2009) 4262-4266, https://doi.org/10.1021/ja806531z
    H. Li, N. Arroyo-Curras, D. Kang, et al., Dual-reporter drift correction to enhance the performance of electrochemical aptamer-based sensors in whole blood, J. Am. Chem. Soc. 138 (2016) 15809-15812, https://doi.org/10.1021/jacs.6b08671
    H. Li, P. Dauphin-Ducharme, G. Ortega, et al., Calibration-free electrochemical biosensors supporting accurate molecular measurements directly in undiluted whole blood, J. Am. Chem. Soc. 139 (2017) 11207-11213, https://doi.org/10.1021/jacs.7b05412
    N. Aliakbarinodehi, P. Jolly, N. Bhalla, et al., Aptamer-based field-effect biosensor for tenofovir detection, Sci. Rep. 7 (2017) 44409, https://doi.org/10.1038/srep44409
    I. Tzouvadaki, N. Aliakbarinodehi, G. De Micheli, et al., The memristive effect as a novelty in drug monitoring, Nanoscale 9 (2017) 9676-9684, https://doi.org/10.1039/c7nr01297g
    B.S. Ferguson, D.A. Hoggarth, D. Maliniak, et al., Real-time, aptamer-based tracking of circulating therapeutic agents in living animals, Sci. Transl. Med. 5 (2013) 213ra165, https://doi.org/10.1126/scitranslmed.3007095
    P.L. Mage, B.S. Ferguson, D. Malinia, et al., Closed-loop control of circulating drug levels in live animals, Nat. Biomed. Eng. 1. (2017) 0070, https://doi.org/10.1038/s41551-017-0070
    R. Karnik, Drug delivery: Closed-loop dynamic dosing, Nat. Biomed. Eng. 1. (2017) 0072, https://doi.org/10.1038/s41551-017-0072
    J. Kim, A.S. Campbell, B.E. de Avila, et al., Wearable biosensors for healthcare monitoring, Nat. Biotechnol. 37 (2019) 389-406, https://doi.org/10.1038/s41587-019-0045-y
    A.K. Yetisen, J.L. Martinez-Hurtado, B. Unal, et al., Wearables in medicine, Adv. Mater. 30 (2018) 1706910, https://doi.org/10.1002/adma.201706910
    A. Mena-Bravo, M.D. Luque de Castro, Sweat: a sample with limited present applications and promising future in metabolomics, J. Pharm. Biomed. Anal. 90 (2014) 139-147, https://doi.org/10.1016/j.jpba.2013.10.048
    J. Kim, J.R. Sempionatto, S. Imani, et al., Simultaneous monitoring of sweat and interstitial fluid using a single wearable biosensor platform, Adv. Sci. (Weinh) 5 (2018) 1800880, https://doi.org/10.1002/advs.201800880
    M.C. Brothers, M. DeBrosse, C.C. Grigsby, et al., Achievements and challenges for real-Time sensing of analytes in sweat within wearable platforms, Acc. Chem. Res. 52 (2019) 297-306, https://doi.org/10.1021/acs.accounts.8b00555
    A. Bandodkar, W.J. Jeang, R. Ghaffari, et al., Wearable sensors for biochemical sweat analysis, Annu. Rev. Anal. Chem. (Palo Alto Calif) 12 (2019) 1-22, https://doi.org/10.1146/annurev-anchem-061318-114910
    W. Gao, S. Emaminejad, H.Y.Y. Nyein, et al., Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis, Nature 529 (2016) 509-514, https://doi.org/10.1038/nature16521
    K.S. Raju, I. Taneja, S.P. Singh, et al., Utility of noninvasive biomatrices in pharmacokinetic studies, Biomed. Chromatogr. 27 (2013) 1354-1366, https://doi.org/10.1002/bmc.2996
    M. Tsunoda, M. Hirayama, T. Tsuda, et al., Noninvasive monitoring of plasma L-dopa concentrations using sweat samples in Parkinson’s disease, Clin. Chim. Acta 442 (2015) 52-55, https://doi.org/10.1016/j.cca.2014.12.032
    L.C. Tai, W. Gao, M. Chao, et al., Methylxanthine drug monitoring with wearable sweat sensors, Adv. Mater. 30 (2018) e1707442, https://doi.org/10.1002/adma.201707442
    P. Gal, Caffeine therapeutic drug monitoring is necessary and cost-effective, J. Pediatr. Pharmacol. Ther. 12 (2007) 212-215, https://doi.org/10.5863/1551-6776-12.4.212
    A.M. Comer, C.M. Perry, D.P. Figgitt, Caffeine citrate: a review of its use in apnoea of prematurity, Paediatr. Drugs 3 (2001) 61-79, https://doi.org/10.2165/00128072-200103010-00005
    L.C. Tai, T.S. Liaw, Y. Lin, et al., Wearable sweat band for noninvasive levodopa monitoring, Nano Lett. 9 (2019) 6346-6351, https://doi.org/10.1021/acs.nanolett.9b02478
    J. Zhao, H.X. Guo, J.H. Li, et al., Body-interfaced chemical sensors for noninvasive monitoring and analysis of biofluids, Trends Chem. 1 (2019) 559-571, https://doi.org/10.1016/j.trechm.2019.07.001
    K.J. Lee, S.S. Jeong, D.H. Roh, et al., A practical guide to the development of microneedle systems - In clinical trials or on the market, Int. J. Pharm. 573 (2020) 118778, https://doi.org/10.1016/j.ijpharm.2019.118778
    H. Lee, T.K. Choi, Y.B. Lee, et al., A graphene-based electrochemical device with thermo-responsive microneedles for diabetes monitoring and therapy, Nat. Nanotechnol. 11 (2016) 566-572, https://doi.org/10.1038/nnano.2016.38
    H. Wang, G. Pastorin, C.K. Lee, Toward self-powered wearable adhesive skin patch with bendable microneedle array for transdermal drug delivery, Adv. Sci. (Weinh) 3 (2016) 1500441, https://doi.org/10.1002/advs.201500441
    Y.C. Kim, J.H. Park, M.R. Prausnitz, Microneedles for drug and vaccine delivery, Adv. Drug Deliv. Rev. 64 (2012) 1547-1568, https://doi.org/10.1016/j.addr.2012.04.005
    T.K. Kiang, V. Schmitt, M.H. Ensom, et al., Therapeutic drug monitoring in interstitial fluid: a feasibility study using a comprehensive panel of drugs, J. Pharm. Sci. 101 (2012) 4642-4652, https://doi.org/10.1002/jps.23309
    S. Sharma, A. Saeed, C. Johnson, et al., Rapid, low cost prototyping of transdermal devices for personal healthcare monitoring, Sens. Biosensing Res. 13 (2017) 104-108, https://doi.org/10.1016/j.sbsr.2016.10.004
    K.Y. Goud, C. Moonla, R.K. Mishra, et al., Wearable electrochemical microneedle sensor for continuous monitoring of levodopa: toward parkinson management, ACS Sens. 4 (2019) 2196-2204, https://doi.org/10.1021/acssensors.9b01127
    S.A.N. Gowers, D.M.E. Freeman, T.M. Rawson, et al., Development of a minimally invasive microneedle-based sensor for continuous monitoring of β-lactam antibiotic concentrations in vivo, ACS Sens. 4 (2019) 1072-1080, https://doi.org/10.1021/acssensors.9b00288
    S. Sharma, A. Ahmed El-Laboudi, M. Reddy, et al., a pilot study in humans of microneedle sensor arrays for continuous glucose monitoring, Anal. Methods, 10 (2018) 2088-2095, https://doi.org/10.1039/C8AY00264A
    M.A. Eckert, P.Q. Vu, K. Zhang, et al., Novel molecular and nanosensors for in vivo sensing, Theranostics 3 (2013) 583-594, https://doi.org/10.7150/thno.6584
    K.W. Plaxco, H.T. Soh, Switch-based biosensors: a new approach towards real-time, in vivo molecular detection, Trends Biotechnol. 29 (2011) 1-5, https://doi.org/10.1016/j.tibtech.2010.10.005
    G.S. Wilson, R. Gifford, Biosensors for real-time in vivo measurements, Biosens. Bioelectron. 20 (2005) 2388-2403, https://doi.org/10.1016/j.bios.2004.12.003
    S. Vaddiraju, I. Tomazos, D.J. Burgess, et al., Emerging synergy between nanotechnology and implantable biosensors: a review, Biosens. Bioelectron. 25 (2010) 1553-1565, https://doi.org/10.1016/j.bios.2009.12.001
    D. Deiss, C. Irace, G. Carlson, et al., Real-world safety of an implantable continuous glucose sensor over multiple cycles of use: a post-market registry study, Diabetes Technol. Ther. 22 (2020) 48-52, https://doi.org/10.1089/dia.2019.0159
    T.T. Ruckh, H.A. Clark, Implantable nanosensors: toward continuous physiologic monitoring, Anal. Chem. 86 (2014) 1314-1323, https://doi.org/10.1021/ac402688k
    S.P. Nichols, A. Koh, W.L. Storm, et al., Biocompatible materials for continuous glucose monitoring devices, Chem. Rev. 113 (2013) 2528-2549, https://doi.org/10.1021/cr300387j
    A. Sanati, M. Jalali, K. Raeissi, et al., A review on recent advancements in electrochemical biosensing using carbonaceous nanomaterials, Mikrochim Acta. 186 (2019) 773, https://doi.org/10.1007/s00604-019-3854-2
    N. Arroyo-Curras, J. Somerson, P.A. Vieira, et al., Real-time measurement of small molecules directly in awake, ambulatory animals, Proc. Natl. Acad. Sci. U. S. A. 114 (2017) 645-650, https://doi.org/10.1073/pnas.1613458114
    P.A. Vieira, C.B. Shin, N. Arroyo-Curras, et al., Ultra-high-precision, in-vivo pharmacokinetic measurements highlight the need for and a route toward more highly personalized medicine, Front. Mol. Biosci. 6 (2019) 69, https://doi.org/10.3389/fmolb.2019.00069
    N. Arroyo-Curras, K. Scida, K.L. Ploense, et al., High surface area electrodes generated via electrochemical roughening improve the signaling of electrochemical aptamer-based biosensors, Anal. Chem. 89 (2017) 12185-12191, https://doi.org/10.1021/acs.analchem.7b02830
    N. Arroyo-Curras, P. Dauphin-Ducharme, G. Ortega, et al., Subsecond-resolved molecular measurements in the living body using chronoamperometrically interrogated aptamer-based sensors, ACS Sens. 3 (2018) 360-366, https://doi.org/10.1021/acssensors.7b00787
    H. Li, P. Dauphin-Ducharme, N. Arroyo-Curras, et al., A biomimetic phosphatidylcholine-terminated monolayer greatly improves the In vivo performance of electrochemical aptamer-based sensors, Angew. Chem. Int. Ed. Engl. 56 (2017) 7492-7495, https://doi.org/10.1002/anie.201700748
    N. Arroyo-Curras, G. Ortega, D.A. Copp, et al., High-precision control of plasma drug levels using feedback-controlled dosing, ACS Pharmacol. Transl. Sci. 1 (2018) 110−118, https://doi.org/10.1021/acsptsci.8b00033
    P. Dauphin-Ducharme, K. Yang, N. Arroyo-Curras, et al., Electrochemical aptamer-based sensors for improved therapeutic drug monitoring and high-precision, feedback-controlled drug delivery, ACS Sens. 4 (2019) 2832-2837, https://doi.org/10.1021/acssensors.9b01616
    M. Weiss, Pharmacokinetics in organs and the intact body: model validation and reduction, Eur. J. Pharm. Sci. 7 (1999) 119-127, https://doi.org/10.1016/s0928-0987(98)00014-1
    G. Ogata, Y. Ishii, K. Asai, et al., A microsensing system for the in vivo real-time detection of local drug kinetics, Nat. Biomed. Eng. 1 (2017) 654-666, https://doi.org/10.1038/s41551-017-0118-5
    C.Y. Li, R.K. Narayan, Real-time drug pharmacokinetics, Nat. Biomed. Eng. 1 (2017) 627-628, https://doi.org/10.1038/s41551-017-0122-9
    S. Spindel, K.E. Sapsford, Evaluation of optical detection platforms for multiplexed detection of proteins and the need for point-of-care biosensors for clinical use, Sensors (Basel) 14 (2014) 22313-22341, https://doi.org/10.3390/s141222313
    C. Baj-Rossi, A. Cavallini, E.G. Kilinc, et al., In-vivo validation of fully implantable multi-panel devices for remote monitoring of metabolism, IEEE Trans. Biomed. Circuits Syst. 10 (2016) 955-962, https://doi.org/10.1109/TBCAS.2016.2584239
    C. Baj-Rossi, E.G. Kilinc, S.S. Ghoreishizadeh, et al., Full fabrication and packaging of an implantable multi-panel device for monitoring of metabolites in small animals, IEEE Trans. Biomed. Circuits Syst. 8 (2014) 636-647, https://doi.org/10.1109/TBCAS.2014.2359094
    A. Hammoud, A. Chamseddine, D.K. Nguyen, et al., Towards an implantable bio-sensor platform for continuous real-time monitoring of anti-epileptic drugs, Conf. Proc. IEEE Eng. Med. Biol. Soc. 2016 (2016) 2982-2985, https://doi.org/10.1109/EMBC.2016.7591356
    L.J. Hubble, J. Wang, Sensing at your fingertips: glove-based wearable chemical sensors, Electroanalysis 31 (2019) 428 -436, https://doi.org/10.1002/elan.201800743
    P.C. Ferreira, V.N. Ataide, C.L.S. Chagas, et al., Wearable electrochemical sensors for forensic and clinical applications, Trends Analyt. Chem. 119 (2019) 115622, https://doi.org/10.1016/j.trac.2019.115622
    A. Barfidokhta, R.K. Mishraa, R. Seenivasanb, et al., Wearable electrochemical glove-based sensor for rapid and on-site detection of fentanyl, Sens. Actuators B Chem. 296 (2019) 126422, https://doi.org/10.1016/j.snb.2019.04.053
    W. Li, F.L. Tse, Dried blood spot sampling in combination with LC-MS/MS for quantitative analysis of small molecules, Biomed. Chromatogr. 24 (2010) 49-65, https://doi.org/10.1002/bmc.1367
    S. Bian, N. Van den Berghe, L. Vandersmissen, et al., Evaluating an easy sampling method using dried blood spots to determine vedolizumab concentrations, J. Pharm. Biomed. Anal. 185 (2020) 113224, https://doi.org/10.1016/j.jpba.2020.113224
    J.H. Qu, A. Dillen, W. Saeys, et al., Advancements in SPR biosensing technology: an overview of recent trends in smart layers design, multiplexing concepts, continuous monitoring and in vivo sensing, Anal. Chim. Acta. 1104 (2020) 10-27, https://doi.org/10.1016/j.aca.2019.12.067
    Y.S. Zhang, J. Aleman, S.R. Shin, et al., Multisensor-integrated organs-on-chips platform for automated and continual in situ monitoring of organoid behaviors, Proc. Natl. Acad. Sci. U. S. A. 114 (2017) E2293-E2302, https://doi.org/10.1073/pnas.1612906114
    N. Gao, T. Gao, X. Yang, et al., Specific detection of biomolecules in physiological solutions using graphene transistor biosensors, Proc. Natl. Acad. Sci. U. S. A. 113 (2016) 14633−14638, https://doi.org/10.1073/pnas.1625010114
    H.H. Bay, R. Vo, X. Dai, et al., Hydrogel gate graphene field-effect transistors as multiplexed biosensors, Nano Lett. 19 (2019) 2620-2626, https://doi.org/10.1021/acs.nanolett.9b00431
    N. Nakatsuka, K.A. Yang, J.M. Abendroth, et al., Aptamer-field-effect transistors overcome Debye length limitations for small-molecule sensing, Science 362 (2018) 319-324, https://doi.org/10.1126/science.aao6750
    N. Wisniewski, M. Reichert, Methods for reducing biosensor membrane biofouling, Colloids Surf. B Biointerfaces. 18 (2000) 197-219, https://doi.org/10.1016/s0927-7765(99)00148-4
    Y. Li, Y. Xu, C.C. Fleischer, et al., Impact of anti-biofouling surface coatings on the properties of nanomaterials and their biomedical applications, J. Mater. Chem. B. 6 (2018) 9-24, https://doi.org/10.1039/C7TB01695F
    J. Sabate Del Rio, O.Y. Henry, P. Jolly, et al., An antifouling coating that enables affinity-based electrochemical biosensing in complex biological fluids, Nat. Nanotechnol. 14 (2019) 1143-1149, https://doi.org/10.1038/s41565-019-0566-z
    S. Carrara, S. Ghoreishizadeh, J. Olivo, et al., Fully integrated biochip platforms for advanced healthcare, Sensors (Basel) 12 (2012) 11013-11060, https://doi.org/10.3390/s120811013
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (199) PDF downloads(7) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return