Citation: | Monika Zielińska, Ewa Chmielewska, Tomasz Buchwald, Adam Voelkel, Paweł Kafarski. Determination of bisphosphonates anti-resorptive properties based on three forms of ceramic materials: Sorption and release process evaluation[J]. Journal of Pharmaceutical Analysis, 2021, 11(3): 364-373. doi: 10.1016/j.jpha.2020.07.011 |
G.H. Nancollas, R. Tang, R.J. Phipps, et al., Novel insights into actions of bisphosphonates on bone: Differences in interactions with hydroxyapatite, Bone 38 (2006) 617-627. https://doi.org/10.1016/j.bone.2005.05.003
|
R. Graham, R. Russell, Bisphosphonates: The first 40 years, Bone, 49 (2011) 2-19. https://doi.org/10.1016/j.bone.2011.04.022
|
R.G.G Russell, N.B. Watts, et al., Mechanisms of action of bisphosphonates: similarities and differences and their potential influence on clinical efficacy, Osteoporos Int., 19 (2008) 733-759. https://doi.org/10.1007/s00198-007-0540-8
|
F. Errassifi, S. Sarda, A. Barroug et al., Infrared, Raman and NMR investigations of risedronate adsorption on nanocrystalline apatites, J. Colloid Interface Sci. 420 (2014) 101-111. https://doi.org/10.1016/j.jcis.2014.01.017
|
R.G.G. Russell, Z. Xia, J.E. Dunford, et al., Bisphosphonates An Update on Mechanisms of Action and How These Relate to Clinical Efficacy, Ann N Y Acad Sci. 1117 (2007) 209-257. https://doi.org/10.1196/annals.1402.089
|
M.A. Lawson, Z. Xia, B.L. Barnett et al., Differences Between Bisphosphonates in Binding Affinities for Hydroxyapatite, J Biomed Mater Res B Appl Biomater. 92 (2010) 149-155. https://doi.org/10.1002/jbm.b.31500
|
M. Pietrzynska, R. Tomczak, K. Jezierska, et al., Polymer-ceramic Monolithic In-Needle Extraction (MINE) device: preparation and examination of drug affinity, Mater. Sci. Eng. C 68 (2016) 70-77. https://doi.org/10.1016/j.msec.2016.05.097
|
M. Pietrzynska, J. Zembrzuska, R.Tomczak, et al., Experimental and in silico investigations of organic phosphates and phosphonates sorption on polymer-ceramic monolithic materials and hydroxyapatite, Eur. J. Pharmaceut. Sci. 93 (2016) 295-303. https://doi.org/10.1016/j.ejps.2016.08.033
|
J. Krenkova, N.A. Lacher, F. Svec, Control of Selectivity via Nanochemistry: Monolithic Capillary Column Containing Hydroxyapatite Nanoparticles for Separation of Proteins and Enrichment of Phosphopeptides, Anal. Chem. 82 (2010) 8335-8341. https://doi.org/10.1021/ac1018815
|
E. Chmielewska, K. Kempińska, J. Wietrzyk, et al, Novel Bisphosphonates and Their Use, Int Pat Appl WO2015159153 (A1) ― 2015-10-22
|
E. Matczak-Jon, K. Slepokura, P. Kafarski, Solid state and solution behaviour of N-(2-pyridyl)- and N-(4-methyl-2-pyridyl)aminomethane-1,1-diphosphonic acids, J. Mol. Struct. 782 (2006) 81-93. https://doi.org/10.1016/j.molstruc.2005.07.004
|
E. Matczak-Jon, W. Sawka-Dobrowolska, P. Kafarski, et al., Molecular organization and solution properties of N-substituted aminomethane-1,1-diphosphonic acids, New J. Chem. 25 (2001) 1447-1457. https://doi.org/10.1039/B102282M
|
S. Ghosh, J.M. Chan,C. R. Lea, et al., Effects of Bisphosphonates on the Growth of Entamoeba histolytica and Plasmodium Species in Vitro and in Vivo, J. Med Chem. 47 (1) (2004) 175-187. https://doi.org/10.1021/jm030084x
|
E. Matczak-Jon, K. Slepokura, P.Kafarski, [(5-Bromo-pyridinium-2- ylamino)(phosphono)meth-yl]phospho-nate, Acta Crystallogr. C. 62 (2006) 132-135. https://doi.org/10.1107/S0108270106002423
|
E. Matczak-Jon, K. Slepokura, Conformations and resulting hydrogen-bonded networks of hydrogen{phosphono[(pyridin-1-ium-3-yl)amino]methyl}phosphonate and related 2-chloro and 6-chloro derivatives, Acta Crystallogr. C. 67 (2011) 450-456. https://doi.org/10.1107/s0108270111040650
|
L. Widler, K.A. Jaeggi, M. Glatt et al. Highly Potent Geminal Bisphosphonates. From Pamidronate Disodium (Aredia) to Zoledronic Acid (Zometa), J. Med. Chem. 45 (2002) 3721-3738. https://doi.org/10.1021/jm020819i
|
W. Goldeman, A. Nasulewicz-Goldeman, Synthesis and antiproliferative activity of aromatic and aliphatic bis[aminomethylidene(bisphosphonic)] acidsBioorg. Med. Chem. Lett. 24 (2014)) 3475-3479. https://doi.org/10.1016/j.bmcl.2014.05.071
|
E. Chmielewska, Z. Mazur, K. Kempinska, et al., N-Arylaminomethylenebisphosphonates bearing fluorine atoms: Synthesis and antiosteoporotic activity, Phosphorus Sulfur Silicon Relat. Elem. 190 (2015) 2164-2172. https://doi.org/10.1080/10426507.2015.1085046
|
E. Matczak-Jon, K. Slepokura, B. Kurzak, X-ray evidence for the relationship between pyridyl side chain basicity and the Z/E preferences of 5-halogen substituted (pyridin-2-yl)aminomethane-1,1- diphosphonic acids; implications for metal ions coordination in solution, Arkivoc. 4 (2012) 167-185. https://doi.org/10.3998/ark.5550190.0013.412
|
K. Azzaoui, M. Berrabah, E. Mejdoubi et al. Use of hydroxylapatite composite membranes for analysis of bisphenol A, Res. Chem. Intermed, 40 (2014) 2621-2628. https://doi.org/10.1007/s11164-013-1115-2
|
M. Pietrzynska, M. Czerwinski, A. Voelkel, Poly(vinyl alcohol)/hydroxyapatite monolithic in-needle extraction (MINE) device: preparation and examination of drug affinity, Eur. J. Pharm. Sci. 105 (2017)195-202. https://doi.org/10.1016/j.ejps.2017.05.040
|
D.B. Rorabacher, Statistical treatment for rejection of deviant values: critical values of Dixon's "Q" parameter and related subrange ratios at the 95% confidence level, Anal. Chem. 63 (1991) 139-146. https://doi.org/10.1021/ac00002a010
|
P. Petruczynik, P. Kafarski, M. Psurski, et al., Three-Component Reaction of Diamines with Triethyl Orthoformate and Diethyl Phosphite and Anti-Proliferative and Antiosteoporotic Activities of the Products, Molecules 25(6) (2020) 1424. https://doi.org/10.3390/molecules25061424
|
Z. Okulus, T. Buchwald, M. Szybowicz, et al., Study of a new resin-based composites containing hydroxyapatite filler using Raman and infrared spectroscopy, Mater. Chem. Phys. 145 (2014) 304-312. 10.1016/j.matchemphys.2014.02.012
|
M.J. Rogers, J.C. Crockett, F.P. Coxon, et al., Biochemical and molecular mechanisms of action of bisphosphonates, Bone 49 (2011) 34-41. https://doi.org/10.1016/j.bone.2010.11.008
|
M. Pietrzynska, A. Voelkel, K. Bielicka-Daszkiewicz, Preparation and examination of Monolithic In-Needle Extraction (MINE) device for the direct analysis of liquid samples, Anal. Chim. Acta 776 (2013) 50-56. https://doi.org/10.1016/j.aca.2013.03.022
|
M. Pietrzynska, A. Voelkel, Optimization of the in-needle extraction device for the direct flow of the liquid sample through the sorbent layer, Talanta 129 (2014) 392-397. https://doi.org/10.1016/j.talanta.2014.06.026
|
V. Kumar, R. Kant Sinha, Bisphosphonate related osteonecrosis of the jaw: An update, J. Maxillofac. Oral. Surg. 13 (2014) 386-393. https://doi.org/10.1007/s12663-013-0564-x
|
C. Walter, B. Al-Nawas, N. Frickhofen, et al., Prevalence of bisphosphonate associated osteonecrosis of the jaws in multiple myeloma patients, Head & Face Med. 6 (2010) 6-11. https://doi.org/10.1186/1746-160X-6-11
|